1
|
Laquitaine M, Polosan M, Kahane P, Chabardes S, Yelnik J, Fernandez-Vidal S, Domenech P, Bastin J. Optimal level of human intracranial theta activity for behavioral switching in the subthalamo-medio-prefrontal circuit. Nat Commun 2024; 15:7827. [PMID: 39244544 PMCID: PMC11380695 DOI: 10.1038/s41467-024-52290-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 08/29/2024] [Indexed: 09/09/2024] Open
Abstract
The ability to switch between rules associating stimuli and responses depend on a circuit including the dorsomedial prefrontal cortex (dmPFC) and the subthalamic nucleus (STN). However, the precise neural implementations of switching remain unclear. To address this issue, we recorded local field potentials from the STN and from the dmPFC of neuropsychiatric patients during behavioral switching. Drift-diffusion modeling revealed that switching is associated with a shift in the starting point of evidence accumulation. Theta activity increases in dmPFC and STN during successful switch trials, while temporally delayed and excessive levels of theta lead to premature switch errors. This seemingly opposing impact of increased theta in successful and unsuccessful switching is explained by a negative correlation between theta activity and the starting point. Together, these results shed a new light on the neural mechanisms underlying the rapid reconfiguration of stimulus-response associations, revealing a Goldilocks' effect of theta activity on switching behavior.
Collapse
Affiliation(s)
- Maëva Laquitaine
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, GIN, F-38000, Grenoble, France
| | - Mircea Polosan
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, 38000, Grenoble, France
| | - Philippe Kahane
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, 38000, Grenoble, France
| | - Stephan Chabardes
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, 38000, Grenoble, France
| | - Jérôme Yelnik
- Cognitive Neuroimaging Unit, CEA, INSERM, Université Paris-Saclay, NeuroSpin center, F-91191, Gif/Yvette, France
| | - Sara Fernandez-Vidal
- Cognitive Neuroimaging Unit, CEA, INSERM, Université Paris-Saclay, NeuroSpin center, F-91191, Gif/Yvette, France
| | - Philippe Domenech
- Cognitive Neuroimaging Unit, CEA, INSERM, Université Paris-Saclay, NeuroSpin center, F-91191, Gif/Yvette, France.
- Institut de Neuromodulation, Pole Hospitalo-Universitaire 15, Groupe Hospitalo-Universitaire Paris, Psychiatrie et Neurosciences, Université Paris Cité, Paris, France.
| | - Julien Bastin
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, GIN, F-38000, Grenoble, France.
| |
Collapse
|
2
|
Vogel D, Nordin T, Feiler S, Wårdell K, Coste J, Lemaire JJ, Hemm S. Probabilistic stimulation mapping from intra-operative thalamic deep brain stimulation data in essential tremor. J Neural Eng 2024; 21:036017. [PMID: 38701768 DOI: 10.1088/1741-2552/ad4742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 05/03/2024] [Indexed: 05/05/2024]
Abstract
Deep brain stimulation (DBS) is a therapy for Parkinson's disease (PD) and essential tremor (ET). The mechanism of action of DBS is still incompletely understood. Retrospective group analysis of intra-operative data recorded from ET patients implanted in the ventral intermediate nucleus of the thalamus (Vim) is rare. Intra-operative stimulation tests generate rich data and their use in group analysis has not yet been explored.Objective.To implement, evaluate, and apply a group analysis workflow to generate probabilistic stimulation maps (PSMs) using intra-operative stimulation data from ET patients implanted in Vim.Approach.A group-specific anatomical template was constructed based on the magnetic resonance imaging scans of 6 ET patients and 13 PD patients. Intra-operative test data (total:n= 1821) from the 6 ET patients was analyzed: patient-specific electric field simulations together with tremor assessments obtained by a wrist-based acceleration sensor were transferred to this template. Occurrence and weighted mean maps were generated. Voxels associated with symptomatic response were identified through a linear mixed model approach to form a PSM. Improvements predicted by the PSM were compared to those clinically assessed. Finally, the PSM clusters were compared to those obtained in a multicenter study using data from chronic stimulation effects in ET.Main results.Regions responsible for improvement identified on the PSM were in the posterior sub-thalamic area (PSA) and at the border between the Vim and ventro-oral nucleus of the thalamus (VO). The comparison with literature revealed a center-to-center distance of less than 5 mm and an overlap score (Dice) of 0.4 between the significant clusters. Our workflow and intra-operative test data from 6 ET-Vim patients identified effective stimulation areas in PSA and around Vim and VO, affirming existing medical literature.Significance.This study supports the potential of probabilistic analysis of intra-operative stimulation test data to reveal DBS's action mechanisms and to assist surgical planning.
Collapse
Affiliation(s)
- Dorian Vogel
- Institute for Medical Engineering and Medical Informatics, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Hofackerstrasse 30, Muttenz, Switzerland
| | - Teresa Nordin
- Department of Biomedical Engineering, Linköping University, Campus US, Linköping, Sweden
| | - Stefanie Feiler
- Dynamics and statistics of complex systems, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Hofackerstrasse 30, Muttenz, Switzerland
| | - Karin Wårdell
- Institute for Medical Engineering and Medical Informatics, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Hofackerstrasse 30, Muttenz, Switzerland
- Department of Biomedical Engineering, Linköping University, Campus US, Linköping, Sweden
| | - Jérôme Coste
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, Clermont-Ferrand, France
- Service de Neurochirurgie, Hôpital Gabriel-Montpied, Centre Hospitalier Universitaire de Clermont-Ferrand, 58 rue Montalembert, Clermont-Ferrand, France
| | - Jean-Jacques Lemaire
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, Clermont-Ferrand, France
- Service de Neurochirurgie, Hôpital Gabriel-Montpied, Centre Hospitalier Universitaire de Clermont-Ferrand, 58 rue Montalembert, Clermont-Ferrand, France
| | - Simone Hemm
- Institute for Medical Engineering and Medical Informatics, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Hofackerstrasse 30, Muttenz, Switzerland
- Department of Biomedical Engineering, Linköping University, Campus US, Linköping, Sweden
| |
Collapse
|
3
|
Guehl D, Guillaud E, Langbour N, Doat E, Auzou N, Courtin E, Branchard O, Engelhardt J, Benazzouz A, Eusebio A, Cuny E, Burbaud P. Usefulness of thalamic beta activity for closed-loop therapy in essential tremor. Sci Rep 2023; 13:22332. [PMID: 38102180 PMCID: PMC10724233 DOI: 10.1038/s41598-023-49511-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023] Open
Abstract
A partial loss of effectiveness of deep brain stimulation of the ventral intermediate nucleus of the thalamus (VIM) has been reported in some patients with essential tremor (ET), possibly due to habituation to permanent stimulation. This study focused on the evolution of VIM local-field potentials (LFPs) data over time to assess the long-term feasibility of closed-loop therapy based on thalamic activity. We performed recordings of thalamic LFPs in 10 patients with severe ET using the ACTIVA™ PC + S (Medtronic plc.) allowing both recordings and stimulation in the same region. Particular attention was paid to describing the evolution of LFPs over time from 3 to 24 months after surgery when the stimulation was Off. We demonstrated a significant decrease in high-beta LFPs amplitude during movements inducing tremor in comparison to the rest condition 3 months after surgery (1.91 ± 0.89 at rest vs. 1.27 ± 1.37 µV2/Hz during posture/action for N = 8/10 patients; p = 0.010), 12 months after surgery (2.92 ± 1.75 at rest vs. 2.12 ± 1.78 µV2/Hz during posture/action for N = 7/10 patients; p = 0.014) and 24 months after surgery (2.32 ± 0.35 at rest vs 0.75 ± 0.78 µV2/Hz during posture/action for 4/6 patients; p = 0.017). Among the patients who exhibited a significant decrease of high-beta LFP amplitude when stimulation was Off, this phenomenon was observed at least twice during the follow-up. Although the extent of this decrease in high-beta LFPs amplitude during movements inducing tremor may vary over time, this thalamic biomarker of movement could potentially be usable for closed-loop therapy in the long term.
Collapse
Affiliation(s)
- Dominique Guehl
- Service de Neurophysiologie Clinique de l'enfant et de l'adulte, Hôpital Pellegrin, Pôle des Neurosciences Cliniques, CHU de Bordeaux, Bordeaux, France.
- Institut des Maladies Neurodégénératives, Univ. Bordeaux, CNRS, IMN, UMR 5293, F-33000, Bordeaux, France.
| | - Etienne Guillaud
- Institute of Cognitive and Integrative Neurosciences, Univ. Bordeaux, CNRS, INCIA, UMR 5287, F-33000, Bordeaux, France
| | - Nicolas Langbour
- Centre de Recherche en Psychiatrie, CH de la Milétrie, 86000, Poitiers, France
| | - Emilie Doat
- Institute of Cognitive and Integrative Neurosciences, Univ. Bordeaux, CNRS, INCIA, UMR 5287, F-33000, Bordeaux, France
| | - Nicolas Auzou
- Institut des Maladies Neurodégénératives Clinique (IMNc), Pôle des Neurosciences Cliniques, CHU de Bordeaux, Bordeaux, France
| | - Edouard Courtin
- Service de Neurophysiologie Clinique de l'enfant et de l'adulte, Hôpital Pellegrin, Pôle des Neurosciences Cliniques, CHU de Bordeaux, Bordeaux, France
| | | | | | - Abdelhamid Benazzouz
- Institut des Maladies Neurodégénératives, Univ. Bordeaux, CNRS, IMN, UMR 5293, F-33000, Bordeaux, France
| | - Alexandre Eusebio
- Department of Neurology and Movement Disorders, APHM, Hôpitaux Universitaire de Marseille, Marseille, France
- Institut de Neurosciences de la Timone, UMR 7289, Aix Marseille Univ, CNRS, Marseille, France
| | - Emmanuel Cuny
- Service de Neurochirurgie, CHU de Bordeaux, Bordeaux, France
| | - Pierre Burbaud
- Service de Neurophysiologie Clinique de l'enfant et de l'adulte, Hôpital Pellegrin, Pôle des Neurosciences Cliniques, CHU de Bordeaux, Bordeaux, France
- Institut des Maladies Neurodégénératives, Univ. Bordeaux, CNRS, IMN, UMR 5293, F-33000, Bordeaux, France
| |
Collapse
|
4
|
Serra GP, Guillaumin A, Vlcek B, Delgado-Zabalza L, Ricci A, Rubino E, Dumas S, Baufreton J, Georges F, Wallén-Mackenzie Å. A role for the subthalamic nucleus in aversive learning. Cell Rep 2023; 42:113328. [PMID: 37925641 DOI: 10.1016/j.celrep.2023.113328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/28/2023] [Accepted: 10/08/2023] [Indexed: 11/07/2023] Open
Abstract
The subthalamic nucleus (STN) is critical for behavioral control; its dysregulation consequently correlated with neurological and neuropsychiatric disorders, including Parkinson's disease. Deep brain stimulation (DBS) targeting the STN successfully alleviates parkinsonian motor symptoms. However, low mood and depression are affective side effects. STN is adjoined with para-STN, associated with appetitive and aversive behavior. DBS aimed at STN might unintentionally modulate para-STN, causing aversion. Alternatively, the STN mediates aversion. To investigate causality between STN and aversion, affective behavior is addressed using optogenetics in mice. Selective promoters allow dissociation of STN (e.g., Pitx2) vs. para-STN (Tac1). Acute photostimulation results in aversion via both STN and para-STN. However, only STN stimulation-paired cues cause conditioned avoidance and only STN stimulation interrupts on-going sugar self-administration. Electrophysiological recordings identify post-synaptic responses in pallidal neurons, and selective photostimulation of STN terminals in the ventral pallidum replicates STN-induced aversion. Identifying STN as a source of aversive learning contributes neurobiological underpinnings to emotional affect.
Collapse
Affiliation(s)
- Gian Pietro Serra
- Uppsala University, Department of Organism Biology, 752 36 Uppsala, Sweden
| | - Adriane Guillaumin
- Uppsala University, Department of Organism Biology, 752 36 Uppsala, Sweden; University of Bordeaux, CNRS, IMN, UMR 5293, 33000 Bordeaux, France
| | - Bianca Vlcek
- Uppsala University, Department of Organism Biology, 752 36 Uppsala, Sweden
| | | | - Alessia Ricci
- Uppsala University, Department of Organism Biology, 752 36 Uppsala, Sweden
| | - Eleonora Rubino
- Uppsala University, Department of Organism Biology, 752 36 Uppsala, Sweden
| | | | - Jérôme Baufreton
- University of Bordeaux, CNRS, IMN, UMR 5293, 33000 Bordeaux, France
| | - François Georges
- University of Bordeaux, CNRS, IMN, UMR 5293, 33000 Bordeaux, France
| | | |
Collapse
|
5
|
Santin MDN, Tempier N, Belaid H, Zenoni M, Dumas S, Wallén-Mackenzie Å, Bardinet E, Destrieux C, François C, Karachi C. Anatomical characterisation of three different psychosurgical targets in the subthalamic area: from the basal ganglia to the limbic system. Brain Struct Funct 2023; 228:1977-1992. [PMID: 37668733 DOI: 10.1007/s00429-023-02691-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 07/24/2023] [Indexed: 09/06/2023]
Abstract
Effective neural stimulation for the treatment of severe psychiatric disorders needs accurate characterisation of surgical targets. This is especially true for the medial subthalamic region (MSR) which contains three targets: the anteromedial STN for obsessive compulsive disorder (OCD), the medial forebrain bundle (MFB) for depression and OCD, and the "Sano triangle" for pathological aggressiveness. Blocks containing the subthalamic area were obtained from two human brains. After obtaining 11.7-Tesla MRI, blocks were cut in regular sections for immunohistochemistry. Fluorescent in situ hybridisation was performed on the macaque MSR. Electron microscopic observation for synaptic specialisation was performed on human and macaque subthalamic fresh samples. Images of human brain sections were reconstructed in a cryoblock which was registered on the MRI and histological slices were then registered. The STN contains glutamatergic and fewer GABAergic neurons and has no strict boundary with the adjacent MSR. The anteromedial STN has abundant dopaminergic and serotoninergic innervation with very sparse dopaminergic neurons. The MFB is composed of dense anterior dopaminergic and posterior serotoninergic fibres, and fewer cholinergic and glutamatergic fibres. Medially, the Sano triangle presumably contains orexinergic terminals from the hypothalamus, and neurons with strong nuclear oestrogen receptor-alpha staining with a decreased anteroposterior and mediolateral gradient of staining. These findings provide new insight regarding MSR cells and their fibre specialisation, forming a transition zone between the basal ganglia and the limbic systems. Our 3D reconstruction enabled us to visualize the main histological features of the three targets which should enable better targeting and understanding of neuromodulatory stimulation results in severe psychiatric conditions.
Collapse
Affiliation(s)
- Marie des Neiges Santin
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute- ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, 75013, Paris, France
| | - Nicolas Tempier
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute- ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, 75013, Paris, France
| | - Hayat Belaid
- Service de Neurochirurgie, Hôpital Fondation Adolphe de Rothschild, 29 rue Manin, Paris, France
| | - Matthieu Zenoni
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute- ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, 75013, Paris, France
| | | | - Åsa Wallén-Mackenzie
- Department of Organismal Biology, Unit of Comparative Physiology, Uppsala University, S-756 32, Uppsala, Sweden
| | - Eric Bardinet
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute- ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, 75013, Paris, France
| | - Christophe Destrieux
- UMR Inserm U1253, IBrain, Université de Tours, Tours, France
- Laboratoire d'Anatomie, Faculté de Médecine, Université François Rabelais, Tours, France
| | - Chantal François
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute- ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, 75013, Paris, France
| | - Carine Karachi
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute- ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, 75013, Paris, France.
- AP-HP, Hôpital de la Pitié-Salpêtrière, Service de Neurochirurgie, Paris, France.
| |
Collapse
|
6
|
Stenmark Persson R, Fytagoridis A, Ryzhkov M, Hariz M, Blomstedt P. Long-Term Follow-Up of Unilateral Deep Brain Stimulation Targeting the Caudal Zona Incerta in 13 Patients with Parkinsonian Tremor. Stereotact Funct Neurosurg 2023; 101:369-379. [PMID: 37879313 DOI: 10.1159/000533793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/22/2023] [Indexed: 10/27/2023]
Abstract
INTRODUCTION Deep brain stimulation (DBS) is an established treatment for Parkinson's disease (PD) and other movement disorders. The ventral intermediate nucleus of the thalamus is considered as the target of choice for tremor disorders, including tremor-dominant PD not suitable for DBS in the subthalamic nucleus (STN). In the last decade, several studies have shown promising results on tremor from DBS in the posterior subthalamic area (PSA), including the caudal zona incerta (cZi) located posteromedial to the STN. The aim of this study was to evaluate the long-term effect of unilateral cZi/PSA-DBS in patients with tremor-dominant PD. METHODS Thirteen patients with PD with medically refractory tremor were included. The patients were evaluated using the motor part of the Unified Parkinson Disease Rating Scale (UPDRS) off/on medication before surgery and off/on medication and stimulation 1-2 years (short-term) after surgery and at a minimum of 3 years after surgery (long-term). RESULTS At short-term follow-up, DBS improved contralateral tremor by 88% in the off-medication state. This improvement persisted after a mean of 62 months. Contralateral bradykinesia was improved by 40% at short-term and 20% at long-term follow-up, and the total UPDRS-III by 33% at short-term and by 22% at long-term follow-up with stimulation alone. CONCLUSIONS Unilateral cZi/PSA-DBS seems to remain an effective treatment for patients with severe Parkinsonian tremor several years after surgery. There was also a modest improvement on bradykinesia.
Collapse
Affiliation(s)
| | - Anders Fytagoridis
- Department of Clinical Neuroscience, Neurosurgery, Karolinska Institute, Stockholm, Sweden
| | - Maxim Ryzhkov
- Cranial and Spinal Technologies, Medtronic, Lafayette, Colorado, USA
| | - Marwan Hariz
- Department of Clinical Science, Neurosciences, Umeå University, Umeå, Sweden
- UCL Queen Square Institute of Neurology, London, UK
| | - Patric Blomstedt
- Department of Clinical Science, Neurosciences, Umeå University, Umeå, Sweden
| |
Collapse
|
7
|
Melo M, Furlanetti L, Hasegawa H, Mundil N, Ashkan K. Comparison of direct MRI guided versus atlas-based targeting for subthalamic nucleus and globus pallidus deep brain stimulation. Br J Neurosurg 2023; 37:1040-1045. [PMID: 33416411 DOI: 10.1080/02688697.2020.1850641] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 11/10/2020] [Indexed: 10/22/2022]
Abstract
PURPOSE The subthalamic nucleus (STN) and globus pallidus internus (GPi) targets for deep brain stimulation (DBS) can be defined by atlas coordinates or direct visualisation of the target on MRI. The aim of this study was to evaluate geometric differences between atlas-based targeting and MRI-guided direct targeting. METHODS One-hundred-nine Parkinson's disease or dystonia patients records who underwent DBS surgery between 2005 and 2016 were prospectively reviewed. MRI-guided direct targeting coordinates was used to implant 205 STN and 64 GPi electrodes and compared with atlas-based coordinates. RESULTS The directly targeted coordinates (mean, SD, range) for STN were x: [9.9 ± 1.1 (7.1 - 13.2)], y: [-0.8 ± 1.1 (-4.2 - 2)] and z: [-4.7 ± 0.53 (-5.9 - -3.2)]. The mean value for the STN was 2.1 mm more medial (p < 0.0001), 1.2 mm more anterior (p < 0.0001) and 0.7 mm more ventral (p < 0.0001) than the atlas target. The targeted coordinates for GPi were x: [22.3 ± 2.0 (17.8 - 26.1)], y: [-0.2 ± 2.2 (-4.5 - 3.4)], z: [-4.3 ± 0.8 (-6.2 - -2.3)]. The mean value for the GPi was 2.2 mm (p < 0.001) more posterior and 0.3 mm (p < 0.01) more ventral than the atlas-based coordinates. CONCLUSION MRI-guided targeting may be more accurate than atlas-based targeting due to individual variations in anatomy.
