1
|
Gilli F, Ceccarelli A. Magnetic resonance imaging approaches for studying mouse models of multiple sclerosis: A mini review. J Neurosci Res 2023. [DOI: 10.1002/jnr.25193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 01/30/2023] [Accepted: 03/10/2023] [Indexed: 04/03/2023]
Affiliation(s)
- Francesca Gilli
- Department of Neurology, Dartmouth Hitchcock Medical Center Geisel School of Medicine at Dartmouth Lebanon New Hampshire USA
| | - Antonia Ceccarelli
- Department of Neurology EpiCURA Centre Hospitalier Ath Belgium
- Hearthrhythmanagement, UZB Brussels Belgium
| |
Collapse
|
2
|
Ridehalgh C, Fundaun J, Bremner S, Cercignani M, Young R, Trivedy C, Novak A, Greening J, Schmid A, Dilley A. Does peripheral neuroinflammation predict chronicity following whiplash injury? Protocol for a prospective cohort study. BMJ Open 2022; 12:e066021. [PMID: 36521884 PMCID: PMC9756191 DOI: 10.1136/bmjopen-2022-066021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 11/21/2022] [Indexed: 12/23/2022] Open
Abstract
INTRODUCTION Whiplash-associated disorder grade 2 (WAD2) is characterised by musculoskeletal pain/tenderness but no apparent nerve injury. However, studies have found clinical features indicative of neuropathy and neuropathic pain. These studies may indicate peripheral nerve inflammation, since preclinical neuritis models found mechanical sensitivity in inflamed, intact nociceptors. The primary aim of this study is to establish the contribution of peripheral neuroinflammation to WAD2 and its role in prognosis. Participants will be invited to participate in a sub-study investigating the contribution of cutaneous small fibre pathology to WAD2. METHODS AND ANALYSIS 115 participants within 1 month following whiplash injury and 34 healthy control participants will be recruited and complete validated questionnaires for pain, function and psychological factors. Data collection will take place at the Universities of Sussex and Oxford, UK. Clinical examination, quantitative sensory testing and blood samples will be undertaken. MRI scans using T2-weighted and diffusion tensor images of the brachial plexus and wrist will determine nerve inflammation and nerve structural changes. Skin biopsies from a substudy will determine structural integrity of dermal and intraepidermal nerve fibres. At 6 months, we will evaluate recovery using Neck Disability Index and a self-rated global recovery question and repeat the outcome measures. Regression analysis will identify differences in MRI parameters, clinical tests and skin biopsies between participants with WAD2 and age/gender-matched controls. Linear and logistic regression analyses will assess if nerve inflammation (MRI parameters) predicts poor outcome. Mixed effects modelling will compare MRI and clinical measures between recovered and non-recovered participants over time. ETHICS AND DISSEMINATION Ethical approval was received from London-Brighton and Sussex Research Ethics Committee (20/PR/0625) and South Central-Oxford C Ethics Committee (18/SC/0263). Written informed consent will be obtained from participants prior to participation in the study. Results will be disseminated through publications in peer-reviewed journals, presentations at national/international conferences and social media. TRIAL REGISTRATION NUMBER NCT04940923.
Collapse
Affiliation(s)
- Colette Ridehalgh
- Department of Neuroscience, Brighton and Sussex Medical School, Brighton, UK
- School of Sport and Health Sciences, University of Brighton, Eastbourne, UK
| | - Joel Fundaun
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Stephen Bremner
- Department of Primary Care and Public Health, Brighton and Sussex Medical School, Brighton, UK
| | - Mara Cercignani
- Cardiff University Brain Research Imaging Centre, Cardiff University, Cardiff, UK
| | - Rupert Young
- School of engineering and informatics, University of Sussex, Brighton, UK
| | - Chetan Trivedy
- Emergency Departments, University Hospitals Sussex NHS Foundation Trust, Brighton, UK
- Queen Mary University of London, London, UK
| | - Alex Novak
- Emergency Medicine Research Oxford, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Jane Greening
- Department of Neuroscience, Brighton and Sussex Medical School, Brighton, UK
| | - Annina Schmid
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Andrew Dilley
- Department of Neuroscience, Brighton and Sussex Medical School, Brighton, UK
| |
Collapse
|
3
|
Liu X, Zhang Y, Cui X, Fan T, Shu J, Li H, Huo X, Lu C. Gadopentetate meglumine activates mast cells to cause IgE-independent allergic reactions both in vitro and in vivo. Int Immunopharmacol 2022; 106:108602. [DOI: 10.1016/j.intimp.2022.108602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/19/2022] [Accepted: 01/30/2022] [Indexed: 11/05/2022]
|
4
|
Rallapalli H, Darwin BC, Toro-Montoya E, Lerch JP, Turnbull DH. Longitudinal MEMRI analysis of brain phenotypes in a mouse model of Niemann-Pick Type C disease. Neuroimage 2020; 217:116894. [PMID: 32417449 PMCID: PMC7443857 DOI: 10.1016/j.neuroimage.2020.116894] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/23/2020] [Accepted: 04/28/2020] [Indexed: 11/15/2022] Open
Abstract
Niemann-Pick Type C (NPC) is a rare genetic disorder characterized by progressive cell death in various tissues, particularly in the cerebellar Purkinje cells, with no known cure. Mouse models for human NPC have been generated and characterized histologically, behaviorally, and using longitudinal magnetic resonance imaging (MRI). Previous imaging studies revealed significant brain volume differences between mutant and wild-type animals, but stopped short of making volumetric comparisons of the cerebellar sub-regions. In this study, we present longitudinal manganese-enhanced MRI (MEMRI) data from cohorts of wild-type, heterozygote carrier, and homozygote mutant NPC mice, as well as deformation-based morphometry (DBM) driven brain volume comparisons across genotypes, including the cerebellar cortex, white matter, and nuclei. We also present the first comparisons of MEMRI signal intensities, reflecting brain and cerebellum sub-regional Mn2+-uptake over time and across genotypes.
