1
|
Guillén-Yunta M, García-Aldea Á, Valcárcel-Hernández V, Sanz-Bógalo A, Muñoz-Moreno E, Matheus MG, Grijota-Martínez C, Montero-Pedrazuela A, Guadaño-Ferraz A, Bárez-López S. Defective thyroid hormone transport to the brain leads to astroglial alterations. Neurobiol Dis 2024; 200:106621. [PMID: 39097035 DOI: 10.1016/j.nbd.2024.106621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/01/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024] Open
Abstract
Allan-Herndon-Dudley syndrome (AHDS) is a rare X-linked disorder that causes severe neurological damage, for which there is no effective treatment. AHDS is due to inactivating mutations in the thyroid hormone transporter MCT8 that impair the entry of thyroid hormones into the brain, resulting in cerebral hypothyroidism. However, the pathophysiology of AHDS is still not fully understood and this is essential to develop therapeutic strategies. Based on evidence suggesting that thyroid hormone deficit leads to alterations in astroglial cells, including gliosis, in this work, we have evaluated astroglial impairments in MCT8 deficiency by means of magnetic resonance imaging, histological, ultrastructural, and immunohistochemical techniques, and by mining available RNA sequencing outputs. Apparent diffusion coefficient (ADC) imaging values obtained from magnetic resonance imaging showed changes indicative of alterations in brain cytoarchitecture in MCT8-deficient patients (n = 11) compared to control subjects (n = 11). Astroglial alterations were confirmed by immunohistochemistry against astroglial markers in autopsy brain samples of an 11-year-old and a 30th gestational week MCT8-deficient subjects in comparison to brain samples from control subjects at similar ages. These findings were validated and further explored in a mouse model of AHDS. Our findings confirm changes in all the astroglial populations of the cerebral cortex in MCT8 deficiency that impact astrocytic metabolic and mitochondrial cellular respiration functions. These impairments arise early in brain development and persist at adult stages, revealing an abnormal distribution, density, morphology of cortical astrocytes, along with altered transcriptome, compatible with an astrogliosis-like phenotype at adult stages. We conclude that astrocytes are potential novel therapeutic targets in AHDS, and we propose ADC imaging as a tool to monitor the progression of neurological impairments and potential effects of treatments in MCT8 deficiency.
Collapse
Affiliation(s)
- Marina Guillén-Yunta
- Department of Neurological Diseases and Aging, Instituto de Investigaciones Biomédicas Sols-Morreale, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Ángel García-Aldea
- Department of Neurological Diseases and Aging, Instituto de Investigaciones Biomédicas Sols-Morreale, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Víctor Valcárcel-Hernández
- Department of Neurological Diseases and Aging, Instituto de Investigaciones Biomédicas Sols-Morreale, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Ainara Sanz-Bógalo
- Department of Neurological Diseases and Aging, Instituto de Investigaciones Biomédicas Sols-Morreale, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Emma Muñoz-Moreno
- Magnetic Imaging Resonance Core Facility, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Maria Gisele Matheus
- Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA
| | - Carmen Grijota-Martínez
- Department of Neurological Diseases and Aging, Instituto de Investigaciones Biomédicas Sols-Morreale, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), Madrid, Spain; Department of Cell Biology, Faculty of Biology, Universidad Complutense de Madrid, Madrid, Spain
| | - Ana Montero-Pedrazuela
- Department of Neurological Diseases and Aging, Instituto de Investigaciones Biomédicas Sols-Morreale, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), Madrid, Spain.
| | - Ana Guadaño-Ferraz
- Department of Neurological Diseases and Aging, Instituto de Investigaciones Biomédicas Sols-Morreale, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), Madrid, Spain.
| | - Soledad Bárez-López
- Department of Neurological Diseases and Aging, Instituto de Investigaciones Biomédicas Sols-Morreale, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), Madrid, Spain.
| |
Collapse
|
2
|
Li Z, Liu J. Thyroid dysfunction and Alzheimer's disease, a vicious circle. Front Endocrinol (Lausanne) 2024; 15:1354372. [PMID: 38419953 PMCID: PMC10899337 DOI: 10.3389/fendo.2024.1354372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/01/2024] [Indexed: 03/02/2024] Open
Abstract
Recently, research into the link between thyroid dysfunction and Alzheimer's disease (AD) remains a current topic of interest. Previous research has primarily concentrated on examining the impact of thyroid dysfunction on the risk of developing AD, or solely explored the mechanisms of interaction between hypothyroidism and AD, a comprehensive analysis of the mechanisms linking thyroid dysfunction, including hyperthyroidism and hypothyroidism, to Alzheimer's disease (AD) still require further elucidation. Therefore, the aim of this review is to offer a thorough and comprehensive explanation of the potential mechanisms underlying the causal relationship between thyroid dysfunction and AD, highlighting the existence of a vicious circle. The effect of thyroid dysfunction on AD includes neuron death, impaired synaptic plasticity and memory, misfolded protein deposition, oxidative stress, and diffuse and global neurochemical disturbances. Conversely, AD can also contribute to thyroid dysfunction by affecting the stress repair response and disrupting pathways involved in thyroid hormone (TH) production, transport, and activation. Furthermore, this review briefly discusses the role and significance of utilizing the thyroid as a therapeutic target for cognitive recovery in AD. By exploring potential mechanisms and therapeutic avenues, this research contributes to our understanding and management of this devastating neurodegenerative disease.