Collapse
Affiliation(s)
- Mariane Melo
- Department of Neurosurgery, King's College Hospital, London, UK
| | | | | | - Nilesh Mundil
- Department of Neurosurgery, King's College Hospital, London, UK
| | | |
Collapse
|
8
|
Alkemade A, Großmann R, Bazin PL, Forstmann BU. Mixed methodology in human brain research: integrating MRI and histology. Brain Struct Funct 2023; 228:1399-1410. [PMID: 37365411 PMCID: PMC10335951 DOI: 10.1007/s00429-023-02675-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/20/2023] [Indexed: 06/28/2023]
Abstract
Postmortem magnetic resonance imaging (MRI) can provide a bridge between histological observations and the in vivo anatomy of the human brain. Approaches aimed at the co-registration of data derived from the two techniques are gaining interest. Optimal integration of the two research fields requires detailed knowledge of the tissue property requirements for individual research techniques, as well as a detailed understanding of the consequences of tissue fixation steps on the imaging quality outcomes for both MRI and histology. Here, we provide an overview of existing studies that bridge between state-of-the-art imaging modalities, and discuss the background knowledge incorporated into the design, execution and interpretation of postmortem studies. A subset of the discussed challenges transfer to animal studies as well. This insight can contribute to furthering our understanding of the normal and diseased human brain, and to facilitate discussions between researchers from the individual disciplines.
Collapse
Affiliation(s)
- Anneke Alkemade
- Integrative Model-Based Cognitive Neuroscience Unit, Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands.
| | - Rosa Großmann
- Integrative Model-Based Cognitive Neuroscience Unit, Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands
| | - Pierre-Louis Bazin
- Integrative Model-Based Cognitive Neuroscience Unit, Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Birte U Forstmann
- Integrative Model-Based Cognitive Neuroscience Unit, Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
9
|
Conti A, Gambadauro NM, Mantovani P, Picciano CP, Rosetti V, Magnani M, Lucerna S, Tuleasca C, Cortelli P, Giannini G. A Brief History of Stereotactic Atlases: Their Evolution and Importance in Stereotactic Neurosurgery. Brain Sci 2023; 13:brainsci13050830. [PMID: 37239302 DOI: 10.3390/brainsci13050830] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/05/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
Following the recent acquisition of unprecedented anatomical details through state-of-the-art neuroimaging, stereotactic procedures such as microelectrode recording (MER) or deep brain stimulation (DBS) can now rely on direct and accurately individualized topographic targeting. Nevertheless, both modern brain atlases derived from appropriate histological techniques involving post-mortem studies of human brain tissue and the methods based on neuroimaging and functional information represent a valuable tool to avoid targeting errors due to imaging artifacts or insufficient anatomical details. Hence, they have thus far been considered a reference guide for functional neurosurgical procedures by neuroscientists and neurosurgeons. In fact, brain atlases, ranging from the ones based on histology and histochemistry to the probabilistic ones grounded on data derived from large clinical databases, are the result of a long and inspiring journey made possible thanks to genial intuitions of great minds in the field of neurosurgery and to the technical advancement of neuroimaging and computational science. The aim of this text is to review the principal characteristics highlighting the milestones of their evolution.
Collapse
Affiliation(s)
- Alfredo Conti
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Via Altura 3, 40123 Bologna, Italy
- Dipartimento di Biomorfologia e. Scienze Neuromotorie (DIBINEM), Alma Mater Studiorum Università di Bologna, Via Altura 3, 40123 Bologna, Italy
| | - Nicola Maria Gambadauro
- Stroke Unit- Barking, Havering and Redbrige University Hospitals NHS Trust, Queen's Hospital, Rom Valley Way, London RM7 0AG, UK
| | - Paolo Mantovani
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Via Altura 3, 40123 Bologna, Italy
| | - Canio Pietro Picciano
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Via Altura 3, 40123 Bologna, Italy
- Dipartimento di Biomorfologia e. Scienze Neuromotorie (DIBINEM), Alma Mater Studiorum Università di Bologna, Via Altura 3, 40123 Bologna, Italy
| | - Vittoria Rosetti
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Via Altura 3, 40123 Bologna, Italy
- Dipartimento di Biomorfologia e. Scienze Neuromotorie (DIBINEM), Alma Mater Studiorum Università di Bologna, Via Altura 3, 40123 Bologna, Italy
| | - Marcello Magnani
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Via Altura 3, 40123 Bologna, Italy
- Dipartimento di Biomorfologia e. Scienze Neuromotorie (DIBINEM), Alma Mater Studiorum Università di Bologna, Via Altura 3, 40123 Bologna, Italy
| | - Sebastiano Lucerna
- Department of Neurosurgery, AOU "G. Martino", Via Consolare Valeria 1, 98125 Messina, Italy
| | - Constantin Tuleasca
- Neurosurgery Service and Gamma Knife Center, Lausanne University Hospital (CHUV), Rue du Bugnon 46, 1011 Lausanne, Switzerland
- Faculty of Biology and Medicine (FBM), University of Lausanne (UNIL), Rue du Bugnon 21 CH-1011, 1015 Lausanne, Switzerland
- Ecole Polytechnique Fédérale de Lausanne (EPFL, LTS-5), Rte Cantonale, 1015 Lausanne, Switzerland
| | - Pietro Cortelli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Via Altura 3, 40123 Bologna, Italy
- Dipartimento di Biomorfologia e. Scienze Neuromotorie (DIBINEM), Alma Mater Studiorum Università di Bologna, Via Altura 3, 40123 Bologna, Italy
| | - Giulia Giannini
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Via Altura 3, 40123 Bologna, Italy
- Dipartimento di Biomorfologia e. Scienze Neuromotorie (DIBINEM), Alma Mater Studiorum Università di Bologna, Via Altura 3, 40123 Bologna, Italy
| |
Collapse
|
10
|
Petersen MV, McIntyre CC. Comparison of Anatomical Pathway Models with Tractography Estimates of the Pallidothalamic, Cerebellothalamic, and Corticospinal Tracts. Brain Connect 2023; 13:237-246. [PMID: 36772800 PMCID: PMC10178936 DOI: 10.1089/brain.2022.0068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023] Open
Abstract
Introduction: Models of structural connectivity in the human brain are typically simulated using tractographic approaches. However, the nonlinear fitting of anatomical pathway atlases to de novo subject brains represents a simpler alternative that is hypothesized to provide more anatomically realistic results. Therefore, the goal of this study was to perform a side-by-side comparison of the streamline estimates generated by either pathway atlas fits or tractographic reconstructions in the same subjects. Methods: Our analyses focused on reconstruction of the corticospinal tract (CST), cerebellothalamic (CBT), and pallidothalamic (PT) pathways using example datasets from the Human Connectome Project (HCP). We used MRtrix3 to explore whole brain, as well as manual seed-to-target, tractography approaches. In parallel, we performed nonlinear fits of an axonal pathway atlas to each HCP dataset using Advanced Normalization Tools (ANTs). Results: The different methods produced notably different estimates for each pathway in each subject. The fitted atlas pathways were highly stereotyped and exhibited low variability in their streamline trajectories. Manual tractography resulted in pathway estimates that generally corresponded with the fitted atlas pathways, but with a higher degree of variability in the individual streamlines. Pathway reconstructions derived from whole-brain tractography exhibited the highest degree of variability and struggled to create anatomically realistic representations for either the CBT or PT pathways. Conclusion: The speed, simplicity, reproducibility, and realism of anatomical pathway model fits makes them an appealing option for some forms of structural connectivity modeling in the human brain. Impact statement Axonal pathway modeling is an important component of deep brain stimulation (DBS) research studies that seek to identify the brain connections that are directly activated by stimulation. The corticospinal tract, cerebellothalamic (CBT), and pallidothalamic (PT) pathways are specifically relevant to the study of subthalamic DBS for the treatment of Parkinson's disease. Our results suggest that anatomical pathway model fits of the CBT and PT pathways to de novo subject brains represent a more anatomically realistic option than tractographic approaches when studying subthalamic DBS.
Collapse
Affiliation(s)
- Mikkel V. Petersen
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Cameron C. McIntyre
- Department of Biomedical Engineering and Duke University, Durham, North Carolina, USA
- Department of Neurosurgery, Duke University, Durham, North Carolina, USA
| |
Collapse
|
11
|
Soulier H, Pizzo F, Jegou A, Lagarde S, Garnier E, Makhalova J, Medina Villalon S, Carron R, Bénar C, Bartolomei F. The anterior and pulvinar thalamic nuclei interactions in mesial temporal lobe seizure networks. Clin Neurophysiol 2023; 150:176-183. [PMID: 37075682 DOI: 10.1016/j.clinph.2023.03.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/16/2023] [Accepted: 03/17/2023] [Indexed: 04/21/2023]
Abstract
OBJECTIVE To evaluate the respective roles of the anterior thalamic nucleus (ANT) and the medial pulvinar (PuM) during mesial temporal lobe seizures recorded by stereoelectroencephalography (SEEG). METHODS We assessed functional connectivity (FC) in 15 SEEG recorded seizures from 6 patients using a non-linear correlation method. Functional interactions were explored between the mesial temporal region, the temporal neocortex, ANT and PuM. The node total-strength (the summed connectivity of the node with all other nodes) as well as the directionality of the links (IN and OUT strengths) were calculated to estimate drivers and receivers during the cortico-thalamic interactions. RESULTS Significant increased thalamo-cortical FC during seizures was observed, with the node total-strength reaching a maximum at seizure end. There was no significant difference in global connectivity values between ANT and PuM. Regarding directionality, significantly higher thalamic IN strength values were observed. However, compared to ANT, PuM appeared to be the driver at the end of seizures with synchronous termination. CONCLUSIONS This work demonstrates that during temporal seizures, both thalamic nuclei are highly connected with the mesial temporal region and that PuM could play a role in seizure termination. SIGNIFICANCE Understanding functional connectivity between the mesial temporal and thalamic nuclei could contribute to the development of target-specific deep brain stimulation strategies for drug-resistant epilepsy.
Collapse
Affiliation(s)
- Hugo Soulier
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille 13005, France
| | - Francesca Pizzo
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille 13005, France; APHM, Timone Hospital, Epileptology and Cerebral Rhythmology, Marseille 13005, France
| | - Aude Jegou
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille 13005, France
| | - Stanislas Lagarde
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille 13005, France; APHM, Timone Hospital, Epileptology and Cerebral Rhythmology, Marseille 13005, France
| | - Elodie Garnier
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille 13005, France
| | - Julia Makhalova
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille 13005, France; APHM, Timone Hospital, Epileptology and Cerebral Rhythmology, Marseille 13005, France
| | - Samuel Medina Villalon
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille 13005, France; APHM, Timone Hospital, Epileptology and Cerebral Rhythmology, Marseille 13005, France
| | - Romain Carron
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille 13005, France; APHM, Timone Hospital, Stereotactic and Functional Neurosurgery, Marseille, France
| | - Christian Bénar
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille 13005, France
| | - Fabrice Bartolomei
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille 13005, France; APHM, Timone Hospital, Epileptology and Cerebral Rhythmology, Marseille 13005, France.
| |
Collapse
|
12
|
Agnati LF, Guidolin D, Cervetto C, Maura G, Marcoli M. Brain Structure and Function: Insights from Chemical Neuroanatomy. Life (Basel) 2023; 13:life13040940. [PMID: 37109469 PMCID: PMC10142941 DOI: 10.3390/life13040940] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/24/2023] [Accepted: 03/31/2023] [Indexed: 04/07/2023] Open
Abstract
We present a brief historical and epistemological outline of investigations on the brain’s structure and functions. These investigations have mainly been based on the intermingling of chemical anatomy, new techniques in the field of microscopy and computer-assisted morphometric methods. This intermingling has enabled extraordinary investigations to be carried out on brain circuits, leading to the development of a new discipline: “brain connectomics”. This new approach has led to the characterization of the brain’s structure and function in physiological and pathological conditions, and to the development of new therapeutic strategies. In this context, the conceptual model of the brain as a hyper-network with a hierarchical, nested architecture, arranged in a “Russian doll” pattern, has been proposed. Our investigations focused on the main characteristics of the modes of communication between nodes at the various miniaturization levels, in order to describe the brain’s integrative actions. Special attention was paid to the nano-level, i.e., to the allosteric interactions among G protein-coupled receptors organized in receptor mosaics, as a promising field in which to obtain a new view of synaptic plasticity and to develop new, more selective drugs. The brain’s multi-level organization and the multi-faceted aspects of communication modes point to an emerging picture of the brain as a very peculiar system, in which continuous self-organization and remodeling take place under the action of external stimuli from the environment, from peripheral organs and from ongoing integrative actions.
Collapse
Affiliation(s)
- Luigi F. Agnati
- Department of Biochemical, Metabolic Sciences and Neuroscience, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Diego Guidolin
- Department of Neuroscience, University of Padova, 35121 Padova, Italy
| | - Chiara Cervetto
- Department of Pharmacy, University of Genova, 16148 Genova, Italy
- Center for Promotion of 3Rs in Teaching and Research (Centro 3R), 56122 Pisa, Italy
| | - Guido Maura
- Department of Pharmacy, University of Genova, 16148 Genova, Italy
| | - Manuela Marcoli
- Department of Pharmacy, University of Genova, 16148 Genova, Italy
- Center for Promotion of 3Rs in Teaching and Research (Centro 3R), 56122 Pisa, Italy
- Center of Excellence for Biomedical Research, University of Genova, 16132 Genova, Italy
| |
Collapse
|
13
|
Huszar IN, Pallebage-Gamarallage M, Bangerter-Christensen S, Brooks H, Fitzgibbon S, Foxley S, Hiemstra M, Howard AFD, Jbabdi S, Kor DZL, Leonte A, Mollink J, Smart A, Tendler BC, Turner MR, Ansorge O, Miller KL, Jenkinson M. Tensor image registration library: Deformable registration of stand-alone histology images to whole-brain post-mortem MRI data. Neuroimage 2023; 265:119792. [PMID: 36509214 PMCID: PMC10933796 DOI: 10.1016/j.neuroimage.2022.119792] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/26/2022] [Accepted: 12/04/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Accurate registration between microscopy and MRI data is necessary for validating imaging biomarkers against neuropathology, and to disentangle complex signal dependencies in microstructural MRI. Existing registration methods often rely on serial histological sampling or significant manual input, providing limited scope to work with a large number of stand-alone histology sections. Here we present a customisable pipeline to assist the registration of stand-alone histology sections to whole-brain MRI data. METHODS Our pipeline registers stained histology sections to whole-brain post-mortem MRI in 4 stages, with the help of two photographic intermediaries: a block face image (to undistort histology sections) and coronal brain slab photographs (to insert them into MRI space). Each registration stage is implemented as a configurable stand-alone Python script using our novel platform, Tensor Image Registration Library (TIRL), which provides flexibility for wider adaptation. We report our experience of registering 87 PLP-stained histology sections from 14 subjects and perform various experiments to assess the accuracy and robustness of each stage of the pipeline. RESULTS All 87 histology sections were successfully registered to MRI. Histology-to-block registration (Stage 1) achieved 0.2-0.4 mm accuracy, better than commonly used existing methods. Block-to-slice matching (Stage 2) showed great robustness in automatically identifying and inserting small tissue blocks into whole brain slices with 0.2 mm accuracy. Simulations demonstrated sub-voxel level accuracy (0.13 mm) of the slice-to-volume registration (Stage 3) algorithm, which was observed in over 200 actual brain slice registrations, compensating 3D slice deformations up to 6.5 mm. Stage 4 combined the previous stages and generated refined pixelwise aligned multi-modal histology-MRI stacks. CONCLUSIONS Our open-source pipeline provides robust automation tools for registering stand-alone histology sections to MRI data with sub-voxel level precision, and the underlying framework makes it readily adaptable to a diverse range of microscopy-MRI studies.
Collapse
Affiliation(s)
- Istvan N Huszar
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
| | | | - Sarah Bangerter-Christensen
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Brigham Young University, Provo, UT, USA
| | - Hannah Brooks
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Sean Fitzgibbon
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Sean Foxley
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Department of Radiology, University of Chicago, Chicago, IL, USA
| | - Marlies Hiemstra
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Department of Anatomy, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Amy F D Howard
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Saad Jbabdi
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Daniel Z L Kor
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Anna Leonte
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Department of Neuroscience, University of Groningen, Groningen, the Netherlands
| | - Jeroen Mollink
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Department of Anatomy, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Adele Smart
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Benjamin C Tendler
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Martin R Turner
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Olaf Ansorge
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Karla L Miller
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Mark Jenkinson
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
14
|
Casamitjana A, Iglesias JE. High-resolution atlasing and segmentation of the subcortex: Review and perspective on challenges and opportunities created by machine learning. Neuroimage 2022; 263:119616. [PMID: 36084858 PMCID: PMC11534291 DOI: 10.1016/j.neuroimage.2022.119616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 08/30/2022] [Accepted: 09/05/2022] [Indexed: 11/17/2022] Open
Abstract
This paper reviews almost three decades of work on atlasing and segmentation methods for subcortical structures in human brain MRI. In writing this survey, we have three distinct aims. First, to document the evolution of digital subcortical atlases of the human brain, from the early MRI templates published in the nineties, to the complex multi-modal atlases at the subregion level that are available today. Second, to provide a detailed record of related efforts in the automated segmentation front, from earlier atlas-based methods to modern machine learning approaches. And third, to present a perspective on the future of high-resolution atlasing and segmentation of subcortical structures in in vivo human brain MRI, including open challenges and opportunities created by recent developments in machine learning.