Collapse
Affiliation(s)
- Harikrishna Rallapalli
- Skirball Institute of Biomolecular Medicine and Department of Radiology, New York University School of Medicine, New York, NY, USA; Biomedical Imaging & Technology Graduate Program, New York University School of Medicine, USA
| | - Benjamin C Darwin
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Canada
| | - Estefania Toro-Montoya
- Skirball Institute of Biomolecular Medicine and Department of Radiology, New York University School of Medicine, New York, NY, USA
| | - Jason P Lerch
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Daniel H Turnbull
- Skirball Institute of Biomolecular Medicine and Department of Radiology, New York University School of Medicine, New York, NY, USA; Biomedical Imaging & Technology Graduate Program, New York University School of Medicine, USA.
| |
Collapse
|
5
|
Yang J, Li Q. Manganese-Enhanced Magnetic Resonance Imaging: Application in Central Nervous System Diseases. Front Neurol 2020; 11:143. [PMID: 32161572 PMCID: PMC7052353 DOI: 10.3389/fneur.2020.00143] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 02/07/2020] [Indexed: 12/12/2022] Open
Abstract
Manganese-enhanced magnetic resonance imaging (MEMRI) relies on the strong paramagnetism of Mn2+. Mn2+ is a calcium ion analog and can enter excitable cells through voltage-gated calcium channels. Mn2+ can be transported along the axons of neurons via microtubule-based fast axonal transport. Based on these properties, MEMRI is used to describe neuroanatomical structures, monitor neural activity, and evaluate axonal transport rates. The application of MEMRI in preclinical animal models of central nervous system (CNS) diseases can provide more information for the study of disease mechanisms. In this article, we provide a brief review of MEMRI use in CNS diseases ranging from neurodegenerative diseases to brain injury and spinal cord injury.
Collapse
Affiliation(s)
- Jun Yang
- Department of Radiology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital & Cancer Center, Kunming, China
| | - Qinqing Li
- Department of Radiology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital & Cancer Center, Kunming, China
| |
Collapse
|
6
|
Xiao Z, Tang Z, Wu L, Feng X, Sun X, Tang W, Wang J, Jin L, Wang R. Manganese-enhanced magnetic resonance imaging in the whole visual pathway: chemical identification and neurotoxic changes. Acta Radiol 2019; 60:1653-1662. [PMID: 30922072 DOI: 10.1177/0284185119840227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Zebin Xiao
- Department of Radiology, Eye & ENT Hospital of Shanghai Medical School, Fudan University, Shanghai, PR China
| | - Zuohua Tang
- Department of Radiology, Eye & ENT Hospital of Shanghai Medical School, Fudan University, Shanghai, PR China
| | - Lingjie Wu
- Department of Otolaryngology, Eye & ENT Hospital of Shanghai Medical School, Fudan University, Shanghai, PR China
| | - Xiaoyuan Feng
- Department of Radiology, Huashan Hospital of Shanghai Medical School, Fudan University, Shanghai, PR China
| | - Xinghuai Sun
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital of Shanghai Medical School, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Key Laboratory of Myopia, NHFPC (Fudan University), and Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, PR China
| | - Weijun Tang
- Department of Radiology, Huashan Hospital of Shanghai Medical School, Fudan University, Shanghai, PR China
| | - Jie Wang
- Department of Radiotherapy, Eye & ENT Hospital of Shanghai Medical School, Fudan University, Shanghai, PR China
| | - Lixin Jin
- Siemens Ltd., Healthcare Sector, Shanghai, PR China
| | - Rong Wang
- Department of Radiology, Eye & ENT Hospital of Shanghai Medical School, Fudan University, Shanghai, PR China
| |
Collapse
|
7
|
Saar G, Koretsky AP. Manganese Enhanced MRI for Use in Studying Neurodegenerative Diseases. Front Neural Circuits 2019; 12:114. [PMID: 30666190 PMCID: PMC6330305 DOI: 10.3389/fncir.2018.00114] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 12/10/2018] [Indexed: 12/13/2022] Open
Abstract
