1
|
Hille M, Kühn S, Kempermann G, Bonhoeffer T, Lindenberger U. From animal models to human individuality: Integrative approaches to the study of brain plasticity. Neuron 2024:S0896-6273(24)00727-X. [PMID: 39461332 DOI: 10.1016/j.neuron.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/02/2024] [Accepted: 10/04/2024] [Indexed: 10/29/2024]
Abstract
Plasticity allows organisms to form lasting adaptive changes in neural structures in response to interactions with the environment. It serves both species-general functions and individualized skill acquisition. To better understand human plasticity, we need to strengthen the dialogue between human research and animal models. Therefore, we propose to (1) enhance the interpretability of macroscopic methods used in human research by complementing molecular and fine-structural measures used in animals with such macroscopic methods, preferably applied to the same animals, to create macroscopic metrics common to both examined species; (2) launch dedicated cross-species research programs, using either well-controlled experimental paradigms, such as motor skill acquisition, or more naturalistic environments, where individuals of either species are observed in their habitats; and (3) develop conceptual and computational models linking molecular and fine-structural events to phenomena accessible by macroscopic methods. In concert, these three component strategies can foster new insights into the nature of plastic change.
Collapse
Affiliation(s)
- Maike Hille
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany; Center for Environmental Neuroscience, Max Planck Institute for Human Development, Berlin, Germany.
| | - Simone Kühn
- Center for Environmental Neuroscience, Max Planck Institute for Human Development, Berlin, Germany; Clinic and Policlinic for Psychiatry and Psychotherapy, University Clinic Hamburg-Eppendorf, Hamburg, Germany; Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany, and London, UK
| | - Gerd Kempermann
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany; CRTD - Center for Regenerative Therapies Dresden, TU Dresden, Dresden, Germany
| | - Tobias Bonhoeffer
- Synapses-Circuits-Plasticity, Max Planck Institute for Biological Intelligence, Martinsried, Germany
| | - Ulman Lindenberger
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany; Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany, and London, UK.
| |
Collapse
|
2
|
Joo Y, Namgung E, Jeong H, Kang I, Kim J, Oh S, Lyoo IK, Yoon S, Hwang J. Brain age prediction using combined deep convolutional neural network and multi-layer perceptron algorithms. Sci Rep 2023; 13:22388. [PMID: 38104173 PMCID: PMC10725434 DOI: 10.1038/s41598-023-49514-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 12/08/2023] [Indexed: 12/19/2023] Open
Abstract
The clinical applications of brain age prediction have expanded, particularly in anticipating the onset and prognosis of various neurodegenerative diseases. In the current study, we proposed a deep learning algorithm that leverages brain structural imaging data and enhances prediction accuracy by integrating biological sex information. Our model for brain age prediction, built on deep neural networks, employed a dataset of 3004 healthy subjects aged 18 and above. The T1-weighted images were minimally preprocessed and analyzed using the convolutional neural network (CNN) algorithm. The categorical sex information was then incorporated using the multi-layer perceptron (MLP) algorithm. We trained and validated both a CNN-only algorithm (utilizing only brain structural imaging data), and a combined CNN-MLP algorithm (using both structural brain imaging data and sex information) for age prediction. By integrating sex information with T1-weighted imaging data, our proposed CNN-MLP algorithm outperformed not only the CNN-only algorithm but also established algorithms, such as brainageR, in prediction accuracy. Notably, this hybrid CNN-MLP algorithm effectively distinguished between mild cognitive impairment and Alzheimer's disease groups by identifying variances in brain age gaps between them, highlighting the algorithm's potential for clinical application. Overall, these results underscore the enhanced precision of the CNN-MLP algorithm in brain age prediction, achieved through the integration of sex information.
Collapse
Affiliation(s)
- Yoonji Joo
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea
| | - Eun Namgung
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, South Korea
| | - Hyeonseok Jeong
- Department of Radiology, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Ilhyang Kang
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea
| | - Jinsol Kim
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea
| | - Sohyun Oh
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea
- Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul, South Korea
| | - In Kyoon Lyoo
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea
- Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul, South Korea
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, South Korea
| | - Sujung Yoon
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea.
- Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul, South Korea.
| | - Jaeuk Hwang
- Department of Psychiatry, Soonchunhyang University College of Medicine, Seoul, South Korea.
| |
Collapse
|