Collapse
Affiliation(s)
- Adrià Casamitjana
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, UK.
| | - Juan Eugenio Iglesias
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, UK; Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, USA; Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Boston, USA
| |
Collapse
|
15
|
Temiz G, Atkinson-Clement C, Lau B, Czernecki V, Bardinet E, Francois C, Worbe Y, Karachi C. Structural hyperconnectivity of the subthalamic area with limbic cortices underpins anxiety and impulsivity in Tourette syndrome. Cereb Cortex 2022; 33:5181-5191. [PMID: 36310093 DOI: 10.1093/cercor/bhac408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 11/12/2022] Open
Abstract
Abstract
Tourette syndrome (TS) is a neurodevelopmental disorder characterized by motor and vocal tics, which is often associated with psychiatric comorbidities. Dysfunction of basal ganglia pathways might account for the wide spectrum of symptoms in TS patients. Although psychiatric symptoms may be related to limbic networks, the specific contribution of different limbic structures remains unclear. We used tractography to investigate cortical connectivity with the striatal area (caudate, putamen, core and shell of the nucleus accumbens), the subthalamic nucleus (STN), and the adjacent medial subthalamic region (MSR) in 58 TS patients and 35 healthy volunteers. 82% of TS patients showed psychiatric comorbidities, with significantly higher levels of anxiety and impulsivity compared to controls. Tractography analysis revealed significantly increased limbic cortical connectivity of the left MSR with the entorhinal (BA34), insular (BA48), and temporal (BA38) cortices in TS patients compared to controls. Furthermore, we found that left insular-STN connectivity was positively correlated with impulsivity scores for all subjects and with anxiety scores for all subjects, particularly for TS. Our study highlights a heterogenous modification of limbic structure connectivity in TS, with specific abnormalities found for the subthalamic area. Abnormal connectivity with the insular cortex might underpin the higher level of impulsivity and anxiety observed in TS.
Collapse
Affiliation(s)
- Gizem Temiz
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute- ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière , 75013 Paris, France
| | - Cyril Atkinson-Clement
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute- ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière , 75013 Paris, France
| | - Brian Lau
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute- ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière , 75013 Paris, France
| | - Virginie Czernecki
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute- ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière , 75013 Paris, France
- Department of Neurology, Pitié Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris , 75013 Paris, France
| | - Eric Bardinet
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute- ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière , 75013 Paris, France
| | - Chantal Francois
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute- ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière , 75013 Paris, France
| | - Yulia Worbe
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute- ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière , 75013 Paris, France
- Department of Neurophysiology, Saint Antoine Hospital, Assistance Publique-Hôpitaux de Paris , 75012 Paris, France
| | - Carine Karachi
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute- ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière , 75013 Paris, France
- Department of Neurosurgery, Pitié Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris , 75013 Paris, France
| |
Collapse
|
16
|
Atzeni A, Peter L, Robinson E, Blackburn E, Althonayan J, Alexander DC, Iglesias JE. Deep active learning for suggestive segmentation of biomedical image stacks via optimisation of Dice scores and traced boundary length. Med Image Anal 2022; 81:102549. [PMID: 36113320 PMCID: PMC11605667 DOI: 10.1016/j.media.2022.102549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 10/16/2022]
Abstract
Manual segmentation of stacks of 2D biomedical images (e.g., histology) is a time-consuming task which can be sped up with semi-automated techniques. In this article, we present a suggestive deep active learning framework that seeks to minimise the annotation effort required to achieve a certain level of accuracy when labelling such a stack. The framework suggests, at every iteration, a specific region of interest (ROI) in one of the images for manual delineation. Using a deep segmentation neural network and a mixed cross-entropy loss function, we propose a principled strategy to estimate class probabilities for the whole stack, conditioned on heterogeneous partial segmentations of the 2D images, as well as on weak supervision in the form of image indices that bound each ROI. Using the estimated probabilities, we propose a novel active learning criterion based on predictions for the estimated segmentation performance and delineation effort, measured with average Dice scores and total delineated boundary length, respectively, rather than common surrogates such as entropy. The query strategy suggests the ROI that is expected to maximise the ratio between performance and effort, while considering the adjacency of structures that may have already been labelled - which decrease the length of the boundary to trace. We provide quantitative results on synthetically deformed MRI scans and real histological data, showing that our framework can reduce labelling effort by up to 60-70% without compromising accuracy.
Collapse
Affiliation(s)
- Alessia Atzeni
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College, London, UK.
| | - Loic Peter
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College, London, UK
| | - Eleanor Robinson
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College, London, UK
| | - Emily Blackburn
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College, London, UK
| | - Juri Althonayan
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College, London, UK
| | - Daniel C Alexander
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College, London, UK
| | - Juan Eugenio Iglesias
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College, London, UK; Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, USA; Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Boston, USA
| |
Collapse
|
17
|
Sánchez-Gómez A, Camargo P, Cámara A, Roldán P, Rumià J, Compta Y, Carbayo Á, Martí MJ, Muñoz E, Valldeoriola F. Utility of Postoperative Imaging Software for Deep Brain Stimulation Targeting in Patients with Movement Disorders. World Neurosurg 2022; 166:e163-e176. [PMID: 35787960 DOI: 10.1016/j.wneu.2022.06.132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/24/2022] [Accepted: 06/25/2022] [Indexed: 12/15/2022]
Abstract
OBJECTIVE The objective of this study was to evaluate the accuracy of the SureTune3 postoperative imaging software in determining the location of a deep brain stimulation (DBS) electrode based on clinical outcomes and the adverse effects (AEs) observed. METHODS Twenty-six consecutive patients with Parkinson disease (n = 17), essential tremor (n = 8), and dystonia (n = 1) who underwent bilateral DBS surgery (52 electrodes) were included in this study. Presurgical assessments were performed in all patients prior to surgery and at 3 and 6 months after surgery, using quality-of-life and clinical scales in each case. The SureTune3 software was used to evaluate the anatomical positioning of the DBS electrodes. RESULTS Following DBS surgery, motor and quality-of-life improvement was observed in all patients. Different AEs were detected in 12 patients, in 10 of whom (83.3%) SureTune3 related the symptoms to the positioning of an electrode. A clinical association was observed with SureTune3 for 48 of 52 (92.3%) electrodes, whereas no association was found between the AEs or clinical outcomes and the SureTune3 reconstructions for 4 of 52 electrodes (7.7%) from 4 different patients. In 2 patients, the contact chosen was modified based on the SureTune3 data, and in 2 cases, the software helped determine that second electrode replacement surgery was necessary. CONCLUSIONS The anatomical position of electrodes analyzed with SureTune3 software was strongly correlated with both the AEs and clinical outcomes. Thus, SureTune3 may be useful in clinical practice, and it could help improve stimulation parameters and influence decisions to undertake electrode replacement surgery.
Collapse
Affiliation(s)
- Almudena Sánchez-Gómez
- Institut de Neurociències, Service of Neurology, Parkinson's Disease and Movement Disorders Unit., Hospital Clinic de Barcelona, Barcelona, Catalonia, Spain; Institut de Neurociències, Maeztu Center, Universitat de Barcelona, Barcelona, Catalonia, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
| | - Paola Camargo
- Institut de Neurociències, Service of Neurology, Parkinson's Disease and Movement Disorders Unit., Hospital Clinic de Barcelona, Barcelona, Catalonia, Spain; Institut de Neurociències, Maeztu Center, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Ana Cámara
- Institut de Neurociències, Service of Neurology, Parkinson's Disease and Movement Disorders Unit., Hospital Clinic de Barcelona, Barcelona, Catalonia, Spain; Institut de Neurociències, Maeztu Center, Universitat de Barcelona, Barcelona, Catalonia, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
| | - Pedro Roldán
- Institut de Neurociències, Maeztu Center, Universitat de Barcelona, Barcelona, Catalonia, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain; Institut de Neurociències, Service of Neurosurgery, Hospital Clínic de Barcelona, Barcelona, Catalonia, Spain
| | - Jordi Rumià
- Institut de Neurociències, Maeztu Center, Universitat de Barcelona, Barcelona, Catalonia, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain; Institut de Neurociències, Service of Neurosurgery, Hospital Clínic de Barcelona, Barcelona, Catalonia, Spain
| | - Yaroslau Compta
- Institut de Neurociències, Service of Neurology, Parkinson's Disease and Movement Disorders Unit., Hospital Clinic de Barcelona, Barcelona, Catalonia, Spain; Institut de Neurociències, Maeztu Center, Universitat de Barcelona, Barcelona, Catalonia, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
| | - Álvaro Carbayo
- Institut de Neurociències, Service of Neurology, Parkinson's Disease and Movement Disorders Unit., Hospital Clinic de Barcelona, Barcelona, Catalonia, Spain; Institut de Neurociències, Maeztu Center, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Maria José Martí
- Institut de Neurociències, Service of Neurology, Parkinson's Disease and Movement Disorders Unit., Hospital Clinic de Barcelona, Barcelona, Catalonia, Spain; Institut de Neurociències, Maeztu Center, Universitat de Barcelona, Barcelona, Catalonia, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
| | - Esteban Muñoz
- Institut de Neurociències, Service of Neurology, Parkinson's Disease and Movement Disorders Unit., Hospital Clinic de Barcelona, Barcelona, Catalonia, Spain; Institut de Neurociències, Maeztu Center, Universitat de Barcelona, Barcelona, Catalonia, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
| | - Francesc Valldeoriola
- Institut de Neurociències, Service of Neurology, Parkinson's Disease and Movement Disorders Unit., Hospital Clinic de Barcelona, Barcelona, Catalonia, Spain; Institut de Neurociències, Maeztu Center, Universitat de Barcelona, Barcelona, Catalonia, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain.
| |
Collapse
|
18
|
Guidolin D, Tortorella C, Marcoli M, Maura G, Agnati LF. Intercellular Communication in the Central Nervous System as Deduced by Chemical Neuroanatomy and Quantitative Analysis of Images: Impact on Neuropharmacology. Int J Mol Sci 2022; 23:5805. [PMID: 35628615 PMCID: PMC9145073 DOI: 10.3390/ijms23105805] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 01/25/2023] Open
Abstract
In the last decades, new evidence on brain structure and function has been acquired by morphological investigations based on synergic interactions between biochemical anatomy approaches, new techniques in microscopy and brain imaging, and quantitative analysis of the obtained images. This effort produced an expanded view on brain architecture, illustrating the central nervous system as a huge network of cells and regions in which intercellular communication processes, involving not only neurons but also other cell populations, virtually determine all aspects of the integrative function performed by the system. The main features of these processes are described. They include the two basic modes of intercellular communication identified (i.e., wiring and volume transmission) and mechanisms modulating the intercellular signaling, such as cotransmission and allosteric receptor-receptor interactions. These features may also open new possibilities for the development of novel pharmacological approaches to address central nervous system diseases. This aspect, with a potential major impact on molecular medicine, will be also briefly discussed.
Collapse
Affiliation(s)
- Diego Guidolin
- Department of Neuroscience, Section of Anatomy, University of Padova, 35121 Padova, Italy;
| | - Cinzia Tortorella
- Department of Neuroscience, Section of Anatomy, University of Padova, 35121 Padova, Italy;
| | - Manuela Marcoli
- Department of Pharmacy, Center of Excellence for Biomedical Research, University of Genova, 16126 Genova, Italy; (M.M.); (G.M.)
| | - Guido Maura
- Department of Pharmacy, Center of Excellence for Biomedical Research, University of Genova, 16126 Genova, Italy; (M.M.); (G.M.)
| | - Luigi F. Agnati
- Department of Biomedical Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy;
| |
Collapse
|
19
|
Pujol S, Cabeen RP, Yelnik J, François C, Fernandez Vidal S, Karachi C, Bardinet E, Cosgrove GR, Kikinis R. Somatotopic Organization of Hyperdirect Pathway Projections From the Primary Motor Cortex in the Human Brain. Front Neurol 2022; 13:791092. [PMID: 35547388 PMCID: PMC9081715 DOI: 10.3389/fneur.2022.791092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 03/04/2022] [Indexed: 11/25/2022] Open
Abstract
Background The subthalamic nucleus (STN) is an effective neurosurgical target to improve motor symptoms in Parkinson's Disease (PD) patients. MR-guided Focused Ultrasound (MRgFUS) subthalamotomy is being explored as a therapeutic alternative to Deep Brain Stimulation (DBS) of the STN. The hyperdirect pathway provides a direct connection between the cortex and the STN and is likely to play a key role in the therapeutic effects of MRgFUS intervention in PD patients. Objective This study aims to investigate the topography and somatotopy of hyperdirect pathway projections from the primary motor cortex (M1). Methods We used advanced multi-fiber tractography and high-resolution diffusion MRI data acquired on five subjects of the Human Connectome Project (HCP) to reconstruct hyperdirect pathway projections from M1. Two neuroanatomy experts reviewed the anatomical accuracy of the tracts. We extracted the fascicles arising from the trunk, arm, hand, face and tongue area from the reconstructed pathways. We assessed the variability among subjects based on the fractional anisotropy (FA) and mean diffusivity (MD) of the fibers. We evaluated the spatial arrangement of the different fascicles using the Dice Similarity Coefficient (DSC) of spatial overlap and the centroids of the bundles. Results We successfully reconstructed hyperdirect pathway projections from M1 in all five subjects. The tracts were in agreement with the expected anatomy. We identified hyperdirect pathway fascicles projecting from the trunk, arm, hand, face and tongue area in all subjects. Tract-derived measurements showed low variability among subjects, and similar distributions of FA and MD values among the fascicles projecting from different M1 areas. We found an anterolateral somatotopic arrangement of the fascicles in the corona radiata, and an average overlap of 0.63 in the internal capsule and 0.65 in the zona incerta. Conclusion Multi-fiber tractography combined with high-resolution diffusion MRI data enables the identification of the somatotopic organization of the hyperdirect pathway. Our preliminary results suggest that the subdivisions of the hyperdirect pathway projecting from the trunk, arm, hand, face, and tongue motor area are intermixed at the level of the zona incerta and posterior limb of the internal capsule, with a predominantly overlapping topographical organization in both regions. Subject-specific knowledge of the hyperdirect pathway somatotopy could help optimize target definition in MRgFUS intervention.
Collapse
Affiliation(s)
- Sonia Pujol
- Surgical Planning Laboratory, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Ryan P Cabeen
- Laboratory of Neuro Imaging, Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine of the USC, University of Southern California, Los Angeles, CA, United States
| | - Jérôme Yelnik
- Sorbonne Université, CNRS, INSERM, APHP GH Pitié-Salpêtriére, Paris Brain Institute - Institut du Cerveau (ICM), Paris, France.,CENIR Platform, Institut du Cerveau (ICM), Paris, France
| | - Chantal François
- Sorbonne Université, CNRS, INSERM, APHP GH Pitié-Salpêtriére, Paris Brain Institute - Institut du Cerveau (ICM), Paris, France.,CENIR Platform, Institut du Cerveau (ICM), Paris, France
| | - Sara Fernandez Vidal
- Sorbonne Université, CNRS, INSERM, APHP GH Pitié-Salpêtriére, Paris Brain Institute - Institut du Cerveau (ICM), Paris, France.,CENIR Platform, Institut du Cerveau (ICM), Paris, France
| | - Carine Karachi
- Sorbonne Université, CNRS, INSERM, APHP GH Pitié-Salpêtriére, Paris Brain Institute - Institut du Cerveau (ICM), Paris, France.,CENIR Platform, Institut du Cerveau (ICM), Paris, France.,Department of Neurosurgery, APHP, Hôpitaux Universitaires Pitié-Salpêtriére/Charles Foix, Paris, France
| | - Eric Bardinet
- Sorbonne Université, CNRS, INSERM, APHP GH Pitié-Salpêtriére, Paris Brain Institute - Institut du Cerveau (ICM), Paris, France.,CENIR Platform, Institut du Cerveau (ICM), Paris, France
| | - G Rees Cosgrove
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Ron Kikinis
- Surgical Planning Laboratory, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
20
|
A semi-automatic registration protocol to match ex-vivo high-field 7T MR images and histological slices in surgical samples from patients with drug-resistant epilepsy. J Neurosci Methods 2022; 367:109439. [PMID: 34915045 DOI: 10.1016/j.jneumeth.2021.109439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/17/2021] [Accepted: 12/10/2021] [Indexed: 11/21/2022]
Abstract
BACKGROUND MRI is a fundamental tool to detect brain structural anomalies and improvement in this technique has the potential to visualize subtle abnormalities currently undetected. Correlation between pre-operative MRI and histopathology is required to validate the neurobiological basis of MRI abnormalities. However, precise MRI-histology matching is very challenging with the surgical samples. We previously developed a coregistration protocol to match the in-vivo MRI with ex-vivo MRI obtained from surgical specimens. Now, we complete the process to successfully align ex-vivo MRI data with the proper digitalized histological sections in an automatic way. NEW METHOD The implemented pipeline is composed by the following steps: a) image pre-processing made of MRI and histology volumes conversion and masking; b) gross rigid body alignment between MRI volume and histology virtual slides; c) rigid alignment between each MRI section and histology slice and estimate of the correlation coefficient for each step to select the MRI slice that best matches histology; d) final linear registration of the selected slices. RESULTS This method is fully automatic, except for the first masking step, fast and reliable in comparison to the manual one, as assessed using a Bland-Altman plot. COMPARISON WITH EXISTING METHODS The visual assessment usually employed for choosing the best fitting ex-vivo MRI slice for each stained section takes hours and requires practice. Goubran et al. (2015) proposed an iterative registration protocol but its aim and methods were different from ours. No others similar methods are reported in the literature. CONCLUSIONS This protocol completes our previous pipeline. The ultimate goal will be to apply the entire process to finely investigate the relationship between clinical MRI data and histopathological features in patients with drug-resistant epilepsy.
Collapse
|
21
|
Mishra A, Ramdhani RA. Directional Deep Brain Stimulation in the Treatment of Parkinson's Disease. Neurology 2022. [DOI: 10.17925/usn.2022.18.1.64] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Deep brain stimulation (DBS) is a treatment modality that has been shown to improve the clinical outcomes of individuals with movement disorders, including Parkinson's disease. Directional DBS represents an advance in the field that allows clinicians to better modulate the electrical stimulation to increase therapeutic gains while minimizing side effects. In this review, we summarize the principles of directional DBS, including available technologies and stimulation paradigms, and examine the growing clinical study data with respect to its use in Parkinson's disease.
Collapse
|
22
|
Casamitjana A, Lorenzi M, Ferraris S, Peter L, Modat M, Stevens A, Fischl B, Vercauteren T, Iglesias JE. Robust joint registration of multiple stains and MRI for multimodal 3D histology reconstruction: Application to the Allen human brain atlas. Med Image Anal 2022; 75:102265. [PMID: 34741894 PMCID: PMC8678374 DOI: 10.1016/j.media.2021.102265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/07/2021] [Accepted: 10/07/2021] [Indexed: 02/04/2023]
Abstract
Joint registration of a stack of 2D histological sections to recover 3D structure ("3D histology reconstruction") finds application in areas such as atlas building and validation of in vivo imaging. Straightforward pairwise registration of neighbouring sections yields smooth reconstructions but has well-known problems such as "banana effect" (straightening of curved structures) and "z-shift" (drift). While these problems can be alleviated with an external, linearly aligned reference (e.g., Magnetic Resonance (MR) images), registration is often inaccurate due to contrast differences and the strong nonlinear distortion of the tissue, including artefacts such as folds and tears. In this paper, we present a probabilistic model of spatial deformation that yields reconstructions for multiple histological stains that that are jointly smooth, robust to outliers, and follow the reference shape. The model relies on a spanning tree of latent transforms connecting all the sections and slices of the reference volume, and assumes that the registration between any pair of images can be see as a noisy version of the composition of (possibly inverted) latent transforms connecting the two images. Bayesian inference is used to compute the most likely latent transforms given a set of pairwise registrations between image pairs within and across modalities. We consider two likelihood models: Gaussian (ℓ2 norm, which can be minimised in closed form) and Laplacian (ℓ1 norm, minimised with linear programming). Results on synthetic deformations on multiple MR modalities, show that our method can accurately and robustly register multiple contrasts even in the presence of outliers. The framework is used for accurate 3D reconstruction of two stains (Nissl and parvalbumin) from the Allen human brain atlas, showing its benefits on real data with severe distortions. Moreover, we also provide the registration of the reconstructed volume to MNI space, bridging the gaps between two of the most widely used atlases in histology and MRI. The 3D reconstructed volumes and atlas registration can be downloaded from https://openneuro.org/datasets/ds003590. The code is freely available at https://github.com/acasamitjana/3dhirest.