MRI has been extensively used in neurodegenerative disorders, such as Alzheimer’s disease (AD), frontal-temporal dementia (FTD), mild cognitive impairment (MCI), Parkinson’s disease (PD), Huntington’s disease (HD) and amyotrophic lateral sclerosis (ALS). MRI is important for monitoring the neurodegenerative components in other diseases such as epilepsy, stroke and multiple sclerosis (MS). Manganese enhanced MRI (MEMRI) has been used in many preclinical studies to image anatomy and cytoarchitecture, to obtain functional information in areas of the brain and to study neuronal connections. This is due to Mn2+ ability to enter excitable cells through voltage gated calcium channels and be actively transported in an anterograde manner along axons and across synapses. The broad range of information obtained from MEMRI has led to the use of Mn2+ in many animal models of neurodegeneration which has supplied important insight into brain degeneration in preclinical studies. Here we provide a brief review of MEMRI use in neurodegenerative diseases and in diseases with neurodegenerative components in animal studies and discuss the potential translation of MEMRI to clinical use in the future.
Collapse
Affiliation(s)
- Galit Saar
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health, Bethesda, MD, United States
| | - Alan P Koretsky
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
8
|
Castoldi V, Marenna S, Santangelo R, d'Isa R, Cursi M, Chaabane L, Quattrini A, Comi G, Leocani L. Optic nerve involvement in experimental autoimmune encephalomyelitis to homologous spinal cord homogenate immunization in the dark agouti rat. J Neuroimmunol 2018; 325:1-9. [PMID: 30340030 DOI: 10.1016/j.jneuroim.2018.09.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/18/2018] [Accepted: 09/19/2018] [Indexed: 12/22/2022]
Abstract
Dark-Agouti rats were immunized with spinal cord homogenate to develop Experimental Autoimmune Encephalomyelitis, a model of multiple sclerosis. We assessed motor signs and recorded VEPs for five or eight weeks with epidural or epidermal electrodes, respectively, with final histopathology of optic nerves (ONs). Injected rats exhibited motor deficits a week after immunization. VEP delays arose from the 2nd to the 5th week, when a recovery occurred in epidermal-recorded rats. ON damage appeared in epidural-, but not in epidermal-recorded rats, probably due to a remyelination process. VEP could be exploited as neurophysiological marker to test novel treatments against neurodegeneration involving ONs.
Collapse
Affiliation(s)
- Valerio Castoldi
- San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy
| | - Silvia Marenna
- San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy
| | | | - Raffaele d'Isa
- San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy
| | - Marco Cursi
- San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy
| | - Linda Chaabane
- San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy
| | - Angelo Quattrini
- San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy
| | - Giancarlo Comi
- San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy
| | - Letizia Leocani
- San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy.
| |
Collapse
|
9
|
Evidence for Increased Magnetic Resonance Imaging Signal Intensity and Morphological Changes in the Brachial Plexus and Median Nerves of Patients With Chronic Arm and Neck Pain Following Whiplash Injury. J Orthop Sports Phys Ther 2018; 48:523-532. [PMID: 29690828 DOI: 10.2519/jospt.2018.7875] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background Whiplash following a motor vehicle accident can result in chronic neck and arm pain. Patients frequently present with cutaneous hypersensitivities and hypoesthesia, but without obvious clinical signs of nerve injury. T2-weighted magnetic resonance imaging (MRI) has previously been used to identify nerve pathology. Objectives To determine whether there are signs of peripheral nerve pathology on MRI in patients with chronic arm and neck pain following whiplash injury. Methods This cross-sectional study used T2-weighted MRI to examine the brachial plexus and median nerve in patients and age-matched, healthy control subjects. Clinical examination included tests of plexus and nerve trunk mechanical sensitivity. Results The T2 signal intensity was greater in the brachial plexus and median nerve at the wrist in the patient group (mean intensity ratio = 0.52 ± 0.13 and 2.09 ± 0.33, respectively) compared to the control group (mean intensity ratio = 0.45 ± 0.07 and 1.38 ± 0.31, respectively; P<.05). Changes in median nerve morphology were also observed, which included an enlargement (mean area: patient group, 8.05 ± 1.29 mm2; control group, 6.52 ± 1.08 mm2; P<.05) and flattening (mean aspect ratio: patient group, 2.46 ± 0.53; control group, 1.62 ± 0.30; P<.05) at the proximal carpal row. All patients demonstrated signs of nerve trunk mechanical sensitivity. Conclusion These findings suggest that patients with chronic whiplash may have inflammatory changes and/or mild neuropathy, which may contribute to symptoms. J Orthop Sports Phys Ther 2018;48(7):523-532. Epub 24 Apr 2018. doi:10.2519/jospt.2018.7875.