Collapse
Affiliation(s)
| | - Jia Liu
- Department of Thyroid Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
3
|
Guillén-Yunta M, Valcárcel-Hernández V, García-Aldea Á, Soria G, García-Verdugo JM, Montero-Pedrazuela A, Guadaño-Ferraz A. Neurovascular unit disruption and blood-brain barrier leakage in MCT8 deficiency. Fluids Barriers CNS 2023; 20:79. [PMID: 37924081 PMCID: PMC10623792 DOI: 10.1186/s12987-023-00481-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/20/2023] [Indexed: 11/06/2023] Open
Abstract
BACKGROUND The monocarboxylate transporter 8 (MCT8) plays a vital role in maintaining brain thyroid hormone homeostasis. This transmembrane transporter is expressed at the brain barriers, as the blood-brain barrier (BBB), and in neural cells, being the sole known thyroid hormone-specific transporter to date. Inactivating mutations in the MCT8 gene (SLC16A2) cause the Allan-Herndon-Dudley Syndrome (AHDS) or MCT8 deficiency, a rare X-linked disease characterized by delayed neurodevelopment and severe psychomotor disorders. The underlying pathophysiological mechanisms of AHDS remain unclear, and no effective treatments are available for the neurological symptoms of the disease. METHODS Neurovascular unit ultrastructure was studied by means of transmission electron microscopy. BBB permeability and integrity were evaluated by immunohistochemistry, non-permeable dye infiltration assays and histological staining techniques. Brain blood-vessel density was evaluated by immunofluorescence and magnetic resonance angiography. Finally, angiogenic-related factors expression was evaluated by qRT-PCR. The studies were carried out both in an MCT8 deficient subject and Mct8/Dio2KO mice, an AHDS murine model, and their respective controls. RESULTS Ultrastructural analysis of the BBB of Mct8/Dio2KO mice revealed significant alterations in neurovascular unit integrity and increased transcytotic flux. We also found functional alterations in the BBB permeability, as shown by an increased presence of peripheral IgG, Sodium Fluorescein and Evans Blue, along with increased brain microhemorrhages. We also observed alterations in the angiogenic process, with reduced blood vessel density in adult mice brain and altered expression of angiogenesis-related factors during brain development. Similarly, AHDS human brain samples showed increased BBB permeability to IgG and decreased blood vessel density. CONCLUSIONS These findings identify for the first time neurovascular alterations in the MCT8-deficient brain, including a disruption of the integrity of the BBB and alterations in the neurovascular unit ultrastructure as a new pathophysiological mechanism for AHDS. These results open a new field for potential therapeutic targets for the neurological symptoms of these patients and unveils magnetic resonance angiography as a new non-invasive in vivo technique for evaluating the progression of the disease.
Collapse
Affiliation(s)
- Marina Guillén-Yunta
- Laboratory of Thyroid Hormones and CNS, Department of Endocrine and Nervous System Pathophysiology, Instituto de Investigaciones Biomédicas 'Alberto-Sols', Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), C/ Arturo Duperier 4, 28029, Madrid, Spain
| | - Víctor Valcárcel-Hernández
- Laboratory of Thyroid Hormones and CNS, Department of Endocrine and Nervous System Pathophysiology, Instituto de Investigaciones Biomédicas 'Alberto-Sols', Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), C/ Arturo Duperier 4, 28029, Madrid, Spain
| | - Ángel García-Aldea
- Laboratory of Thyroid Hormones and CNS, Department of Endocrine and Nervous System Pathophysiology, Instituto de Investigaciones Biomédicas 'Alberto-Sols', Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), C/ Arturo Duperier 4, 28029, Madrid, Spain
| | - Guadalupe Soria
- Laboratory of Surgical and Experimental Neuroanatomy, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - José Manuel García-Verdugo
- Laboratory of Comparative Neurobiology, Cavanilles Institute of Biodiversity and Evolutionary Biology and Department of Cellular Biology, University of Valencia and CIBERNED-ISCIII, Valencia, Spain
| | - Ana Montero-Pedrazuela
- Laboratory of Thyroid Hormones and CNS, Department of Endocrine and Nervous System Pathophysiology, Instituto de Investigaciones Biomédicas 'Alberto-Sols', Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), C/ Arturo Duperier 4, 28029, Madrid, Spain.
| | - Ana Guadaño-Ferraz
- Laboratory of Thyroid Hormones and CNS, Department of Endocrine and Nervous System Pathophysiology, Instituto de Investigaciones Biomédicas 'Alberto-Sols', Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), C/ Arturo Duperier 4, 28029, Madrid, Spain.
| |
Collapse
|