Collapse
Affiliation(s)
| | - Marco Lorenzi
- Universitë Côte dÁzur, Inria, Epione Team, 06902 Sophia Antipolis, France
| | | | - Loïc Peter
- Center for Medical Image Computing, University College London, UK
| | - Marc Modat
- School of Biomedical Engineering & Imaging Sciences, King's College London, UK
| | - Allison Stevens
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, USA
| | - Bruce Fischl
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, USA; Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, USA; Program in Health Sciences and Technology, Massachusetts Institute of Technology, USA
| | - Tom Vercauteren
- School of Biomedical Engineering & Imaging Sciences, King's College London, UK
| | - Juan Eugenio Iglesias
- Center for Medical Image Computing, University College London, UK; Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, USA; Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, USA
| |
Collapse
|
23
|
Brun G, Testud B, Girard OM, Lehmann P, de Rochefort L, Besson P, Massire A, Ridley B, Girard N, Guye M, Ranjeva JP, Le Troter A. Automatic segmentation of Deep Grey Nuclei using a high-resolution 7T MRI Atlas - quantification of T1 values in healthy volunteers. Eur J Neurosci 2021; 55:438-460. [PMID: 34939245 DOI: 10.1111/ejn.15575] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 12/17/2021] [Accepted: 12/18/2021] [Indexed: 11/30/2022]
Abstract
We present a new consensus atlas of deep grey nuclei obtained by shape-based averaging of manual segmentation of two experienced neuroradiologists and optimized from 7T MP2RAGE images acquired at (0.6mm)3 in 60 healthy subjects. A group-wise normalization method was used to build a high-contrast and high-resolution T1 -weighted brain template (0.5mm)3 using data from 30 out of the 60 controls. Delineation of 24 deep grey nuclei per hemisphere, including the claustrum and twelve thalamic nuclei, was then performed by two expert neuroradiologists and reviewed by a third neuroradiologist according to tissue contrast and external references based on the Morel atlas. Corresponding deep grey matter structures were also extracted from the Morel and CIT168 atlases. The data-derived, Morel and CIT168 atlases were all applied at the individual level using non-linear registration to fit the subject reference and to extract absolute mean quantitative T1 values derived from the 3D-MP2RAGE volumes, after correction for residual B1 + biases. Three metrics (The Dice and the volumetric similarity coefficients, and a novel Hausdorff distance) were used to estimate the inter-rater agreement of manual MRI segmentation and inter-atlas variability, and these metrics were measured to quantify biases due to image registration and their impact on the measurements of the quantitative T1 values was highlighted. This represents a fully-automated segmentation process permitting the extraction of unbiased normative T1 values in a population of young healthy controls as a reference for characterizing subtle structural alterations of deep grey nuclei relevant to a range of neurological diseases.
Collapse
Affiliation(s)
- Gilles Brun
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France.,AP-HM, CHU Timone, Pôle d'Imagerie Médicale, CEMEREM, Marseille, France.,AP-HM, CHU Timone, Pôle d'Imagerie Médicale, Service de Neuroradiologie, Marseille, France
| | - Benoit Testud
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France.,AP-HM, CHU Timone, Pôle d'Imagerie Médicale, CEMEREM, Marseille, France.,AP-HM, CHU Timone, Pôle d'Imagerie Médicale, Service de Neuroradiologie, Marseille, France
| | - Olivier M Girard
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France.,AP-HM, CHU Timone, Pôle d'Imagerie Médicale, CEMEREM, Marseille, France
| | - Pierre Lehmann
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France.,AP-HM, CHU Timone, Pôle d'Imagerie Médicale, CEMEREM, Marseille, France.,AP-HM, CHU Timone, Pôle d'Imagerie Médicale, Service de Neuroradiologie, Marseille, France
| | - Ludovic de Rochefort
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France.,AP-HM, CHU Timone, Pôle d'Imagerie Médicale, CEMEREM, Marseille, France
| | - Pierre Besson
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France.,AP-HM, CHU Timone, Pôle d'Imagerie Médicale, CEMEREM, Marseille, France
| | - Aurélien Massire
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France.,AP-HM, CHU Timone, Pôle d'Imagerie Médicale, CEMEREM, Marseille, France
| | - Ben Ridley
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France.,AP-HM, CHU Timone, Pôle d'Imagerie Médicale, CEMEREM, Marseille, France.,IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italia
| | - Nadine Girard
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France.,AP-HM, CHU Timone, Pôle d'Imagerie Médicale, CEMEREM, Marseille, France.,AP-HM, CHU Timone, Pôle d'Imagerie Médicale, Service de Neuroradiologie, Marseille, France
| | - Maxime Guye
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France.,AP-HM, CHU Timone, Pôle d'Imagerie Médicale, CEMEREM, Marseille, France
| | - Jean-Philippe Ranjeva
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France.,AP-HM, CHU Timone, Pôle d'Imagerie Médicale, CEMEREM, Marseille, France
| | - Arnaud Le Troter
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France.,AP-HM, CHU Timone, Pôle d'Imagerie Médicale, CEMEREM, Marseille, France
| |
Collapse
|
24
|
Engelhardt J, Cuny E, Guehl D, Burbaud P, Damon-Perrière N, Dallies-Labourdette C, Thomas J, Branchard O, Schmitt LA, Gassa N, Zemzemi N. Prediction of Clinical Deep Brain Stimulation Target for Essential Tremor From 1.5 Tesla MRI Anatomical Landmarks. Front Neurol 2021; 12:620360. [PMID: 34777189 PMCID: PMC8579860 DOI: 10.3389/fneur.2021.620360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 09/13/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Deep brain stimulation is an efficacious treatment for refractory essential tremor, though targeting the intra-thalamic nuclei remains challenging. Objectives: We sought to develop an inverse approach to retrieve the position of the leads in a cohort of patients operated on with optimal clinical outcomes from anatomical landmarks identifiable by 1.5 Tesla magnetic resonance imaging. Methods: The learning database included clinical outcomes and post-operative imaging from which the coordinates of the active contacts and those of anatomical landmarks were extracted. We used machine learning regression methods to build three different prediction models. External validation was performed according to a leave-one-out cross-validation. Results: Fifteen patients (29 leads) were included, with a median tremor improvement of 72% on the Fahn-Tolosa-Marin scale. Kernel ridge regression, deep neural networks, and support vector regression (SVR) were used. SVR gave the best results with a mean error of 1.33 ± 1.64 mm between the predicted target and the active contact position. Conclusion: We report an original method for the targeting in deep brain stimulation for essential tremor based on patients' radio-anatomical features. This approach will be tested in a prospective clinical trial.
Collapse
Affiliation(s)
- Julien Engelhardt
- Department of Neurosurgery, University Hospital of Bordeaux, Bordeaux, France.,Institute for Neurodegenerative Disorders, CNRS-University of Bordeaux, Bordeaux, France
| | - Emmanuel Cuny
- Department of Neurosurgery, University Hospital of Bordeaux, Bordeaux, France.,Institute for Neurodegenerative Disorders, CNRS-University of Bordeaux, Bordeaux, France
| | - Dominique Guehl
- Institute for Neurodegenerative Disorders, CNRS-University of Bordeaux, Bordeaux, France.,Department of Neurology, University Hospital of Bordeaux, Bordeaux, France
| | - Pierre Burbaud
- Institute for Neurodegenerative Disorders, CNRS-University of Bordeaux, Bordeaux, France.,Department of Neurology, University Hospital of Bordeaux, Bordeaux, France
| | - Nathalie Damon-Perrière
- Institute for Neurodegenerative Disorders, CNRS-University of Bordeaux, Bordeaux, France.,Department of Neurology, University Hospital of Bordeaux, Bordeaux, France
| | - Camille Dallies-Labourdette
- Institute for Neurodegenerative Disorders, CNRS-University of Bordeaux, Bordeaux, France.,Department of Neurology, University Hospital of Bordeaux, Bordeaux, France
| | - Juliette Thomas
- Institute for Neurodegenerative Disorders, CNRS-University of Bordeaux, Bordeaux, France.,Department of Neurology, University Hospital of Bordeaux, Bordeaux, France
| | - Olivier Branchard
- Department of Neurosurgery, University Hospital of Bordeaux, Bordeaux, France
| | | | - Narimane Gassa
- INRIA Bordeaux Sud-Ouest Research Centre, Talence, France
| | - Nejib Zemzemi
- INRIA Bordeaux Sud-Ouest Research Centre, Talence, France.,Mathematical Institute of Bordeaux, University of Bordeaux, Bordeaux, France
| |
Collapse
|
25
|
Welter ML, Alves Dos Santos JF, Clair AH, Lau B, Diallo HM, Fernandez-Vidal S, Belaid H, Pelissolo A, Domenech P, Karachi C, Mallet L. Deep Brain Stimulation of the Subthalamic, Accumbens, or Caudate Nuclei for Patients With Severe Obsessive-Compulsive Disorder: A Randomized Crossover Controlled Study. Biol Psychiatry 2021; 90:e45-e47. [PMID: 33012521 DOI: 10.1016/j.biopsych.2020.07.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Marie-Laure Welter
- Institut du cerveau et de la moelle épinière, French Institute of Health and Medical Research U1127, French National Centre for Scientific Research Joint Research Unit 7225, Sorbonne Université, Paris, France; Neurophysiology Department, Clinical Research Center-Biological Resources Center 1404, Centre Hospitalier Universitaire de Rouen, University of Rouen, Rouen, France
| | | | - Anne-Helene Clair
- Institut du cerveau et de la moelle épinière, French Institute of Health and Medical Research U1127, French National Centre for Scientific Research Joint Research Unit 7225, Sorbonne Université, Paris, France
| | - Brian Lau
- Institut du cerveau et de la moelle épinière, French Institute of Health and Medical Research U1127, French National Centre for Scientific Research Joint Research Unit 7225, Sorbonne Université, Paris, France
| | - Hassimiou Mamadou Diallo
- Institut Pierre Louis d'Epidémiologie et de Santé Publique, French Institute of Health and Medical Research, Paris, France
| | - Sara Fernandez-Vidal
- Institut du cerveau et de la moelle épinière, French Institute of Health and Medical Research U1127, French National Centre for Scientific Research Joint Research Unit 7225, Sorbonne Université, Paris, France
| | - Hayat Belaid
- Neurosurgery Department, Hôpitaux Universitaires Pitié Salpêtrière - Charles Foix, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Antoine Pelissolo
- French Institute of Health and Medical Research U955, Mondor Institute for Biomedical Research, Créteil, France; Neurosurgery Department, Département Médico-Universitaire de psychiatrie et d'addictologie, Hôpitaux Universitaires Henri Mondor - Albert Chenevier, Assistance Publique-Hôpitaux de Paris, Université Paris-Est Créteil, Créteil, France
| | - Philippe Domenech
- Institut du cerveau et de la moelle épinière, French Institute of Health and Medical Research U1127, French National Centre for Scientific Research Joint Research Unit 7225, Sorbonne Université, Paris, France; Neurosurgery Department, Département Médico-Universitaire de psychiatrie et d'addictologie, Hôpitaux Universitaires Henri Mondor - Albert Chenevier, Assistance Publique-Hôpitaux de Paris, Université Paris-Est Créteil, Créteil, France
| | - Carine Karachi
- Institut du cerveau et de la moelle épinière, French Institute of Health and Medical Research U1127, French National Centre for Scientific Research Joint Research Unit 7225, Sorbonne Université, Paris, France; Neurosurgery Department, Hôpitaux Universitaires Pitié Salpêtrière - Charles Foix, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Luc Mallet
- Institut du cerveau et de la moelle épinière, French Institute of Health and Medical Research U1127, French National Centre for Scientific Research Joint Research Unit 7225, Sorbonne Université, Paris, France; Neurosurgery Department, Département Médico-Universitaire de psychiatrie et d'addictologie, Hôpitaux Universitaires Henri Mondor - Albert Chenevier, Assistance Publique-Hôpitaux de Paris, Université Paris-Est Créteil, Créteil, France; Department of Mental Health and Psychiatry, Global Health Institute, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
26
|
Villain N, Béra G, Habert MO, Kas A, Aubert J, Jaubert O, Valabregue R, Fernandez-Vidal S, Corvol JC, Mangone G, Lehéricy S, Vidailhet M, Grabli D. Dopamine denervation in the functional territories of the striatum: a new MR and atlas-based 123I-FP-CIT SPECT quantification method. J Neural Transm (Vienna) 2021; 128:1841-1852. [PMID: 34704162 DOI: 10.1007/s00702-021-02434-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 10/21/2021] [Indexed: 11/30/2022]
Abstract
Current quantification methods of 123I-FP-CIT SPECT rely on anatomical parcellation of the striatum. We propose here to implement a new method based on MRI segmentation and functional atlas of the basal ganglia (MR-ATLAS) that could provide a reliable quantification within the sensorimotor, associative, and limbic territories of the striatum. Patients with Parkinson's disease (PD), idiopathic rapid eye movement sleep behavioral disorder (iRBD), and healthy controls underwent 123I-FP-CIT SPECT, MRI, motor, and cognitive assessments. SPECT data were corrected for partial volume effects and registered to a functional atlas of the striatum to allow quantification in every functional region of the striatum (nucleus accumbens, limbic, associative, and sensorimotor parts of the striatum). The MR-ATLAS quantification method is proved to be reliable in every territory of the striatum. In addition, good correlations were found between cognitive dysexecutive tests and the binding within the functional (limbic) territories of the striatum using the MR-ATLAS method, slightly better than correlations found using the anatomical quantification method. This new MR-ATLAS method provides a robust and useful tool for studying the dopaminergic system in PD, particularly with respect to cognitive functions. It may also be relevant to further unravel the relationship between dopaminergic denervation and cognitive or behavioral symptoms.
Collapse
Affiliation(s)
- Nicolas Villain
- Department of Neurology, AP-HP Sorbonne Université, Hôpital Pitié-Salpêtrière, 47-83 boulevard de l'Hôpital, 75651, Paris Cedex 13, France. .,Institut du Cerveau, ICM, Sorbonne Université, INSERM U1127, CNRS 7225, Paris, France.
| | - G Béra
- Institut du Cerveau, ICM, Sorbonne Université, INSERM U1127, CNRS 7225, Paris, France.,Department of Nuclear Medicine, AP-HP Sorbonne Université, Hôpital Pitié-Salpêtrière, Paris, France
| | - M-O Habert
- Institut du Cerveau, ICM, Sorbonne Université, INSERM U1127, CNRS 7225, Paris, France.,Department of Nuclear Medicine, AP-HP Sorbonne Université, Hôpital Pitié-Salpêtrière, Paris, France.,Laboratoire d'Imagerie Biomédicale, LIB, Sorbonne Université, CNRS, INSERM, Paris, France
| | - A Kas
- Institut du Cerveau, ICM, Sorbonne Université, INSERM U1127, CNRS 7225, Paris, France.,Department of Nuclear Medicine, AP-HP Sorbonne Université, Hôpital Pitié-Salpêtrière, Paris, France.,Laboratoire d'Imagerie Biomédicale, LIB, Sorbonne Université, CNRS, INSERM, Paris, France
| | - J Aubert
- Institut du Cerveau, ICM, Sorbonne Université, INSERM U1127, CNRS 7225, Paris, France
| | - O Jaubert
- Institut du Cerveau, ICM, Sorbonne Université, INSERM U1127, CNRS 7225, Paris, France
| | - R Valabregue
- Institut du Cerveau, ICM, Sorbonne Université, INSERM U1127, CNRS 7225, Paris, France
| | - S Fernandez-Vidal
- Institut du Cerveau, ICM, Sorbonne Université, INSERM U1127, CNRS 7225, Paris, France
| | - J-C Corvol
- Department of Neurology, AP-HP Sorbonne Université, Hôpital Pitié-Salpêtrière, 47-83 boulevard de l'Hôpital, 75651, Paris Cedex 13, France.,Institut du Cerveau, ICM, Sorbonne Université, INSERM U1127, CNRS 7225, Paris, France
| | - G Mangone
- Department of Neurology, AP-HP Sorbonne Université, Hôpital Pitié-Salpêtrière, 47-83 boulevard de l'Hôpital, 75651, Paris Cedex 13, France.,Institut du Cerveau, ICM, Sorbonne Université, INSERM U1127, CNRS 7225, Paris, France
| | - S Lehéricy
- Institut du Cerveau, ICM, Sorbonne Université, INSERM U1127, CNRS 7225, Paris, France.,Department of Neuroradiology, AP-HP Sorbonne Université, Hôpital Pitié-Salpêtrière, Paris, France
| | - M Vidailhet
- Department of Neurology, AP-HP Sorbonne Université, Hôpital Pitié-Salpêtrière, 47-83 boulevard de l'Hôpital, 75651, Paris Cedex 13, France.,Institut du Cerveau, ICM, Sorbonne Université, INSERM U1127, CNRS 7225, Paris, France
| | - D Grabli
- Department of Neurology, AP-HP Sorbonne Université, Hôpital Pitié-Salpêtrière, 47-83 boulevard de l'Hôpital, 75651, Paris Cedex 13, France.,Institut du Cerveau, ICM, Sorbonne Université, INSERM U1127, CNRS 7225, Paris, France
| | | |
Collapse
|
27
|
Yu B, Li L, Guan X, Xu X, Liu X, Yang Q, Wei H, Zuo C, Zhang Y. HybraPD atlas: Towards precise subcortical nuclei segmentation using multimodality medical images in patients with Parkinson disease. Hum Brain Mapp 2021; 42:4399-4421. [PMID: 34101297 PMCID: PMC8357000 DOI: 10.1002/hbm.25556] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 05/27/2021] [Accepted: 05/30/2021] [Indexed: 12/29/2022] Open
Abstract
Human brain atlases are essential for research and surgical treatment of Parkinson's disease (PD). For example, deep brain stimulation for PD often requires human brain atlases for brain structure identification. However, few atlases can provide disease-specific subcortical structures for PD, and most of them are based on T1w and T2w images. In this work, we construct a HybraPD atlas using fused quantitative susceptibility mapping (QSM) and T1w images from 87 patients with PD. The constructed HybraPD atlas provides a series of templates, that is, T1w, GRE magnitude, QSM, R2*, and brain tissue probabilistic maps. Then, we manually delineate a parcellation map with 12 bilateral subcortical nuclei, which are highly related to PD pathology, such as sub-regions in globus pallidus and substantia nigra. Furthermore, we build a whole-brain parcellation map by combining existing cortical parcellation and white-matter segmentation with the proposed subcortical nuclei map. Considering the multimodality of the HybraPD atlas, the segmentation accuracy of each nucleus is evaluated using T1w and QSM templates, respectively. The results show that the HybraPD atlas provides more accurate segmentation than existing atlases. Moreover, we analyze the metabolic difference in subcortical nuclei between PD patients and healthy control subjects by applying the HybraPD atlas to calculate uptake values of contrast agents on positron emission tomography (PET) images. The atlas-based analysis generates accurate disease-related brain nuclei segmentation on PET images. The newly developed HybraPD atlas could serve as an efficient template to study brain pathological alterations in subcortical regions for PD research.