Collapse
|
10
|
Bansal NK, Hagiwara M, Borja MJ, Babb J, Patel SH. Influence of clinical history on MRI interpretation of optic neuropathy. Heliyon 2016; 2:e00162. [PMID: 27699283 PMCID: PMC5035347 DOI: 10.1016/j.heliyon.2016.e00162] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 08/15/2016] [Accepted: 09/12/2016] [Indexed: 11/29/2022] Open
Abstract
Background and purpose Clinical history is known to influence interpretation of a wide range of radiologic examinations. We sought to evaluate the influence of the clinical history on MRI interpretation of optic neuropathy. Materials and methods 107 consecutive orbital MRI scans were retrospectively reviewed by three neuroradiologists. The readers independently evaluated the coronal STIR sequence for optic nerve hyperintensity and/or atrophy (yes/no) and the coronal post-contrast T1WI for optic nerve enhancement (yes/no). Readers initially evaluated the cases blinded to the clinical history. Following a two week washout period, readers again evaluated the cases with the clinical history provided. Inter-reader and reader-clinical radiologist agreement was assessed using Cohen's simple kappa coefficient. Results Intra-reader agreement, without and with provision of clinical history, was 0.564–0.716 on STIR and 0.270–0.495 on post-contrast T1WI. Inter-reader agreement was overall fair-moderate. On post-contrast T1WI, inter-reader agreement was significantly higher when the clinical history was provided (p = 0.001). Reader-clinical radiologist agreement improved with provision of the clinical history to the readers on both the STIR and post-contrast T1WI sequences. Conclusions In the MRI assessment of optic neuropathy, only modest levels of inter-reader agreement were achieved, even after provision of clinical history. Provision of clinical history improved inter-reader agreement, especially when assessing for optic nerve enhancement. These findings confirm the subjective nature of orbital MRI interpretation in cases of optic neuropathy, and point to the importance of an accurate clinical history. Of note, the accuracy of orbital MRI in the context of optic neuropathy was not assessed, and would require further investigation.
Collapse
|
11
|
Venkataramana NK, Rao SAV, Arun LN, Krishna C. Cavernous malformation of the optic chiasm: Neuro-endoscopic removal. Asian J Neurosurg 2016; 11:68-9. [PMID: 26889286 PMCID: PMC4732249 DOI: 10.4103/1793-5482.145114] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Cavernous malformations (CMs) arising from the optic nerve and chiasm are extremely rare. In large autopsy series, CMs were estimated to range from 0.02 to 0.13% in the general population. However, with introduction of MRI, these lesions were found more often than previously thought, ranging from 0.2% to 0.4%. Only 29 cases have been reported according to our knowledge. Most patients present with drop in visual acuity and visual field. Although MRI findings of cavernous malformations have been reported, they may not be diagnostic enough. Among the 29 reported, 16 underwent total resection with good results. In some, resection was complicated by damage to the surrounding neural tissue. Surgical removal is the recommended treatment to restore or preserve vision and to eliminate the risk of future hemorrhage. However, the anatomical location and eloquence of nearby neural structures can make these lesions difficult to access and remove. CMs appear to occur in every age group (range 4 months to 84 years mean-34.6 years) ith an approximately equal male to female ratio. They typically present with chiasmal apoplexy, characterized by sudden visual loss, acute headaches, retro orbital pain, and nausea
Collapse
Affiliation(s)
- N K Venkataramana
- Global Institute of Neurosciences, BGS Global Hospital, Bangalore, Karnataka, India
| | - Shailesh A V Rao
- Global Institute of Neurosciences, BGS Global Hospital, Bangalore, Karnataka, India
| | - L N Arun
- Global Institute of Neurosciences, BGS Global Hospital, Bangalore, Karnataka, India
| | - C Krishna
- Global Institute of Neurosciences, BGS Global Hospital, Bangalore, Karnataka, India
| |
Collapse
|
12
|
Bone Marrow-Derived Cells as a Therapeutic Approach to Optic Nerve Diseases. Stem Cells Int 2015; 2016:5078619. [PMID: 26649049 PMCID: PMC4663341 DOI: 10.1155/2016/5078619] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Accepted: 09/10/2015] [Indexed: 12/16/2022] Open
Abstract
Following optic nerve injury associated with acute or progressive diseases, retinal ganglion cells (RGCs) of adult mammals degenerate and undergo apoptosis. These diseases have limited therapeutic options, due to the low inherent capacity of RGCs to regenerate and due to the inhibitory milieu of the central nervous system. Among the numerous treatment approaches investigated to stimulate neuronal survival and axonal extension, cell transplantation emerges as a promising option. This review focuses on cell therapies with bone marrow mononuclear cells and bone marrow-derived mesenchymal stem cells, which have shown positive therapeutic effects in animal models of optic neuropathies. Different aspects of available preclinical studies are analyzed, including cell distribution, potential doses, routes of administration, and mechanisms of action. Finally, published and ongoing clinical trials are summarized.
