1
|
Flores-Mendez M, Ohl L, Roule T, Zhou Y, Tintos-Hernández JA, Walsh K, Ortiz-González XR, Akizu N. IMPDH2 filaments protect from neurodegeneration in AMPD2 deficiency. EMBO Rep 2024; 25:3990-4012. [PMID: 39075237 PMCID: PMC11387764 DOI: 10.1038/s44319-024-00218-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 07/06/2024] [Accepted: 07/16/2024] [Indexed: 07/31/2024] Open
Abstract
Metabolic dysregulation is one of the most common causes of pediatric neurodegenerative disorders. However, how the disruption of ubiquitous and essential metabolic pathways predominantly affect neural tissue remains unclear. Here we use mouse models of a childhood neurodegenerative disorder caused by AMPD2 deficiency to study cellular and molecular mechanisms that lead to selective neuronal vulnerability to purine metabolism imbalance. We show that mouse models of AMPD2 deficiency exhibit predominant degeneration of the hippocampal dentate gyrus, despite a general reduction of brain GTP levels. Neurodegeneration-resistant regions accumulate micron-sized filaments of IMPDH2, the rate limiting enzyme in GTP synthesis, while these filaments are barely detectable in the hippocampal dentate gyrus. Furthermore, we show that IMPDH2 filament disassembly reduces GTP levels and impairs growth of neural progenitor cells derived from individuals with human AMPD2 deficiency. Together, our findings suggest that IMPDH2 polymerization prevents detrimental GTP deprivation, opening the possibility of exploring the induction of IMPDH2 assembly as a therapy for neurodegeneration.
Collapse
Affiliation(s)
- Marco Flores-Mendez
- Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Laura Ohl
- Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Thomas Roule
- Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yijing Zhou
- Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jesus A Tintos-Hernández
- Division of Neurology and Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Kelsey Walsh
- Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Xilma R Ortiz-González
- Division of Neurology and Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Naiara Akizu
- Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Flores-Mendez M, Ohl L, Roule T, Zhou Y, Tintos-Hernández JA, Walsh K, Ortiz-González XR, Akizu N. IMPDH2 filaments protect from neurodegeneration in AMPD2 deficiency. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.20.576443. [PMID: 38328116 PMCID: PMC10849482 DOI: 10.1101/2024.01.20.576443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Metabolic dysregulation is one of the most common causes of pediatric neurodegenerative disorders. However, how the disruption of ubiquitous and essential metabolic pathways predominantly affect neural tissue remains unclear. Here we use mouse models of AMPD2 deficiency to study cellular and molecular mechanisms that lead to selective neuronal vulnerability to purine metabolism imbalance. We show that AMPD deficiency in mice primarily leads to hippocampal dentate gyrus degeneration despite causing a generalized reduction of brain GTP levels. Remarkably, we found that neurodegeneration resistant regions accumulate micron sized filaments of IMPDH2, the rate limiting enzyme in GTP synthesis. In contrast, IMPDH2 filaments are barely detectable in the hippocampal dentate gyrus, which shows a progressive neuroinflammation and neurodegeneration. Furthermore, using a human AMPD2 deficient neural cell culture model, we show that blocking IMPDH2 polymerization with a dominant negative IMPDH2 variant, impairs AMPD2 deficient neural progenitor growth. Together, our findings suggest that IMPDH2 polymerization prevents detrimental GTP deprivation in neurons with available GTP precursor molecules, providing resistance to neurodegeneration. Our findings open the possibility of exploring the involvement of IMPDH2 assembly as a therapeutic intervention for neurodegeneration.
Collapse
Affiliation(s)
- Marco Flores-Mendez
- Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Laura Ohl
- Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Thomas Roule
- Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yijing Zhou
- Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jesus A Tintos-Hernández
- Division of Neurology and Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA, 19104
| | - Kelsey Walsh
- Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Xilma R Ortiz-González
- Division of Neurology and Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA, 19104
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104
| | - Naiara Akizu
- Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|