Collapse
Affiliation(s)
- Boliang Yu
- School of Information Science and TechnologyShanghaiTech UniversityShanghaiChina
| | - Ling Li
- PET Center, Huashan HospitalFudan UniversityShanghaiChina
| | - Xiaojun Guan
- Department of Radiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Xiaojun Xu
- Department of Radiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Xueling Liu
- Department of Radiology, Huashan HospitalFudan UniversityShanghaiChina
| | - Qing Yang
- Institute of Brain‐Intelligence Technology, Zhangjiang LaboratoryShanghaiChina
| | - Hongjiang Wei
- Institute for Medicine Imaging Technology, School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghaiChina
| | - Chuantao Zuo
- PET Center, Huashan HospitalFudan UniversityShanghaiChina
| | - Yuyao Zhang
- School of Information Science and TechnologyShanghaiTech UniversityShanghaiChina
- Shanghai Engineering Research Center of Intelligent Vision and ImagingShanghaiTech UniversityShanghaiChina
| |
Collapse
|
28
|
Abreu V, Vaz R, Chamadoira C, Rebelo V, Reis C, Costa F, Martins J, Gillies MJ, Aziz TZ, Pereira EAC. Thalamic deep brain stimulation for post-traumatic neuropathic limb pain: Efficacy at five years' follow-up and effective volume of activated brain tissue. Neurochirurgie 2021; 68:52-60. [PMID: 34166646 DOI: 10.1016/j.neuchi.2021.06.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 04/24/2021] [Accepted: 06/07/2021] [Indexed: 10/21/2022]
Abstract
Chronic neuropathic pain affects 7%-10% of the population. Deep brain stimulation (DBS) has shown variable but promising results in its treatment. This study prospectively assessed the long-term effectiveness of DBS in a series of patients with chronic neuropathic pain, correlating clinical results with neuroimaging. Sixteen patients received 5 years' post-surgical follow-up in a single center. Six had phantom limb pain after amputation and 10 had deafferentation pain after traumatic brachial plexus injury. Patient-reported outcome measures were completed before and after surgery, using VAS, UWNPS, BPI and SF-36 scores. Neuroimaging evaluated electrode location and effective volumes of activated tissue (VAT). Two subgroups were created based on the percentage of VAT superimposed upon the ventroposterolateral thalamic nucleus (eVAT), and clinical outcomes were compared. Analgesic effect was assessed at 5 years and compared to preoperative pain, with an improvement on VAS of 76.4% (p=0.0001), on UW-NPS of 35.2% (p=0.3582), on BPI of 65.1% (p=0.0505) and on SF-36 of 5% (p=0.7406). Eight patients with higher eVAT showed improvement on VAS of 67.5% (p=0.0017) while the remaining patients, with lower eVAT, improved by 50.6% (p=0.03607). DBS remained effective in improving chronic neuropathic pain after 5 years. While VPL-targeting contributes to success, analgesia is also obtained by stimulating surrounding posterior ventrobasal thalamic structures and related spinothalamocortical tracts.
Collapse
Affiliation(s)
- V Abreu
- Department of Neuroradiology. Centro Hospitalar Universitário do Porto, Porto, Portugal; Faculdade de Medicina da Universidade do Porto, Portugal.
| | - R Vaz
- Faculdade de Medicina da Universidade do Porto, Portugal; Department of Neurosurgery. Centro Hospitalar Universitário São João, Porto, Portugal; Neurociences Unity Hospital Cuf, Porto, Portugal
| | - C Chamadoira
- Department of Neurosurgery. Centro Hospitalar Universitário São João, Porto, Portugal
| | - V Rebelo
- Pain Unit. Centro Hospitalar Universitário São João, Porto, Portugal
| | - C Reis
- Department of Neuroradiology. Centro Hospitalar Universitário São João, Porto, Portugal
| | - F Costa
- Department of Neuroradiology. Centro Hospitalar Universitário São João, Porto, Portugal
| | | | - M J Gillies
- Nuffield Department of Surgery, University of Oxford, Oxford, United Kingdom
| | - T Z Aziz
- Faculdade de Medicina da Universidade do Porto, Portugal; Nuffield Department of Surgery, University of Oxford, Oxford, United Kingdom
| | - E A C Pereira
- Faculdade de Medicina da Universidade do Porto, Portugal; Neurosciences Research Centre, Institute of Molecular and Clinical Neurosciences, St. George's, University of London, London, United Kingdom
| |
Collapse
|
29
|
Biondetti E, Santin MD, Valabrègue R, Mangone G, Gaurav R, Pyatigorskaya N, Hutchison M, Yahia-Cherif L, Villain N, Habert MO, Arnulf I, Leu-Semenescu S, Dodet P, Vila M, Corvol JC, Vidailhet M, Lehéricy S. The spatiotemporal changes in dopamine, neuromelanin and iron characterizing Parkinson's disease. Brain 2021; 144:3114-3125. [PMID: 33978742 PMCID: PMC8634084 DOI: 10.1093/brain/awab191] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/19/2021] [Accepted: 05/06/2021] [Indexed: 11/13/2022] Open
Abstract
In Parkinson's disease, there is a progressive reduction in striatal dopaminergic function, and loss of neuromelanin-containing dopaminergic neurons and increased iron deposition in the substantia nigra. We tested the hypothesis of a relationship between impairment of the dopaminergic system and changes in the iron metabolism. Based on imaging data of patients with prodromal and early clinical Parkinson's disease, we assessed the spatiotemporal ordering of such changes and relationships in the sensorimotor, associative and limbic territories of the nigrostriatal system. Patients with Parkinson's disease (disease duration < 4 years) or idiopathic REM sleep behaviour disorder (a prodromal form of Parkinson's disease) and healthy controls underwent longitudinal examination (baseline and 2-year follow-up). Neuromelanin and iron sensitive MRI and dopamine transporter single-photon emission tomography were performed to assess nigrostriatal levels of neuromelanin, iron, and dopamine. For all three functional territories of the nigrostriatal system, in the clinically most and least affected hemispheres separately, the following was performed: cross-sectional and longitudinal inter-group difference analysis of striatal dopamine and iron, and nigral neuromelanin and iron; in Parkinson's disease patients, exponential fitting analysis to assess the duration of the prodromal phase and the temporal ordering of changes in dopamine, neuromelanin or iron relative to controls; voxel-wise correlation analysis to investigate concomitant spatial changes in dopamine-iron, dopamine-neuromelanin and neuromelanin-iron in the substantia nigra pars compacta. The temporal ordering of dopaminergic changes followed the known spatial pattern of progression involving first the sensorimotor, then the associative and limbic striatal and nigral regions. Striatal dopaminergic denervation occurred first followed by abnormal iron metabolism and finally neuromelanin changes in the substantia nigra pars compacta, which followed the same spatial and temporal gradient observed in the striatum but shifted in time. In conclusion, dopaminergic striatal dysfunction and cell loss in the substantia nigra pars compacta are interrelated with increased nigral iron content.
Collapse
Affiliation(s)
- Emma Biondetti
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, INSERM, CNRS, 75013 Paris, France.,ICM, Centre de NeuroImagerie de Recherche - CENIR, 75013 Paris, France.,ICM, Team "Movement Investigations and Therapeutics" (MOV'IT), 75013 Paris, France
| | - Mathieu D Santin
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, INSERM, CNRS, 75013 Paris, France.,ICM, Centre de NeuroImagerie de Recherche - CENIR, 75013 Paris, France
| | - Romain Valabrègue
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, INSERM, CNRS, 75013 Paris, France.,ICM, Centre de NeuroImagerie de Recherche - CENIR, 75013 Paris, France
| | - Graziella Mangone
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, INSERM, CNRS, 75013 Paris, France.,Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Department of Neurology, Centre d'Investigation Clinique Neurosciences, 75013 Paris, France.,Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Department of Neurology, 75013 Paris, France
| | - Rahul Gaurav
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, INSERM, CNRS, 75013 Paris, France.,ICM, Centre de NeuroImagerie de Recherche - CENIR, 75013 Paris, France.,ICM, Team "Movement Investigations and Therapeutics" (MOV'IT), 75013 Paris, France
| | - Nadya Pyatigorskaya
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, INSERM, CNRS, 75013 Paris, France.,ICM, Team "Movement Investigations and Therapeutics" (MOV'IT), 75013 Paris, France.,Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Department of Neuroradiology, 75013 Paris, France
| | | | - Lydia Yahia-Cherif
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, INSERM, CNRS, 75013 Paris, France.,ICM, Centre de NeuroImagerie de Recherche - CENIR, 75013 Paris, France
| | - Nicolas Villain
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, INSERM, CNRS, 75013 Paris, France.,Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Department of Neurology, 75013 Paris, France
| | - Marie-Odile Habert
- Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Department of Nuclear Medicine, 75013 Paris, France.,Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale - LIB, 75006 Paris, France
| | - Isabelle Arnulf
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, INSERM, CNRS, 75013 Paris, France.,ICM, Team "Movement Investigations and Therapeutics" (MOV'IT), 75013 Paris, France.,Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Sleep Disorder Unit, 75013 Paris, France
| | - Smaranda Leu-Semenescu
- Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Sleep Disorder Unit, 75013 Paris, France
| | - Pauline Dodet
- Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Sleep Disorder Unit, 75013 Paris, France
| | - Miquel Vila
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED)-Department of Biochemistry and Molecular Biology, Autonomous University of Barcelona (UAB)-Catalan Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
| | - Jean-Christophe Corvol
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, INSERM, CNRS, 75013 Paris, France.,Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Department of Neurology, Centre d'Investigation Clinique Neurosciences, 75013 Paris, France.,Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Department of Neurology, 75013 Paris, France
| | - Marie Vidailhet
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, INSERM, CNRS, 75013 Paris, France.,ICM, Team "Movement Investigations and Therapeutics" (MOV'IT), 75013 Paris, France.,Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Department of Neurology, 75013 Paris, France
| | - Stéphane Lehéricy
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, INSERM, CNRS, 75013 Paris, France.,ICM, Centre de NeuroImagerie de Recherche - CENIR, 75013 Paris, France.,ICM, Team "Movement Investigations and Therapeutics" (MOV'IT), 75013 Paris, France.,Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Department of Neuroradiology, 75013 Paris, France
| |
Collapse
|
30
|
Gallea C, Wicki B, Ewenczyk C, Rivaud-Péchoux S, Yahia-Cherif L, Pouget P, Vidailhet M, Hainque E. Antisaccade, a predictive marker for freezing of gait in Parkinson's disease and gait/gaze network connectivity. Brain 2021; 144:504-514. [PMID: 33279957 DOI: 10.1093/brain/awaa407] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 09/17/2020] [Accepted: 09/20/2020] [Indexed: 11/14/2022] Open
Abstract
Freezing of gait is a challenging sign of Parkinson's disease associated with disease severity and progression and involving the mesencephalic locomotor region. No predictive factor of freezing has been reported so far. The primary objective of this study was to identify predictors of freezing occurrence at 5 years. In addition, we tested whether functional connectivity of the mesencephalic locomotor region could explain the oculomotor factors at baseline that were predictive of freezing onset. We performed a prospective study investigating markers (parkinsonian signs, cognitive status and oculomotor recordings, with a particular focus on the antisaccade latencies) of disease progression at baseline and at 5 years. We identified two groups of patients defined by the onset of freezing at 5 years of follow-up; the 'Freezer' group was defined by the onset of freezing in the ON medication condition during follow-up (n = 17), while the 'non-Freezer' group did not (n = 8). Whole brain resting-state functional MRI was recorded at baseline to determine how antisaccade latencies were associated with connectivity of the mesencephalic locomotor region networks in patients compared to 25 age-matched healthy volunteers. Results showed that, at baseline and compared to the non-Freezer group, the Freezer group had equivalent motor or cognitive signs, but increased antisaccade latencies (P = 0.008). The 5-year course of freezing of gait was correlated with worsening antisaccade latencies (P = 0.0007). Baseline antisaccade latencies was also predictive of the freezing onset (χ2 = 0.008). Resting state connectivity of mesencephalic locomotor region networks correlated with (i) antisaccade latency differently in patients and healthy volunteers at baseline; and (ii) the further increase of antisaccade latency at 5 years. We concluded that antisaccade latency is a predictive marker of the 5-year onset of freezing of gait. Our study suggests that functional networks associated with gait and gaze control are concurrently altered during the course of the disease.
Collapse
Affiliation(s)
- Cécile Gallea
- Sorbonne Université, UMR S 1127, Inserm U 1127, and CNRS UMR 7225, and Institut du Cerveau et de la Moelle épinière, F-75013, Paris, France
| | - Benoit Wicki
- Service de Neurologie, Hôpital du Valais, Sion, Switzerland
| | - Claire Ewenczyk
- Department of Genetics, Hôpital Pitié-Salpêtrière, AP-HP, Paris, France
| | - Sophie Rivaud-Péchoux
- Sorbonne Université, UMR S 1127, Inserm U 1127, and CNRS UMR 7225, and Institut du Cerveau et de la Moelle épinière, F-75013, Paris, France
| | - Lydia Yahia-Cherif
- Sorbonne Université, UMR S 1127, Inserm U 1127, and CNRS UMR 7225, and Institut du Cerveau et de la Moelle épinière, F-75013, Paris, France
| | - Pierre Pouget
- Sorbonne Université, UMR S 1127, Inserm U 1127, and CNRS UMR 7225, and Institut du Cerveau et de la Moelle épinière, F-75013, Paris, France
| | - Marie Vidailhet
- Sorbonne Université, UMR S 1127, Inserm U 1127, and CNRS UMR 7225, and Institut du Cerveau et de la Moelle épinière, F-75013, Paris, France.,Department of Neurology, Hôpital Pitié-Salpêtrière , AP-HP, Paris, France
| | - Elodie Hainque
- Sorbonne Université, UMR S 1127, Inserm U 1127, and CNRS UMR 7225, and Institut du Cerveau et de la Moelle épinière, F-75013, Paris, France.,Department of Neurology, Hôpital Pitié-Salpêtrière , AP-HP, Paris, France
| |
Collapse
|
31
|
Kardous R, Joly H, Giordana B, Stefanini L, Mulliez A, Giordana C, Lemaire JJ, Fontaine D. Functional and dysfunctional impulsivities changes after subthalamic nucleus-deep brain stimulation in Parkinson disease. Neurochirurgie 2021; 67:420-426. [PMID: 33845115 DOI: 10.1016/j.neuchi.2021.03.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/04/2021] [Accepted: 03/21/2021] [Indexed: 11/25/2022]
Abstract
OBJECTIVES We investigated changes of impulsivity after deep brain stimulation (DBS) of the subthalamic nucleus (STN) in Parkinson's disease (PD) patients, distinguishing functional from dysfunctional impulsivity and their contributing factors. METHODS Data of 33 PD patients treated by STN-DBS were studied before and 6 months after surgery: motor impairment, medication (dose and dopaminergic agonists), cognition, mood and occurrence of impulse control disorders. Impulsivity was assessed by the Dickman Impulsivity Inventory, which distinguishes functional impulsivity (FI), reflecting the potential for reasoning and rapid action when the situation requires it, and dysfunctional impulsivity (DI), reflecting the lack of prior reasoning, even when the situation demands it. The location of DBS leads was studied on postoperative MRI using a deformable histological atlas and by compartmentalization of the STN. RESULTS After STN-DBS, DI was significantly increased (mean pre- and postoperative DI scores 1.9±1.6 and 3.5±2.4, P<0.001) although FI was not modified (mean pre- and postoperative FI scores 6.2±2.7 and 5.8±2.6). Factors associated with a DI score's increase≥2 (multivariable logistic regression model) were: low preoperative Frontal Assessment Battery score and location of the left active contact in the ventral part of the STN. CONCLUSION Our study suggests that STN-DBS may have a different impact on both dimensions of impulsivity, worsening pathological impulsivity without altering physiological impulsivity. The increase in dysfunctional impulsivity may be favoured by the location of the electrode in the ventral part of the STN.
Collapse
Affiliation(s)
- R Kardous
- Department of Psychiatry, Université Côte d'Azur, CHU de Nice, Nice, France; Centre d'acceuil Psychiatrique, Université Côte d'Azur, CHU de Nice, Nice, France
| | - H Joly
- Department of Neurology, CRC SEP, UR2CA, URRIS, Université Côte d'Azur, CHU de Nice, Hôpital Pasteur 2, 30, avenue de la voie Romaine, 06000 Nice, France.
| | - B Giordana
- Department of Psychiatry, Université Côte d'Azur, CHU de Nice, Nice, France
| | - L Stefanini
- Department of Psychiatry, Université Côte d'Azur, CHU de Nice, Nice, France
| | - A Mulliez
- Unité de Biostatistiques (DRCI), CHU de Clermont-Ferrand, Clermont-Ferrand, France
| | - C Giordana
- Department of Neurology, Université Côte d'Azur, CHU de Nice, Nice, France
| | - J-J Lemaire
- CNRS, SIGMA Clermont, Institut Pascal, Université Clermont-Auvergne, Clermont-Ferrand, France
| | - D Fontaine
- Department of Neurosurgery, Université Côte d'Azur, CHU de Nice, Nice, France
| |
Collapse
|
32
|
Guillaumin A, Serra GP, Georges F, Wallén-Mackenzie Å. Experimental investigation into the role of the subthalamic nucleus (STN) in motor control using optogenetics in mice. Brain Res 2021; 1755:147226. [PMID: 33358727 DOI: 10.1016/j.brainres.2020.147226] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 10/22/2022]
Abstract
The subthalamic nucleus (STN) is critical for the execution of intended movements. Loss of its normal function is strongly associated with several movement disorders, including Parkinson's disease for which the STN is an important target area in deep brain stimulation (DBS) therapy. Classical basal ganglia models postulate that two parallel pathways, the direct and indirect pathways, exert opposing control over movement, with the STN acting within the indirect pathway. The STN is regulated by both inhibitory and excitatory input, and is itself excitatory. While most functional knowledge of this clinically relevant brain structure has been gained from pathological conditions and models, primarily parkinsonian, experimental evidence for its role in normal motor control has remained more sparse. The objective here was to tease out the selective impact of the STN on several motor parameters required to achieve intended movement, including locomotion, balance and motor coordination. Optogenetic excitation and inhibition using both bilateral and unilateral stimulations of the STN were implemented in freely-moving mice. The results demonstrate that selective optogenetic inhibition of the STN enhances locomotion while its excitation reduces locomotion. These findings lend experimental support to basal ganglia models of the STN in terms of locomotion. In addition, optogenetic excitation in freely-exploring mice induced self-grooming, disturbed gait and a jumping/escaping behavior, while causing reduced motor coordination in advanced motor tasks, independent of grooming and jumping. This study contributes experimentally validated evidence for a regulatory role of the STN in several aspects of motor control.