Collapse
|
13
|
Riascos R, Heymann JC, Hakimelahi R, Hasan K, Sargsyan A, Barr YR, Tom J, Alperin N, Kramer LA. Novel finding of optic nerve central T2 hypointensity utilizing 3 Tesla MR imaging. Neuroradiol J 2015; 28:133-6. [PMID: 25923682 DOI: 10.1177/1971400915576668] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
We sought to report a central T2 hypointensity within the optic nerve on 3 T MRI studies obtained as part of the NASA Flight Medicine Visual Impairment Intracranial Pressure Protocol that had not been described previously. Twenty-one astronauts, who had undergone MRI of both orbits with direct coronal T2 sequences between 2010 and 2012, were retrospectively included. Two of the astronauts did not have previous exposure to microgravity at the time of their scans. A central T2 hypointensity was observed in 100% of both right and left eyes. It was completely visualized throughout the nerve course in 15 right eyes (71.4%) and in 19 left eyes (90.5%).We describe a new finding seen in all study participants: a central T2 hypointensity in the epicenter of the optic nerve. We speculate that this T2 hypointensity may represent flow voids caused by the central retinal vessels.
Collapse
Affiliation(s)
- Roy Riascos
- Department of Diagnostic and Interventional Imaging, The University of Texas in Houston
| | - John C Heymann
- Department of Radiology, University of Texas Medical Branch, Houston, TX, USA
| | - Reza Hakimelahi
- Department of Radiology, University of Texas Medical Branch, Houston, TX, USA
| | - Khader Hasan
- Department of Diagnostic and Interventional Imaging, The University of Texas in Houston
| | | | - Yael R Barr
- University of Texas Medical Branch / NASA Johnson Space Center Bioastronautics Contract, Houston, TX, USA
| | - James Tom
- Department of Radiology, University of Texas Medical Branch, Houston, TX, USA
| | - Noam Alperin
- Department of Radiology, The University of Miami, Coral Gables, FL, USA
| | - Larry A Kramer
- Department of Diagnostic and Interventional Imaging, The University of Texas in Houston
| |
Collapse
|
14
|
Chiang CW, Wang Y, Sun P, Lin TH, Trinkaus K, Cross AH, Song SK. Quantifying white matter tract diffusion parameters in the presence of increased extra-fiber cellularity and vasogenic edema. Neuroimage 2014; 101:310-9. [PMID: 25017446 DOI: 10.1016/j.neuroimage.2014.06.064] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Revised: 06/12/2014] [Accepted: 06/27/2014] [Indexed: 12/01/2022] Open
Abstract
The effect of extra-fiber structural and pathological components confounding diffusion tensor imaging (DTI) computation was quantitatively investigated using data generated by both Monte-Carlo simulations and tissue phantoms. Increased extent of vasogenic edema, by addition of various amount of gel to fixed normal mouse trigeminal nerves or by increasing non-restricted isotropic diffusion tensor components in Monte-Carlo simulations, significantly decreased fractional anisotropy (FA) and increased radial diffusivity, while less significantly increased axial diffusivity derived by DTI. Increased cellularity, mimicked by graded increase of the restricted isotropic diffusion tensor component in Monte-Carlo simulations, significantly decreased FA and axial diffusivity with limited impact on radial diffusivity derived by DTI. The MC simulation and tissue phantom data were also analyzed by the recently developed diffusion basis spectrum imaging (DBSI) to simultaneously distinguish and quantify the axon/myelin integrity and extra-fiber diffusion components. Results showed that increased cellularity or vasogenic edema did not affect the DBSI-derived fiber FA, axial or radial diffusivity. Importantly, the extent of extra-fiber cellularity and edema estimated by DBSI correlated with experimentally added gel and Monte-Carlo simulations. We also examined the feasibility of applying 25-direction diffusion encoding scheme for DBSI analysis on coherent white matter tracts. Results from both phantom experiments and simulations suggested that the 25-direction diffusion scheme provided comparable DBSI estimation of both fiber diffusion parameters and extra-fiber cellularity/edema extent as those by 99-direction scheme. An in vivo 25-direction DBSI analysis was performed on experimental autoimmune encephalomyelitis (EAE, an animal model of human multiple sclerosis) optic nerve as an example to examine the validity of derived DBSI parameters with post-imaging immunohistochemistry verification. Results support that in vivo DBSI using 25-direction diffusion scheme correctly reflect the underlying axonal injury, demyelination, and inflammation of optic nerves in EAE mice.