Collapse
Affiliation(s)
- Adriane Guillaumin
- Department of Organism Biology, Uppsala University, SE-752 36 Uppsala, Sweden
| | - Gian Pietro Serra
- Department of Organism Biology, Uppsala University, SE-752 36 Uppsala, Sweden
| | - François Georges
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | | |
Collapse
|
33
|
Skvortsova V, Palminteri S, Buot A, Karachi C, Welter ML, Grabli D, Pessiglione M. A Causal Role for the Pedunculopontine Nucleus in Human Instrumental Learning. Curr Biol 2021; 31:943-954.e5. [PMID: 33352119 DOI: 10.1016/j.cub.2020.11.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/23/2020] [Accepted: 11/17/2020] [Indexed: 01/06/2023]
Abstract
A critical mechanism for maximizing reward is instrumental learning. In standard instrumental learning models, action values are updated on the basis of reward prediction errors (RPEs), defined as the discrepancy between expectations and outcomes. A wealth of evidence across species and experimental techniques has established that RPEs are signaled by midbrain dopamine neurons. However, the way dopamine neurons receive information about reward outcomes remains poorly understood. Recent animal studies suggest that the pedunculopontine nucleus (PPN), a small brainstem structure considered as a locomotor center, is sensitive to reward and sends excitatory projection to dopaminergic nuclei. Here, we examined the hypothesis that the PPN could contribute to reward learning in humans. To this aim, we leveraged a clinical protocol that assessed the therapeutic impact of PPN deep-brain stimulation (DBS) in three patients with Parkinson disease. PPN local field potentials (LFPs), recorded while patients performed an instrumental learning task, showed a specific response to reward outcomes in a low-frequency (alpha-beta) band. Moreover, PPN DBS selectively improved learning from rewards but not from punishments, a pattern that is typically observed following dopaminergic treatment. Computational analyses indicated that the effect of PPN DBS on instrumental learning was best captured by an increase in subjective reward sensitivity. Taken together, these results support a causal role for PPN-mediated reward signals in human instrumental learning.
Collapse
Affiliation(s)
- Vasilisa Skvortsova
- Motivation, Brain and Behavior (MBB) laboratory, Paris Brain Institute (ICM), Groupe Hospitalier Pitié-Salpêtrière, Paris 75013, France; INSERM Unit 1127, CNRS Unit 7225, Sorbonne Universités (SU), Paris 75005, France; Laboratoire de Neurosciences Cognitives et Computationnelles, Département d'Etudes Cognitives, Ecole Normale Supérieure, Paris 75005, France; INSERM Unit 960, Université de Paris Sciences et Lettres (UP), 75005 Paris, France; Max Planck UCL Center for Computational Psychiatry and Aging, London WC1B 5EH, UK.
| | - Stefano Palminteri
- Motivation, Brain and Behavior (MBB) laboratory, Paris Brain Institute (ICM), Groupe Hospitalier Pitié-Salpêtrière, Paris 75013, France; INSERM Unit 1127, CNRS Unit 7225, Sorbonne Universités (SU), Paris 75005, France; Laboratoire de Neurosciences Cognitives et Computationnelles, Département d'Etudes Cognitives, Ecole Normale Supérieure, Paris 75005, France; INSERM Unit 960, Université de Paris Sciences et Lettres (UP), 75005 Paris, France
| | - Anne Buot
- INSERM Unit 1127, CNRS Unit 7225, Sorbonne Universités (SU), Paris 75005, France; Laboratoire de Neurosciences Cognitives et Computationnelles, Département d'Etudes Cognitives, Ecole Normale Supérieure, Paris 75005, France; INSERM Unit 960, Université de Paris Sciences et Lettres (UP), 75005 Paris, France
| | - Carine Karachi
- INSERM Unit 1127, CNRS Unit 7225, Sorbonne Universités (SU), Paris 75005, France; Neurology and Neurosurgery department, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, 75013 Paris, France
| | - Marie-Laure Welter
- INSERM Unit 1127, CNRS Unit 7225, Sorbonne Universités (SU), Paris 75005, France; Neurophysiology Department, Hôpital Universitaire de Rouen, 76000 Rouen, France
| | - David Grabli
- INSERM Unit 1127, CNRS Unit 7225, Sorbonne Universités (SU), Paris 75005, France; Neurology and Neurosurgery department, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, 75013 Paris, France
| | - Mathias Pessiglione
- Motivation, Brain and Behavior (MBB) laboratory, Paris Brain Institute (ICM), Groupe Hospitalier Pitié-Salpêtrière, Paris 75013, France; INSERM Unit 1127, CNRS Unit 7225, Sorbonne Universités (SU), Paris 75005, France.
| |
Collapse
|
34
|
Abstract
Human brain atlases have been evolving tremendously, propelled recently by brain big projects, and driven by sophisticated imaging techniques, advanced brain mapping methods, vast data, analytical strategies, and powerful computing. We overview here this evolution in four categories: content, applications, functionality, and availability, in contrast to other works limited mostly to content. Four atlas generations are distinguished: early cortical maps, print stereotactic atlases, early digital atlases, and advanced brain atlas platforms, and 5 avenues in electronic atlases spanning the last two generations. Content-wise, new electronic atlases are categorized into eight groups considering their scope, parcellation, modality, plurality, scale, ethnicity, abnormality, and a mixture of them. Atlas content developments in these groups are heading in 23 various directions. Application-wise, we overview atlases in neuroeducation, research, and clinics, including stereotactic and functional neurosurgery, neuroradiology, neurology, and stroke. Functionality-wise, tools and functionalities are addressed for atlas creation, navigation, individualization, enabling operations, and application-specific. Availability is discussed in media and platforms, ranging from mobile solutions to leading-edge supercomputers, with three accessibility levels. The major application-wise shift has been from research to clinical practice, particularly in stereotactic and functional neurosurgery, although clinical applications are still lagging behind the atlas content progress. Atlas functionality also has been relatively neglected until recently, as the management of brain data explosion requires powerful tools. We suggest that the future human brain atlas-related research and development activities shall be founded on and benefit from a standard framework containing the core virtual brain model cum the brain atlas platform general architecture.
Collapse
Affiliation(s)
- Wieslaw L Nowinski
- John Paul II Center for Virtual Anatomy and Surgical Simulation, University of Cardinal Stefan Wyszynski, Woycickiego 1/3, Block 12, room 1220, 01-938, Warsaw, Poland.
| |
Collapse
|
35
|
Bazin PL, Alkemade A, Mulder MJ, Henry AG, Forstmann BU. Multi-contrast anatomical subcortical structures parcellation. eLife 2020; 9:59430. [PMID: 33325368 PMCID: PMC7771958 DOI: 10.7554/elife.59430] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 12/15/2020] [Indexed: 02/07/2023] Open
Abstract
The human subcortex is comprised of more than 450 individual nuclei which lie deep in the brain. Due to their small size and close proximity, up until now only 7% have been depicted in standard MRI atlases. Thus, the human subcortex can largely be considered as terra incognita. Here, we present a new open-source parcellation algorithm to automatically map the subcortex. The new algorithm has been tested on 17 prominent subcortical structures based on a large quantitative MRI dataset at 7 Tesla. It has been carefully validated against expert human raters and previous methods, and can easily be extended to other subcortical structures and applied to any quantitative MRI dataset. In sum, we hope this novel parcellation algorithm will facilitate functional and structural neuroimaging research into small subcortical nuclei and help to chart terra incognita.
Collapse
Affiliation(s)
- Pierre-Louis Bazin
- Integrative Model-based Cognitive Neuroscience research unit, University of Amsterdam, Amsterdam, Netherlands.,Max-Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Anneke Alkemade
- Integrative Model-based Cognitive Neuroscience research unit, University of Amsterdam, Amsterdam, Netherlands
| | - Martijn J Mulder
- Integrative Model-based Cognitive Neuroscience research unit, University of Amsterdam, Amsterdam, Netherlands.,Psychology Department, Utrecht University, Utrecht, Netherlands
| | - Amanda G Henry
- Faculty of Archaeology, Leiden University, Leiden, Netherlands
| | - Birte U Forstmann
- Integrative Model-based Cognitive Neuroscience research unit, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
36
|
Chabardes S, Krack P, Piallat B, Bougerol T, Seigneuret E, Yelnik J, Fernandez Vidal S, David O, Mallet L, Benabid AL, Polosan M. Deep brain stimulation of the subthalamic nucleus in obsessive-compulsives disorders: long-term follow-up of an open, prospective, observational cohort. J Neurol Neurosurg Psychiatry 2020; 91:1349-1356. [PMID: 33033168 PMCID: PMC7677463 DOI: 10.1136/jnnp-2020-323421] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 07/01/2020] [Accepted: 08/31/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND Obsessive-compulsive disorder (OCD) is a major cause of disability in western country and responsible for severe impairment of quality of life. About 10% of patients present with severe OCD symptoms and require innovative treatment such as deep brain stimulation (DBS). Among possible targets, the non-motor subthalamic nucleus (STN) is a key node of the basal ganglia circuitry, strongly connected to limbic cortical areas known to be involved in OCD. METHOD We analysed, in a prospective, observational, monocentric, open label cohort, the effect of chronic non-motor STN-DBS in 19 patients with treatment-resistant OCD consecutively operated in a single centre. Severity of OCD was evaluated using the Yale and Brown Obsessive-Compulsive Scale (YBOCS). YBOCS scores at 6, 12 and 24 months postoperatively were compared with baseline. Responders were defined by >35% improvement of YBOCS scores. Global Assessment Functioning (GAF) scale was used to evaluate the impact of improvement. RESULTS At a 24-month follow-up, the mean YBOCS score improved by 53.4% from 33.3±3.5 to 15.8±9.1 (95% CI 11.2-20.4; p<0.0001). Fourteen out of 19 patients were considered as responders, 5 out of 19 being improved over 75% and 10 out of 19 over 50%. GAF scale improved by 92% from 34.1±3.9 to 66.4±18.8 (95% CI 56.7-76.1; p=0.0003). The most frequent adverse events consisted of transient DBS-induced hypomania and anxiety. CONCLUSION Chronic DBS of the non-motor STN is an effective and relatively safe procedure to treat severe OCD resistant to conventional management.
Collapse
Affiliation(s)
- Stephan Chabardes
- CLINATEC, CEA Clinatec-Minatec, Grenoble, France .,Department of Neurosurgery, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France.,Grenoble Institut neurosciences, University Grenoble Alpes-INSERM U1216, 38000 Grenoble, France
| | - Paul Krack
- Division of Neurology, Department of Neurology, Bern University Hospital, Bern, Switzerland, Bern, Switzerland.,Department of Neurology, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France
| | - Brigitte Piallat
- Grenoble Institut neurosciences, University Grenoble Alpes-INSERM U1216, 38000 Grenoble, France
| | - Thierry Bougerol
- Department of Psychiatry, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France
| | - Eric Seigneuret
- Department of Neurosurgery, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France
| | - Jerome Yelnik
- Institut du Cerveau, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, F-75013, Paris, France
| | - Sara Fernandez Vidal
- Institut du Cerveau, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, F-75013, Paris, France
| | - Olivier David
- Grenoble Institut neurosciences, University Grenoble Alpes-INSERM U1216, 38000 Grenoble, France
| | - Luc Mallet
- Institut du Cerveau, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, F-75013, Paris, France.,Département Médical-Universitaire de Psychiatrie et d'Addictologie, Univ Paris-Est Créteil, DMU IMPACT, Hôpitaux Universitaires Henri Mondor - Albert Chenevier, Assistance Publique-Hôpitaux de Paris, Créteil, France.,Department of Mental Health and Psychiatry, Global Health Institute, University of Geneva, Geneva, Switzerland
| | | | - Mircea Polosan
- Grenoble Institut neurosciences, University Grenoble Alpes-INSERM U1216, 38000 Grenoble, France.,Department of Psychiatry, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France
| |
Collapse
|
37
|
Engelhardt J, Caire F, Damon-Perrière N, Guehl D, Branchard O, Auzou N, Tison F, Meissner WG, Krim E, Bannier S, Bénard A, Sitta R, Fontaine D, Hoarau X, Burbaud P, Cuny E. A Phase 2 Randomized Trial of Asleep versus Awake Subthalamic Nucleus Deep Brain Stimulation for Parkinson's Disease. Stereotact Funct Neurosurg 2020; 99:230-240. [PMID: 33254172 DOI: 10.1159/000511424] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 09/07/2020] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Asleep deep brain stimulation (DBS) for Parkinson's disease (PD) is being performed more frequently; however, motor outcomes and safety of asleep DBS have never been assessed in a prospective randomized trial. METHODS We conducted a prospective, randomized, noncomparative trial to assess the motor outcomes of asleep DBS. Leads were implanted in the subthalamic nucleus (STN) according to probabilistic stereotactic coordinates with a surgical robot under O-arm© imaging guidance under either general anesthesia without microelectrode recordings (MER) (20 patients, asleep group) or local anesthesia with MER and clinical testing (9 patients, awake group). RESULTS The mean motor improvement rates on the Unified Parkinson's Disease Rating Scale Part III (UPDRS-3) between OFF and ON stimulation without medication were 52.3% (95% CI: 45.4-59.2%) in the asleep group and 47.0% (95% CI: 23.8-70.2%) in the awake group, 6 months after surgery. Except for a subcutaneous hematoma, we did not observe any complications related to the surgery. Three patients (33%) in the awake group and 8 in the asleep group (40%) had at least one side effect potentially linked with neurostimulation. CONCLUSIONS Owing to its randomized design, our study supports the hypothesis that motor outcomes after asleep STN-DBS in PD may be noninferior to the standard awake procedure.
Collapse
Affiliation(s)
- Julien Engelhardt
- CHU de Bordeaux, Service de Neurochirurgie B, Bordeaux, France, .,Institut des Maladies Neurodégénératives, Université de Bordeaux, UMR 5293, Bordeaux, France, .,CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France,
| | - François Caire
- Université de Limoges, CNRS, XLIM, UMR7252, Limoges, France.,CHU de Limoges, Service de Neurochirurgie, Limoges, France
| | - Nathalie Damon-Perrière
- Institut des Maladies Neurodégénératives, Université de Bordeaux, UMR 5293, Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France.,CHU de Bordeaux, Service d'explorations Fonctionnelles du Système Nerveux, Bordeaux, France
| | - Dominique Guehl
- Institut des Maladies Neurodégénératives, Université de Bordeaux, UMR 5293, Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France.,CHU de Bordeaux, Service d'explorations Fonctionnelles du Système Nerveux, Bordeaux, France
| | | | - Nicolas Auzou
- CHU de Bordeaux, Service de Neurologie, Bordeaux, France.,Laboratoire de Psychologie, Université de Bordeaux, Bordeaux, France
| | - François Tison
- Institut des Maladies Neurodégénératives, Université de Bordeaux, UMR 5293, Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France.,CHU de Bordeaux, Service de Neurologie, Bordeaux, France
| | - Wassilios G Meissner
- Institut des Maladies Neurodégénératives, Université de Bordeaux, UMR 5293, Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France.,CHU de Bordeaux, Service de Neurologie, Bordeaux, France
| | - Elsa Krim
- CH de Pau, Service de Neurologie, Pau, France
| | | | - Antoine Bénard
- CHU Bordeaux, Pôle de Santé Publique, Clinical Epidemiology Unit (USMR), Bordeaux, France
| | - Rémi Sitta
- CHU Bordeaux, Pôle de Santé Publique, Clinical Epidemiology Unit (USMR), Bordeaux, France
| | - Denys Fontaine
- CHU de Nice, Service de Neurochirurgie, Nice, France.,Université Côte d'Azur, Nice, France
| | - Xavier Hoarau
- Polyclinique de Navarre, Service de Neurochirurgie, Pau, France
| | - Pierre Burbaud
- Institut des Maladies Neurodégénératives, Université de Bordeaux, UMR 5293, Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France.,CHU de Bordeaux, Service d'explorations Fonctionnelles du Système Nerveux, Bordeaux, France
| | - Emmanuel Cuny
- CHU de Bordeaux, Service de Neurochirurgie B, Bordeaux, France.,Institut des Maladies Neurodégénératives, Université de Bordeaux, UMR 5293, Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| |
Collapse
|
38
|
Santin MDN, Voulleminot P, Vrillon A, Hainque E, Béreau M, Lagha‐Boukbiza O, Wirth T, Montaut S, Bardinet E, Kyheng M, Rolland A, Voirin J, Drapier S, Durif F, Eusebio A, Giordana C, Auzou N, Houeto J, Hubsch C, Jarraya B, Laurencin C, Maltete D, Meyer M, Rascol O, Rouaud T, Tir M, Moreau C, Corvol J, Proust F, Grabli D, Devos D, Tranchant C, Anheim M. Impact of Subthalamic Deep Brain Stimulation on Impulse Control Disorders in Parkinson's Disease: A Prospective Study. Mov Disord 2020; 36:750-757. [DOI: 10.1002/mds.28320] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/02/2020] [Accepted: 09/10/2020] [Indexed: 12/17/2022] Open
Affiliation(s)
| | - Paul Voulleminot
- Department of Neurology NS‐PARK/F‐CRIN, Strasbourg University Hospital, Fédération de Médecine Translationnelle de Médecine de Strasbourg Strasbourg France
| | - Agathe Vrillon
- Department of Neurology NS‐PARK/F‐CRIN, Assistance Publique ‐ Hôpitaux de Paris (APHP), Pitié‐Salpêtrière Hospital Paris France
| | - Elodie Hainque
- Department of Neurology NS‐PARK/F‐CRIN, Assistance Publique ‐ Hôpitaux de Paris (APHP), Pitié‐Salpêtrière Hospital Paris France
- Sorbonne Universités, Assistance Publique ‐ Hôpitaux de Paris (APHP), Inserm, CNRS, Institut du Cerveau et de la Moelle (ICM) Paris France
| | - Matthieu Béreau
- Department of Neurology NS‐PARK/F‐CRIN, University Hospital of Besançon Besançon France
| | - Ouhaid Lagha‐Boukbiza
- Department of Neurology NS‐PARK/F‐CRIN, Strasbourg University Hospital, Fédération de Médecine Translationnelle de Médecine de Strasbourg Strasbourg France
| | - Thomas Wirth
- Department of Neurology NS‐PARK/F‐CRIN, Strasbourg University Hospital, Fédération de Médecine Translationnelle de Médecine de Strasbourg Strasbourg France
| | - Solveig Montaut
- Department of Neurology NS‐PARK/F‐CRIN, Strasbourg University Hospital, Fédération de Médecine Translationnelle de Médecine de Strasbourg Strasbourg France
| | - Eric Bardinet
- Department of Neurology NS‐PARK/F‐CRIN, University Hospital of Besançon Besançon France
- Centre de Neuroimagerie de Recherche, Institut du Cerveau et de la Moelle (ICM) Paris France
| | - Maeva Kyheng
- Department of Clinical Research Lille University Hospital Lille France
| | - Anne‐Sophie Rolland
- Department of Medical Pharmacology University Hospital, NS‐PARK/F‐CRIN, University of Lille, Lille Neuroscience & Cognition, Inserm, UMR‐S1172 Lille France
| | - Jimmy Voirin
- Department of Neurosurgery, NS‐PARK/F‐CRIN Strasbourg University Hospital Strasbourg France
| | - Sophie Drapier
- Department of Neurology NS‐PARK/F‐CRIN, University Hospital of Rennes Rennes France
| | - Franck Durif
- Department of Neurology NS‐PARK/F‐CRIN, CHU Clermont‐Ferrand Clermont‐Ferrand France
| | - Alexandre Eusebio
- Department of Neurology NS‐PARK/F‐CRIN, Assistance Publique ‐ Hôpitaux de Marseille (APHM), Timone University Hospital and Institut de Neurosciences de la Timone Marseille France
| | - Caroline Giordana
- Department of Neurology NS‐PARK/F‐CRIN, Centre Hospitalier Universitaire de Nice Nice France
| | - Nicolas Auzou
- Institute of Neurodegenerative Disorders NS‐PARK/F‐CRIN, University Hospital of Bordeaux Bordeaux France
| | - Jean‐Luc Houeto
- Department of Neurology NS‐PARK/F‐CRIN, University Hospital of Poitiers Poitiers France
| | - Cécile Hubsch
- Department of Neurology NS‐PARK/F‐CRIN, Fondation Ophtalmologique Adolphe de Rothschild Paris France
| | - Béchir Jarraya
- Neuroscience Pole NS‐PARK/F‐CRIN, Hôpital Foch, Suresnes, University of Versailles Paris‐Saclay, INSERM‐CEA NeuroSpin Saclay France
| | - Chloé Laurencin
- Department of Neurology NS‐PARK/F‐CRIN, University Hospital of Lyon Lyon France
| | - David Maltete
- Department of Neurology NS‐PARK/F‐CRIN, Rouen University Hospital and University of Rouen, France; INSERM U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication Mont‐Saint‐Aignan France
| | - Mylène Meyer
- Department of Neurology NS‐PARK/F‐CRIN, University Hospital of Nancy Nancy France
| | - Olivier Rascol
- Department of Clinical Pharmacology and Neuroscience NS‐Park/F‐CRIN, Toulouse University Hospital Toulouse France
| | - Tiphaine Rouaud
- Department of Neurology NS‐PARK/F‐CRIN, Nantes University Hospital Nantes France
| | - Mélissa Tir
- Department of Neurology NS‐PARK/FCRIN, Amiens University Hospital Amiens France
| | - Caroline Moreau
- Department of Neurology University Hospital, NS‐PARK/F‐CRIN, University of Lille, Lille Neuroscience & Cognition, INSERM, UMR‐S1172 Lille France
| | - Jean‐Christophe Corvol
- Department of Neurology NS‐PARK/F‐CRIN, Assistance Publique ‐ Hôpitaux de Paris (APHP), Pitié‐Salpêtrière Hospital Paris France
- Sorbonne Universités, Assistance Publique ‐ Hôpitaux de Paris (APHP), Inserm, CNRS, Institut du Cerveau et de la Moelle (ICM) Paris France
| | - François Proust
- Department of Neurosurgery, NS‐PARK/F‐CRIN Strasbourg University Hospital Strasbourg France
| | - David Grabli
- Department of Neurology NS‐PARK/F‐CRIN, Assistance Publique ‐ Hôpitaux de Paris (APHP), Pitié‐Salpêtrière Hospital Paris France
| | - David Devos
- Department of Medical Pharmacology University Hospital, NS‐PARK/F‐CRIN, University of Lille, Lille Neuroscience & Cognition, Inserm, UMR‐S1172 Lille France
- Department of Neurology University Hospital, NS‐PARK/F‐CRIN, University of Lille, Lille Neuroscience & Cognition, INSERM, UMR‐S1172 Lille France
| | - Christine Tranchant
- Department of Neurology NS‐PARK/F‐CRIN, Strasbourg University Hospital, Fédération de Médecine Translationnelle de Médecine de Strasbourg Strasbourg France
| | - Mathieu Anheim
- Department of Neurology NS‐PARK/F‐CRIN, Strasbourg University Hospital, Fédération de Médecine Translationnelle de Médecine de Strasbourg Strasbourg France
| | | |
Collapse
|
39
|
Gonzalez-Escamilla G, Muthuraman M, Ciolac D, Coenen VA, Schnitzler A, Groppa S. Neuroimaging and electrophysiology meet invasive neurostimulation for causal interrogations and modulations of brain states. Neuroimage 2020; 220:117144. [DOI: 10.1016/j.neuroimage.2020.117144] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/22/2020] [Accepted: 07/02/2020] [Indexed: 12/13/2022] Open
|
40
|
Emotions Modulate Subthalamic Nucleus Activity: New Evidence in Obsessive-Compulsive Disorder and Parkinson's Disease Patients. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2020; 6:556-567. [PMID: 33060034 DOI: 10.1016/j.bpsc.2020.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Subthalamic nucleus (STN) deep brain stimulation alleviates obsessive-compulsive disorder (OCD) symptoms, suggesting that this basal ganglia structure may play a key role in integrating limbic and motor information. We explored the modulation of STN neural activity by visual emotional information under different motor demands. METHODS We compared STN local field potentials acquired in 7 patients with OCD and 15 patients with Parkinson's disease off and on levodopa while patients categorized pictures as unpleasant, pleasant, or neutral and pressed a button for 1 of these 3 categories depending on the instruction. RESULTS During image presentation, theta power increased for unpleasant compared with neutral images in both patients with OCD and patients with Parkinson's disease. Only in patients with OCD was theta power also increased in pleasant compared with neutral trials. During the button press in patients with OCD, no modification of STN activity was seen on average, but theta power increased when the image triggering the motor response was unpleasant. Conversely, in patients with Parkinson's disease, a beta decrease was observed during the button press unrelated to the valence of the stimulus. Finally, in patients with OCD, a significant positive relationship was observed between the amplitude of the emotionally related theta response and symptom severity (measured using the Yale-Brown Obsessive Compulsive Scale). CONCLUSIONS We highlighted modulations of STN theta band activity related to emotions that were specific to OCD and correlated with OCD symptom severity. STN theta-induced activity might therefore underlie dysfunction of the limbic STN and its related network leading to OCD pathophysiology.
Collapse
|
41
|
Xiao Y, Lau JC, Hemachandra D, Gilmore G, Khan AR, Peters TM. Image Guidance in Deep Brain Stimulation Surgery to Treat Parkinson's Disease: A Comprehensive Review. IEEE Trans Biomed Eng 2020; 68:1024-1033. [PMID: 32746050 DOI: 10.1109/tbme.2020.3006765] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Deep brain stimulation (DBS) is an effective therapy as an alternative to pharmaceutical treatments for Parkinson's disease (PD). Aside from factors such as instrumentation, treatment plans, and surgical protocols, the success of the procedure depends heavily on the accurate placement of the electrode within the optimal therapeutic targets while avoiding vital structures that can cause surgical complications and adverse neurologic effects. Although specific surgical techniques for DBS can vary, interventional guidance with medical imaging has greatly contributed to the development, outcomes, and safety of the procedure. With rapid development in novel imaging techniques, computational methods, and surgical navigation software, as well as growing insights into the disease and mechanism of action of DBS, modern image guidance is expected to further enhance the capacity and efficacy of the procedure in treating PD. This article surveys the state-of-the-art techniques in image-guided DBS surgery to treat PD, and discusses their benefits and drawbacks, as well as future directions on the topic.
Collapse
|
42
|
Merola A, Romagnolo A, Krishna V, Pallavaram S, Carcieri S, Goetz S, Mandybur G, Duker AP, Dalm B, Rolston JD, Fasano A, Verhagen L. Current Directions in Deep Brain Stimulation for Parkinson's Disease-Directing Current to Maximize Clinical Benefit. Neurol Ther 2020; 9:25-41. [PMID: 32157562 PMCID: PMC7229063 DOI: 10.1007/s40120-020-00181-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Indexed: 12/19/2022] Open
Abstract
Several single-center studies and one large multicenter clinical trial demonstrated that directional deep brain stimulation (DBS) could optimize the volume of tissue activated (VTA) based on the individual placement of the lead in relation to the target. The ability to generate axially asymmetric fields of stimulation translates into a broader therapeutic window (TW) compared to conventional DBS. However, changing the shape and surface of stimulating electrodes (directional segmented vs. conventional ring-shaped) also demands a revision of the programming strategies employed for DBS programming. Model-based approaches have been used to predict the shape of the VTA, which can be visualized on standardized neuroimaging atlases or individual magnetic resonance imaging. While potentially useful for optimizing clinical care, these systems remain limited by factors such as patient-specific anatomical variability, postsurgical lead migrations, and inability to account for individual contact impedances and orientation of the systems of fibers surrounding the electrode. Alternative programming tools based on the functional assessment of stimulation-induced clinical benefits and side effects allow one to collect and analyze data from each electrode of the DBS system and provide an action plan of ranked alternatives for therapeutic settings based on the selection of optimal directional contacts. Overall, an increasing amount of data supports the use of directional DBS. It is conceivable that the use of directionality may reduce the need for complex programming paradigms such as bipolar configurations, frequency or pulse width modulation, or interleaving. At a minimum, stimulation through directional electrodes can be considered as another tool to improve the benefit/side effect ratio. At a maximum, directionality may become the preferred way to program because of its larger TW and lower energy consumption.
Collapse
Affiliation(s)
- Aristide Merola
- Department of Neurology, Ohio State University Wexner Medical Center, Columbus, OH, USA.
| | - Alberto Romagnolo
- Department of Neuroscience "Rita Levi Montalcini", University of Turin, Turin, Italy
| | - Vibhor Krishna
- Department of Neurosurgery, Ohio State Wexner Medical Center, Columbus, OH, USA
| | | | | | - Steven Goetz
- Medtronic PLC Brain Modulation, Minneapolis, MN, USA
| | | | - Andrew P Duker
- Department of Neurology, Gardner Family Center for Parkinson's Disease and Movement Disorders, University of Cincinnati, Cincinnati, OH, USA
| | - Brian Dalm
- Department of Neurosurgery, Ohio State Wexner Medical Center, Columbus, OH, USA
| | - John D Rolston
- Department of Neurosurgery, University of Utah, Salt Lake City, UT, USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Alfonso Fasano
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, UHN, Toronto, ON, Canada
- Division of Neurology, University of Toronto, Toronto, ON, Canada
- Krembil Brain Institute, Toronto, ON, Canada
- CenteR for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, ON, Canada
| | - Leo Verhagen
- Department of Neurological Sciences, Movement Disorder Section, Rush University, Chicago, IL, USA
| |
Collapse
|
43
|
Zanello M, Carron R, Peeters S, Gori P, Roux A, Bloch I, Oppenheim C, Pallud J. Automated neurosurgical stereotactic planning for intraoperative use: a comprehensive review of the literature and perspectives. Neurosurg Rev 2020; 44:867-888. [PMID: 32430559 DOI: 10.1007/s10143-020-01315-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 04/17/2020] [Accepted: 05/04/2020] [Indexed: 11/24/2022]
Abstract
The creation of intracranial stereotactic trajectories, from entry point to target point, is still mostly done manually by the neurosurgeon. The development of automated stereotactic planning tools has been described in the literature. This systematic review aims to assess the effectiveness of stereotactic planning procedure automation and develop tools for patients undergoing neurosurgical stereotactic procedures. PubMed/MEDLINE, EMBASE, Google Scholar, CINAHL, PsycINFO, and Cochrane Register of Controlled Trials databases were searched from inception to September 1, 2019, at the exception of Google Scholar (from 1 January 2010 to September 1, 2019) in French and English. Eligible studies included all studies proposing automated stereotactic planning. A total of 1543 studies were screened. Forty-two studies were included in the systematic review, including 18 (42.9%) conference papers. The surgical procedures planned automatically were mainly deep brain stimulation (n = 14, 33.3%), stereoelectroencephalography (n = 12, 28.6%), and not specified (n = 10, 23.8%). The most frequently used surgical constraints to plan the trajectory were blood vessels (n = 32, 76.2%), cerebral sulci (n = 27, 64.3%), and cerebral ventricles (n = 23, 54.8%). The distance from blood vessels ranged from 1.96 to 4.78 mm for manual trajectories and from 2.47 to 7.0 mm for automated trajectories. At least one neurosurgeon was involved in 36 studies (85.7%). The automated stereotactic trajectory was preferred in 75.4% of the studied cases (range 30-92.9). Only 3 (7.1%) studies were multicentric. No study reported prospective use of the planning software. Stereotactic planning automation is a promising tool to provide valuable stereotactic trajectories for clinical applications.
Collapse
Affiliation(s)
- Marc Zanello
- Department of Neurosurgery, GHU Paris-Sainte-Anne Hospital, 1, rue Cabanis, 75674, Paris Cedex 14, France. .,Paris Descartes University, Sorbonne Paris Cité, Paris, France. .,IMABRAIN, Institute of Psychiatry and Neuroscience of Paris, INSERM UMR 1266, Paris, France.
| | - Romain Carron
- Aix Marseille Université, INSERM, INS, Institut de Neurosciences des Systèmes, Marseille, France.,Department of Functional and Stereotactic Neurosurgery, Timone University Hospital, Marseille, France
| | - Sophie Peeters
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, USA
| | - Pietro Gori
- IMABRAIN, Institute of Psychiatry and Neuroscience of Paris, INSERM UMR 1266, Paris, France.,IMAG2 Laboratory, Imagine Institute, Paris, France.,LTCI, Télécom Paris, Institut Polytechnique de Paris, Paris, France
| | - Alexandre Roux
- Department of Neurosurgery, GHU Paris-Sainte-Anne Hospital, 1, rue Cabanis, 75674, Paris Cedex 14, France.,Paris Descartes University, Sorbonne Paris Cité, Paris, France.,IMABRAIN, Institute of Psychiatry and Neuroscience of Paris, INSERM UMR 1266, Paris, France
| | - Isabelle Bloch
- IMABRAIN, Institute of Psychiatry and Neuroscience of Paris, INSERM UMR 1266, Paris, France.,IMAG2 Laboratory, Imagine Institute, Paris, France.,LTCI, Télécom Paris, Institut Polytechnique de Paris, Paris, France
| | - Catherine Oppenheim
- Paris Descartes University, Sorbonne Paris Cité, Paris, France.,IMABRAIN, Institute of Psychiatry and Neuroscience of Paris, INSERM UMR 1266, Paris, France.,Department of Neuroradiology, GHU Paris-Sainte-Anne Hospital, Paris, France
| | - Johan Pallud
- Department of Neurosurgery, GHU Paris-Sainte-Anne Hospital, 1, rue Cabanis, 75674, Paris Cedex 14, France.,Paris Descartes University, Sorbonne Paris Cité, Paris, France.,IMABRAIN, Institute of Psychiatry and Neuroscience of Paris, INSERM UMR 1266, Paris, France
| |
Collapse
|
44
|
Reich MM, Horn A, Lange F, Roothans J, Paschen S, Runge J, Wodarg F, Pozzi NG, Witt K, Nickl RC, Soussand L, Ewert S, Maltese V, Wittstock M, Schneider GH, Coenen V, Mahlknecht P, Poewe W, Eisner W, Helmers AK, Matthies C, Sturm V, Isaias IU, Krauss JK, Kühn AA, Deuschl G, Volkmann J. Probabilistic mapping of the antidystonic effect of pallidal neurostimulation: a multicentre imaging study. Brain 2020; 142:1386-1398. [PMID: 30851091 DOI: 10.1093/brain/awz046] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/12/2018] [Accepted: 01/08/2019] [Indexed: 11/13/2022] Open
Abstract
Deep brain stimulation of the internal globus pallidus is a highly effective and established therapy for primary generalized and cervical dystonia, but therapeutic success is compromised by a non-responder rate of up to 25%, even in carefully-selected groups. Variability in electrode placement and inappropriate stimulation settings may account for a large proportion of this outcome variability. Here, we present probabilistic mapping data on a large cohort of patients collected from several European centres to resolve the optimal stimulation volume within the pallidal region. A total of 105 dystonia patients with pallidal deep brain stimulation were enrolled and 87 datasets (43 with cervical dystonia and 44 with generalized dystonia) were included into the subsequent 'normative brain' analysis. The average improvement of dystonia motor score was 50.5 ± 30.9% in cervical and 58.2 ± 48.8% in generalized dystonia, while 19.5% of patients did not respond to treatment (<25% benefit). We defined probabilistic maps of anti-dystonic effects by aggregating individual electrode locations and volumes of tissue activated (VTA) in normative atlas space and ranking voxel-wise for outcome distribution. We found a significant relation between motor outcome and the stimulation volume, but not the electrode location per se. The highest probability of stimulation induced motor benefit was found in a small volume covering the ventroposterior globus pallidus internus and adjacent subpallidal white matter. We then used the aggregated VTA-based outcome maps to rate patient individual VTAs and trained a linear regression model to predict individual outcomes. The prediction model showed robustness between the predicted and observed clinical improvement, with an r2 of 0.294 (P < 0.0001). The predictions deviated on average by 16.9 ± 11.6 % from observed dystonia improvements. For example, if a patient improved by 65%, the model would predict an improvement between 49% and 81%. Results were validated in an independent cohort of 10 dystonia patients, where prediction and observed benefit had a correlation of r2 = 0.52 (P = 0.02) and a mean prediction error of 10.3% (±8.9). These results emphasize the potential of probabilistic outcome brain mapping in refining the optimal therapeutic volume for pallidal neurostimulation and advancing computer-assisted planning and programming of deep brain stimulation.