Collapse
Affiliation(s)
- Chia-Wen Chiang
- Department of Chemistry, Washington University, St. Louis, MO 63130, USA
| | - Yong Wang
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Peng Sun
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Tsen-Hsuan Lin
- Department of Physics, Washington University, St. Louis, MO 63130, USA
| | - Kathryn Trinkaus
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Anne H Cross
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA; Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sheng-Kwei Song
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
15
|
Lin TH, Spees WM, Chiang CW, Trinkaus K, Cross AH, Song SK. Diffusion fMRI detects white-matter dysfunction in mice with acute optic neuritis. Neurobiol Dis 2014; 67:1-8. [PMID: 24632420 PMCID: PMC4035476 DOI: 10.1016/j.nbd.2014.02.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 02/18/2014] [Accepted: 02/25/2014] [Indexed: 12/14/2022] Open
Abstract
Optic neuritis is a frequent and early symptom of multiple sclerosis (MS). Conventional magnetic resonance (MR) techniques provide means to assess multiple MS-related pathologies, including axonal injury, demyelination, and inflammation. A method to directly and non-invasively probe white-matter function could further elucidate the interplay of underlying pathologies and functional impairments. Previously, we demonstrated a significant 27% activation-associated decrease in the apparent diffusion coefficient of water perpendicular to the axonal fibers (ADC⊥) in normal C57BL/6 mouse optic nerve with visual stimulation using diffusion fMRI. Here we apply this approach to explore the relationship between visual acuity, optic nerve pathology, and diffusion fMRI in the experimental autoimmune encephalomyelitis (EAE) mouse model of optic neuritis. Visual stimulation produced a significant 25% (vs. baseline) ADC⊥ decrease in sham EAE optic nerves, while only a 7% (vs. baseline) ADC⊥ decrease was seen in EAE mice with acute optic neuritis. The reduced activation-associated ADC⊥ response correlated with post-MRI immunohistochemistry determined pathologies (including inflammation, demyelination, and axonal injury). The negative correlation between activation-associated ADC⊥ response and visual acuity was also found when pooling EAE-affected and sham groups under our experimental criteria. Results suggest that reduction in diffusion fMRI directly reflects impaired axonal-activation in EAE mice with optic neuritis. Diffusion fMRI holds promise for directly gauging in vivo white-matter dysfunction or therapeutic responses in MS patients.
Collapse
Affiliation(s)
- Tsen-Hsuan Lin
- Department of Physics, Washington University, St. Louis, MO 63130, USA
| | - William M Spees
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Chia-Wen Chiang
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kathryn Trinkaus
- Department of Biostatistics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Anne H Cross
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA; Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sheng-Kwei Song
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
16
|
Lin TH, Kim JH, Perez-Torres C, Chiang CW, Trinkaus K, Cross AH, Song SK. Axonal transport rate decreased at the onset of optic neuritis in EAE mice. Neuroimage 2014; 100:244-53. [PMID: 24936685 DOI: 10.1016/j.neuroimage.2014.06.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 05/30/2014] [Accepted: 06/03/2014] [Indexed: 12/21/2022] Open
Abstract
Optic neuritis is frequently the first symptom of multiple sclerosis (MS), an inflammatory demyelinating neurodegenerative disease. Impaired axonal transport has been considered as an early event of neurodegenerative diseases. However, few studies have assessed the integrity of axonal transport in MS or its animal models. We hypothesize that axonal transport impairment occurs at the onset of optic neuritis in experimental autoimmune encephalomyelitis (EAE) mice. In this study, we employed manganese-enhanced MRI (MEMRI) to assess axonal transport in optic nerves in EAE mice at the onset of optic neuritis. Axonal transport was assessed as (a) optic nerve Mn(2+) accumulation rate (in % signal change/h) by measuring the rate of increased total optic nerve signal enhancement, and (b) Mn(2+) transport rate (in mm/h) by measuring the rate of change in optic nerve length enhanced by Mn(2+). Compared to sham-treated healthy mice, Mn(2+) accumulation rate was significantly decreased by 19% and 38% for EAE mice with moderate and severe optic neuritis, respectively. The axonal transport rate of Mn(2+) was significantly decreased by 43% and 65% for EAE mice with moderate and severe optic neuritis, respectively. The degree of axonal transport deficit correlated with the extent of impaired visual function and diminished microtubule-associated tubulins, as well as the severity of inflammation, demyelination, and axonal injury at the onset of optic neuritis.