Collapse
Affiliation(s)
- Martin M Reich
- Julius-Maximilians-University Würzburg, Department of Neurology, Germany.,Beth Israel Deaconess Medical Center, Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Andreas Horn
- Charite-Universitätsmedizin Berlin, Movement Disorders and Neuromodulation Unit, Department of Neurology, Germany
| | - Florian Lange
- Julius-Maximilians-University Würzburg, Department of Neurology, Germany
| | - Jonas Roothans
- Julius-Maximilians-University Würzburg, Department of Neurology, Germany
| | | | | | - Fritz Wodarg
- University Kiel, Department of Radiology, Germany
| | - Nicolo G Pozzi
- Julius-Maximilians-University Würzburg, Department of Neurology, Germany
| | - Karsten Witt
- University Kiel, Department of Neurology, Germany.,University Oldenburg, Department of Neurology, Germany
| | - Robert C Nickl
- Julius-Maximilians-University, Department of Neurosurgery, Germany
| | - Louis Soussand
- Beth Israel Deaconess Medical Center, Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Siobhan Ewert
- Charite-Universitätsmedizin Berlin, Movement Disorders and Neuromodulation Unit, Department of Neurology, Germany
| | - Virgina Maltese
- Julius-Maximilians-University Würzburg, Department of Neurology, Germany
| | | | - Gerd-Helge Schneider
- Charite-Universitätsmedizin Berlin, Movement Disorders and Neuromodulation Unit, Department of Neurology, Germany
| | - Volker Coenen
- Freiburg University Medical Center, Department of Stereotactic and Functional Neurosurgery, Germany
| | | | - Werner Poewe
- Department of Neurology, Innsbruck Medical University, Austria
| | - Wilhelm Eisner
- Department of Neurosurgery, Innsbruck Medical University, Austria
| | | | - Cordula Matthies
- Julius-Maximilians-University, Department of Neurosurgery, Germany
| | - Volker Sturm
- Julius-Maximilians-University, Department of Neurosurgery, Germany
| | - Ioannis U Isaias
- Julius-Maximilians-University Würzburg, Department of Neurology, Germany
| | | | - Andrea A Kühn
- Charite-Universitätsmedizin Berlin, Movement Disorders and Neuromodulation Unit, Department of Neurology, Germany
| | | | - Jens Volkmann
- Julius-Maximilians-University Würzburg, Department of Neurology, Germany
| |
Collapse
|
45
|
Li B, Ohtomo R, Thunemann M, Adams SR, Yang J, Fu B, Yaseen MA, Ran C, Polimeni JR, Boas DA, Devor A, Lo EH, Arai K, Sakadžić S. Two-photon microscopic imaging of capillary red blood cell flux in mouse brain reveals vulnerability of cerebral white matter to hypoperfusion. J Cereb Blood Flow Metab 2020; 40:501-512. [PMID: 30829101 PMCID: PMC7026840 DOI: 10.1177/0271678x19831016] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 01/19/2019] [Accepted: 01/21/2019] [Indexed: 01/15/2023]
Abstract
Despite the importance of understanding the regulation of microvascular blood flow in white matter, no data on subcortical capillary blood flow parameters are available, largely due to the lack of appropriate imaging methods. To address this knowledge gap, we employed two-photon microscopy using a far-red fluorophore Alexa680 and photon-counting detection to measure capillary red blood cell (RBC) flux in both cerebral gray and white matter, in isoflurane-anesthetized mice. We have found that in control animals, baseline capillary RBC flux in the white matter was significantly higher than in the adjacent cerebral gray matter. In response to mild hypercapnia, RBC flux in the white matter exhibited significantly smaller fractional increase than in the gray matter. Finally, during global cerebral hypoperfusion, RBC flux in the white matter was reduced significantly in comparison to the controls, while RBC flux in the gray matter was preserved. Our results suggest that blood flow in the white matter may be less efficiently regulated when challenged by physiological perturbations as compared to the gray matter. Importantly, the blood flow in the white matter may be more susceptible to hypoperfusion than in the gray matter, potentially exacerbating the white matter deterioration in brain conditions involving global cerebral hypoperfusion.
Collapse
Affiliation(s)
- Baoqiang Li
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Ryo Ohtomo
- Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Martin Thunemann
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Stephen R Adams
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Jing Yang
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Buyin Fu
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Mohammad A Yaseen
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Chongzhao Ran
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Jonathan R Polimeni
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - David A Boas
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Anna Devor
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
- Department of Radiology, University of California San Diego, La Jolla, CA, USA
| | - Eng H Lo
- Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Ken Arai
- Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Sava Sakadžić
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
46
|
Gay M, Belaid H, Rogers A, Pérez-García F, Roustan M, Bardinet E, François C, Karachi C. Anatomo-Functional Mapping of the Primate Mesencephalic Locomotor Region Using Stereotactic Lesions. Mov Disord 2020; 35:789-799. [PMID: 31922282 DOI: 10.1002/mds.27983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/24/2019] [Accepted: 12/27/2019] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Dysfunction of the mesencephalic locomotor region has been implicated in gait disorders. However, the role of its 2 components, the pedunculopontine and the cuneiform nuclei, in locomotion is poorly understood in primates. OBJECTIVES To analyze the effect of cuneiform lesions on gait and balance in 2 monkeys and to compare them with those obtained after cholinergic pedunculopontine lesions in 4 monkeys and after lesions in both the cuneiform and pedunculopontine nuclei in 1 monkey. METHODS After each stereotactic lesion, we performed a neurological examination and gait and balance assessments with kinematic measures during a locomotor task. The 3-dimensional location of each lesion was analyzed on a common brainstem space. RESULTS After each cuneiform lesion, we observed a contralateral cervical dystonia including an increased tone in the proximal forelimb and an increase in knee angle, back curvature and walking speed. Conversely, cholinergic pedunculopontine lesions increased tail rigidity and back curvature and an imbalance of the muscle tone between the ipsi- and contralateral hindlimb with decreased knee angles. The walking speed was decreased. Moreover, pedunculopontine lesions often resulted in a longer time to waking postsurgery. CONCLUSIONS The location of the lesions and their behavioral effects revealed a somatotopic organization of muscle tone control, with the neck and forelimb represented within the cuneiform nucleus and hindlimb and tail represented within the pedunculopontine nucleus. Cuneiform lesions increased speed, whereas pedunculopontine lesions decreased it. These findings confirm the complex and specific role of the cuneiform and pedunculopontine nuclei in locomotion and suggest the role of the pedunculopontine in sleep control. © 2020 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Marion Gay
- Sorbonne University, Univ. Pierre & Marie Curie Paris 06, CNRS, INSERM, APHP GH Pitié-Salpêtrière, Institut du cerveau et de la moelle épinière, Paris, France
| | - Hayat Belaid
- Sorbonne University, Univ. Pierre & Marie Curie Paris 06, CNRS, INSERM, APHP GH Pitié-Salpêtrière, Institut du cerveau et de la moelle épinière, Paris, France.,Department of Neurosurgery, Rothschild Foundation, Paris, France
| | - Alister Rogers
- Sorbonne University, Univ. Pierre & Marie Curie Paris 06, CNRS, INSERM, APHP GH Pitié-Salpêtrière, Institut du cerveau et de la moelle épinière, Paris, France.,Department of Neurosurgery, Rothschild Foundation, Paris, France
| | - Fernando Pérez-García
- Sorbonne University, Univ. Pierre & Marie Curie Paris 06, CNRS, INSERM, APHP GH Pitié-Salpêtrière, Institut du cerveau et de la moelle épinière, Paris, France.,Center of NeuroImaging Research-CENIR, Paris, France
| | - Maxime Roustan
- Sorbonne University, Univ. Pierre & Marie Curie Paris 06, CNRS, INSERM, APHP GH Pitié-Salpêtrière, Institut du cerveau et de la moelle épinière, Paris, France
| | - Eric Bardinet
- Sorbonne University, Univ. Pierre & Marie Curie Paris 06, CNRS, INSERM, APHP GH Pitié-Salpêtrière, Institut du cerveau et de la moelle épinière, Paris, France.,Center of NeuroImaging Research-CENIR, Paris, France
| | - Chantal François
- Sorbonne University, Univ. Pierre & Marie Curie Paris 06, CNRS, INSERM, APHP GH Pitié-Salpêtrière, Institut du cerveau et de la moelle épinière, Paris, France
| | - Carine Karachi
- Sorbonne University, Univ. Pierre & Marie Curie Paris 06, CNRS, INSERM, APHP GH Pitié-Salpêtrière, Institut du cerveau et de la moelle épinière, Paris, France.,AP-HP, Department of Neurosurgery, La Pitié-Salpêtrière University Hospital, Paris, France
| |
Collapse
|
47
|
Network-Based Imaging and Connectomics. Stereotact Funct Neurosurg 2020. [DOI: 10.1007/978-3-030-34906-6_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
48
|
Shamir RR, Duchin Y, Kim J, Patriat R, Marmor O, Bergman H, Vitek JL, Sapiro G, Bick A, Eliahou R, Eitan R, Israel Z, Harel N. Microelectrode Recordings Validate the Clinical Visualization of Subthalamic-Nucleus Based on 7T Magnetic Resonance Imaging and Machine Learning for Deep Brain Stimulation Surgery. Neurosurgery 2020; 84:749-757. [PMID: 29800386 DOI: 10.1093/neuros/nyy212] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 04/26/2018] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is a proven and effective therapy for the management of the motor symptoms of Parkinson's disease (PD). While accurate positioning of the stimulating electrode is critical for success of this therapy, precise identification of the STN based on imaging can be challenging. We developed a method to accurately visualize the STN on a standard clinical magnetic resonance imaging (MRI). The method incorporates a database of 7-Tesla (T) MRIs of PD patients together with machine-learning methods (hereafter 7 T-ML). OBJECTIVE To validate the clinical application accuracy of the 7 T-ML method by comparing it with identification of the STN based on intraoperative microelectrode recordings. METHODS Sixteen PD patients who underwent microelectrode-recordings guided STN DBS were included in this study (30 implanted leads and electrode trajectories). The length of the STN along the electrode trajectory and the position of its contacts to dorsal, inside, or ventral to the STN were compared using microelectrode-recordings and the 7 T-ML method computed based on the patient's clinical 3T MRI. RESULTS All 30 electrode trajectories that intersected the STN based on microelectrode-recordings, also intersected it when visualized with the 7 T-ML method. STN trajectory average length was 6.2 ± 0.7 mm based on microelectrode recordings and 5.8 ± 0.9 mm for the 7 T-ML method. We observed a 93% agreement regarding contact location between the microelectrode-recordings and the 7 T-ML method. CONCLUSION The 7 T-ML method is highly consistent with microelectrode-recordings data. This method provides a reliable and accurate patient-specific prediction for targeting the STN.
Collapse
Affiliation(s)
| | - Yuval Duchin
- Surgical Information Sciences, Minneapolis, Minnesota.,Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minnesota
| | - Jinyoung Kim
- Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina
| | - Remi Patriat
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minnesota
| | - Odeya Marmor
- Department of Neurobiology, Institute of Medical Research-Israel Canada (IMRIC), The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Hagai Bergman
- Department of Neurobiology, Institute of Medical Research-Israel Canada (IMRIC), The Hebrew University-Hadassah Medical School, Jerusalem, Israel.,Edmond and Lily Safra Center for Brain Sciences, The Hebrew University, Jerusalem, Israel
| | - Jerrold L Vitek
- Department of Neurology, University of Minnesota, Minneapolis, Minnesota
| | - Guillermo Sapiro
- Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina.,Departments of Biomedical Engineering, Computer Science, and Mathematics, Duke University, Durham, North Carolina
| | - Atira Bick
- Department of Radiology, Hadassah Medical Center, Jerusalem, Israel
| | - Ruth Eliahou
- Department of Radiology, Hadassah Medical Center, Jerusalem, Israel
| | - Renana Eitan
- Department of Neurobiology, Institute of Medical Research-Israel Canada (IMRIC), The Hebrew University-Hadassah Medical School, Jerusalem, Israel.,Functional Neuroimaging Laboratory, Brigham and Women's Hospital, Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Zvi Israel
- Department of Neurosurgery, Hadassah Medical Center, Jerusalem, Israel
| | - Noam Harel
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minnesota
| |
Collapse
|
49
|
Maatoug R, Valero-Cabré A, Duriez P, Saudreau B, Fernández-Vidal S, Karachi C, Millet B. Sustained Recovery in a Treatment-Refractory Obsessive-Compulsive Disorder Patient After Deep Brain Stimulation Battery Failure. Front Psychiatry 2020; 11:572059. [PMID: 33281642 PMCID: PMC7691224 DOI: 10.3389/fpsyt.2020.572059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 09/30/2020] [Indexed: 11/13/2022] Open
Abstract
Obsessive-compulsive disorder (OCD) is a widespread chronic neuropsychiatric disorder characterized by recurrent intrusive thoughts, images, or urges (obsessions) that typically cause anxiety or distress. Even when optimal treatment is provided, 10% of patients remain severely affected chronically. In some countries, deep brain stimulation (DBS) is an approved and effective therapy for patients suffering from treatment-resistant OCD. Hereafter, we report the case of a middle-aged man with a long history of treatment-resistant OCD spanning nearly a decade with Yale-Brown Obsessive Compulsive Scale (Y-BOCS) scores oscillating between 21 and 28. The patient underwent bilateral implantation of ventral striatum/ventral capsule DBS leads attached to a battery-operated implanted pulse generator. After a 3-month postimplantation period, the DBS protocol started. Three months after the onset of DBS treatment, the patient's Y-BOCS score had dropped to 3, and he became steadily asymptomatic. However, inadvertently, at this time, it was found out that the implanted pulse generator battery had discharged completely, interrupting brain stimulation. The medical team carried on with the original therapeutic and evaluation plan in the absence of active DBS current. After 12 additional months under off-DBS, the patient remained at a Y-BOCS score of 7 and asymptomatic. To our knowledge, this is the first report that provides an opportunity to discuss four different hypotheses of long-term recovery induced by DBS in a treatment-refractory OCD patient, notably: (1) A placebo effect; (2) Paradoxical improvements induced by micro-lesions generated by DBS probe implantation procedures; (3) Unexpected late spontaneous improvements; (4) Recovery driven by a combination of active DBS-induction, the effects of medication, and DBS-placebo effects.
Collapse
Affiliation(s)
- Redwan Maatoug
- Sorbonne Université, AP-HP, Service de psychiatrie adulte de la Pitié-Salpêtrière, Institut du Cerveau, ICM, Paris, France
| | - Antoni Valero-Cabré
- Groupe de Dynamiques Cérébrales, Plasticité et Rééducation and Frontlab Team, Institut du Cerveau (ICM), INSERM 1127, CNRS, UMR 7225 and Sorbonne Université (SO), Paris, France.,Institut du Cerveau et de la Moelle Epinière (ICM), CNRS UMR 7225, INSERM U 1127, Sorbonne Université, Paris, France.,Laboratory for Cerebral Dynamics Plasticity and Rehabilitation, Boston University, School of Medicine, Boston, MA, United States.,Cognitive Neuroscience and Information Technology Research Program, Open University of Catalonia (UOC), Barcelona, Spain
| | - Philibert Duriez
- Institute of Psychiatry and Neurosciences of Paris, Unité Mixte de Recherche en Santé (UMRS) 1266 Institut National de la Santé et de la Recherche Médicale (INSERM), University Paris Descartes, Paris, France.,Clinique des Maladies Mentales et de l'Encéphale, Groupement Hospitalier Universitaire (GHU) Paris Psychiatry and Neuroscience, Sainte-Anne Hospital, Paris, France
| | - Bertrand Saudreau
- Sorbonne Université, AP-HP, Service de psychiatrie adulte de la Pitié-Salpêtrière, Institut du Cerveau, ICM, Paris, France
| | - Sara Fernández-Vidal
- Université Pierre et Marie Curie-Paris 6, Centre de Recherche de l'Institut du Cerveau (CRICM), UMR-S975, Paris, France.,INSERM, U975, Paris, France.,CNRS, UMR 7225, CR-ICM, Paris, France.,Centre de Neuroimagerie de Recherche de l'Institut du Cerveau (CENIR ICM), Paris, France
| | - Carine Karachi
- Université Pierre et Marie Curie-Paris 6, Centre de Recherche de l'Institut du Cerveau (CRICM), UMR-S975, Paris, France.,INSERM, U975, Paris, France.,CNRS, UMR 7225, CR-ICM, Paris, France.,Neurosurgery Department, APHP, Hôpitaux Universitaires Pitié-Salpêtrière/Charles Foix, Paris, France
| | - Bruno Millet
- Sorbonne Université, AP-HP, Service de psychiatrie adulte de la Pitié-Salpêtrière, Institut du Cerveau, ICM, Paris, France
| |
Collapse
|
50
|
Lemaire JJ, De Salles A, Coll G, El Ouadih Y, Chaix R, Coste J, Durif F, Makris N, Kikinis R. MRI Atlas of the Human Deep Brain. Front Neurol 2019; 10:851. [PMID: 31507507 PMCID: PMC6718608 DOI: 10.3389/fneur.2019.00851] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 07/23/2019] [Indexed: 12/15/2022] Open
Abstract
Mastering detailed anatomy of the human deep brain in clinical neurosciences is challenging. Although numerous pioneering works have gathered a large dataset of structural and topographic information, it is still difficult to transfer this knowledge into practice, even with advanced magnetic resonance imaging techniques. Thus, classical histological atlases continue to be used to identify structures for stereotactic targeting in functional neurosurgery. Physicians mainly use these atlases as a template co-registered with the patient's brain. However, it is possible to directly identify stereotactic targets on MRI scans, enabling personalized targeting. In order to help clinicians directly identify deep brain structures relevant to present and future medical applications, we built a volumetric MRI atlas of the deep brain (MDBA) on a large scale (infra millimetric). Twelve hypothalamic, 39 subthalamic, 36 telencephalic, and 32 thalamic structures were identified, contoured, and labeled. Nineteen coronal, 18 axial, and 15 sagittal MRI plates were created. Although primarily designed for direct labeling, the anatomic space was also subdivided in twelfths of AC-PC distance, leading to proportional scaling in the coronal, axial, and sagittal planes. This extensive work is now available to clinicians and neuroscientists, offering another representation of the human deep brain ([https://hal.archives-ouvertes.fr/] [hal-02116633]). The atlas may also be used by computer scientists who are interested in deciphering the topography of this complex region.
Collapse
Affiliation(s)
- Jean-Jacques Lemaire
- Service de Neurochirurgie, CHU Clermont-Ferrand, Université Clermont Auvergne, Centre National de la Recherche Scientifique, Engineering School SIGMA Clermont, Clermont-Ferrand, France
| | - Antonio De Salles
- Department of Neurosurgery, Radiation Oncology, HCOR Neuroscience, São Paulo, Brazil
| | - Guillaume Coll
- Service de Neurochirurgie, CHU Clermont-Ferrand, Université Clermont Auvergne, Centre National de la Recherche Scientifique, Engineering School SIGMA Clermont, Clermont-Ferrand, France
| | - Youssef El Ouadih
- Service de Neurochirurgie, CHU Clermont-Ferrand, Université Clermont Auvergne, Centre National de la Recherche Scientifique, Engineering School SIGMA Clermont, Clermont-Ferrand, France
| | - Rémi Chaix
- Service de Neurochirurgie, CHU Clermont-Ferrand, Université Clermont Auvergne, Centre National de la Recherche Scientifique, Engineering School SIGMA Clermont, Clermont-Ferrand, France
| | - Jérôme Coste
- Service de Neurochirurgie, CHU Clermont-Ferrand, Université Clermont Auvergne, Centre National de la Recherche Scientifique, Engineering School SIGMA Clermont, Clermont-Ferrand, France
| | - Franck Durif
- Service de Neurologie, Centre National de la Recherche Scientifique, CHU Clermont-Ferrand, Université Clermont Auvergne, Engineering School SIGMA Clermont, Clermont-Ferrand, France
| | - Nikos Makris
- Surgical Planning Laboratory, Center for Morphometric Analysis, A. Martinos Center for Biomedical Imaging, Harvard Medical School, Massachusetts General Hospital, Brigham and Women's Hospital, Boston, MA, United States
| | - Ron Kikinis
- Surgical Planning Laboratory, Center for Morphometric Analysis, A. Martinos Center for Biomedical Imaging, Harvard Medical School, Massachusetts General Hospital, Brigham and Women's Hospital, Boston, MA, United States.,Robert Greenes Distinguished Director of Biomedical Informatics, Brigham and Women's Hospital, Boston, MA, United States.,Computer Science Department, Fraunhofer MEVIS, University of Bremen, Bremen, Germany
| |
Collapse
|