Collapse
Affiliation(s)
- Tsen-Hsuan Lin
- Department of Physics, Washington University, St. Louis, MO 63130, USA
| | - Joong Hee Kim
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Carlos Perez-Torres
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Chia-Wen Chiang
- Department of Chemistry, Washington University, St. Louis, MO 63130, USA
| | - Kathryn Trinkaus
- Divison of Biostatistics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Anne H Cross
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA; Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sheng-Kwei Song
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
17
|
Lin TH, Chiang CW, Trinkaus K, Spees WM, Sun P, Song SK. Manganese-enhanced MRI (MEMRI) via topical loading of Mn(2+) significantly impairs mouse visual acuity: a comparison with intravitreal injection. NMR IN BIOMEDICINE 2014; 27:390-398. [PMID: 24436112 PMCID: PMC3994194 DOI: 10.1002/nbm.3073] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 12/04/2013] [Accepted: 12/12/2013] [Indexed: 06/03/2023]
Abstract
Manganese-enhanced MRI (MEMRI) with topical loading of MnCl2 provides optic nerve enhancement comparable to that seen by intravitreal injection. However, the impact of this novel and non-invasive Mn(2+) loading method on visual function requires further assessments. The objective of this study is to determine the optimal topical Mn(2+) loading dosage for MEMRI and to assess visual function after MnCl2 loading. Intravitreal administration was performed to compare the two approaches of MnCl2 loading. Twenty-four hours after topical loading of 0, 0.5, 0.75, and 1 M MnCl2 , T1 -weighted, T2-weighted, diffusion tensor imaging and visual acuity (VA) assessments were performed to determine the best topical loading dosage for MEMRI measurements and to assess the integrity of retinas and optic nerves. Mice were perfusion fixed immediately after in vivo experiments for hematoxylin and eosin and immunohistochemistry staining. Topical loading of 1 M MnCl2 damaged the retinal photoreceptor layer with no detectable damage to retina ganglion cell layers or prechiasmatic optic nerves. For the topical loading, 0.75 M MnCl2 was required to see sufficient enhancement of the optic nerve. At this concentration the visual function was significantly affected, followed by a slow recovery. Intravitreal injection (0.25 μL of 0.2 M MnCl2 ) slightly affected VA, with full recovery a day later. To conclude, intravitreal MnCl2 injection provides more reproducible results with less adverse side-effects than topical loading.
Collapse
Affiliation(s)
- Tsen-Hsuan Lin
- Department of Physics, Washington University, St. Louis, MO, USA
| | | | | | | | | | | |
Collapse
|
18
|
Fairless R, Williams SK, Diem R. Dysfunction of neuronal calcium signalling in neuroinflammation and neurodegeneration. Cell Tissue Res 2013; 357:455-62. [PMID: 24326615 DOI: 10.1007/s00441-013-1758-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 10/31/2013] [Indexed: 02/07/2023]
Abstract
Neurodegeneration has been increasingly recognised as the leading structural correlate of disability progression in autoimmune diseases such as multiple sclerosis. Since calcium signalling is known to regulate the development of degenerative processes in many cell types, it is believed to play significant roles in mediating neurodegeneration. Because of its function as a major juncture linking various insults and injuries associated with inflammatory attack on neuronal cell bodies and axons, it provides potential for the development of neuroprotective strategies. This is of great significance because of the lack of neuroprotective agents presently available to supplement the current array of immunomodulatory treatments. In this review, we summarise the role that various calcium channels and pumps have been shown to play in the development of neurodegeneration under inflammatory autoimmune conditions. The identification of suitable targets might also provide insights into applications in non-inflammatory neurodegenerative diseases.
Collapse
Affiliation(s)
- Richard Fairless
- Department of Neuro-oncology, University Clinic Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | | | | |
Collapse
|
19
|
Luo L, Xu H, Li Y, Du Z, Sun X, Ma Z, Hu Y. Manganese-enhanced MRI optic nerve tracking: effect of intravitreal manganese dose on retinal toxicity. NMR IN BIOMEDICINE 2012; 25:1360-1368. [PMID: 22573611 DOI: 10.1002/nbm.2808] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 03/20/2012] [Accepted: 03/26/2012] [Indexed: 05/31/2023]
Abstract
The aim of this study was to provide data on the dose dependence of manganese-enhanced MRI (MEMRI) in the visual pathway of experimental rats and to study the toxicity of MnCl₂ to the retina. Sprague-Dawley rats were intravitreally injected with 2 μL of 0, 10, 25, 50, 75, 100, 150 and 300 mM MnCl₂, respectively. The contrast-to-noise ratio (CNR) of MEMRI for optic nerve enhancement was measured at different concentrations of MnCl₂. Simultaneously, the toxicity of manganese was evaluated by counting retinal ganglion cells and by retinal histological examination using light microscopy and transmission electron microscopy. The CNR increased with increasing concentration of MnCl₂ up to 75 mM. Retinal ganglion cell densities were reduced significantly when the concentration of MnCl₂ in the intravitreal injection was equal to or greater than 75 mM. Increasing numbers of ribosomes in retinal ganglion cells were first detected at 25 mM of MnCl₂. The retinal toxicity of MnCl₂ at higher concentration also included mitochondrial pathology and cell disruption of retinal ganglion cells, as well as abnormalities of photoreceptor and retinal pigment epithelium cells. It can be concluded that intravitreal injection of MnCl₂ induces retinal cell damage that appears to start from 25 mM. The concentration of MnCl₂ should not exceed 25 mm through intravitreal injection for visual pathway MEMRI in the rat.
Collapse
Affiliation(s)
- Lisha Luo
- Peking University Eye Center, Peking University Third Hospital, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
20
|
Boretius S, Escher A, Dallenga T, Wrzos C, Tammer R, Brück W, Nessler S, Frahm J, Stadelmann C. Assessment of lesion pathology in a new animal model of MS by multiparametric MRI and DTI. Neuroimage 2012; 59:2678-88. [DOI: 10.1016/j.neuroimage.2011.08.051] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 08/05/2011] [Accepted: 08/17/2011] [Indexed: 11/29/2022] Open
|
21
|
Haenold R, Herrmann KH, Schmidt S, Reichenbach JR, Schmidt KF, Löwel S, Witte OW, Weih F, Kretz A. Magnetic resonance imaging of the mouse visual pathway for in vivo studies of degeneration and regeneration in the CNS. Neuroimage 2012; 59:363-76. [DOI: 10.1016/j.neuroimage.2011.07.069] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 06/24/2011] [Accepted: 07/22/2011] [Indexed: 12/22/2022] Open
|
22
|
Dilley A, Greening J, Walker-Bone K, Good C. Magnetic resonance imaging signal hyperintensity of neural tissues in diffuse chronic pain syndromes: A pilot study. Muscle Nerve 2011; 44:981-4. [DOI: 10.1002/mus.22221] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
23
|
Gadjanski I, Williams SK, Hein K, Sättler MB, Bähr M, Diem R. Correlation of optical coherence tomography with clinical and histopathological findings in experimental autoimmune uveoretinitis. Exp Eye Res 2011; 93:82-90. [PMID: 21586286 DOI: 10.1016/j.exer.2011.04.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 04/06/2011] [Accepted: 04/29/2011] [Indexed: 01/08/2023]
Abstract
Optical coherence tomography (OCT) is becoming the state-of-the-art method for the non-invasive imaging of a variety of ocular diseases. The aim of this study was to assess the application of OCT for the in vivo monitoring and follow-up of pathological changes during experimental autoimmune uveoretinitis (EAU) in rats. Initially we established OCT imaging in healthy brown Norway rats and correlated it with retinal histology. Subsequently, we induced EAU and imaged animals by OCT throughout the pre-peak, peak, and post-peak phases of the disease. The sensitivity of OCT imaging was determined by comparison with clinical EAU and histopathology scores obtained ex vivo at several time points throughout the disease course. Our data demonstrate that OCT imaging of the healthy rat retina closely correlates with histological observations and allows the clear visualization of all retinal layers. After induction of EAU, the first pathological changes could be detected by OCT at day (d) 8 post-immunization (p.i.) which corresponded to the time point of clinical disease onset. An increase in retinal thickness (RT) was detected from d10 p.i. onwards which peaked at d16 p.i. and decreased again to near control levels by d20 p.i. We introduce a novel semi-quantitative OCT scoring which correlates with histopathological findings and complements the clinical scores. Therefore, we conclude that OCT is an easily accessible, non-invasive tool for detection and follow-up of histopathological changes during EAU in rats. Indeed, significant differences in RT between different stages of EAU suggest that this OCT parameter is a sensitive marker for distinguishing disease phases in vivo.
Collapse
Affiliation(s)
- Ivana Gadjanski
- Department of Neurology, Georg-August University, Robert-Koch Str. 40, 37075 Göttingen, Germany
| | | | | | | | | | | |
Collapse
|
24
|
Armour MD, Broome M, Dell’Anna G, Blades NJ, Esson DW. A review of orbital and intracranial magnetic resonance imaging in 79 canine and 13 feline patients (2004-2010). Vet Ophthalmol 2011; 14:215-26. [DOI: 10.1111/j.1463-5224.2010.00865.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
25
|
Abstract
Manganese-enhanced magnetic resonance imaging (MEMRI) relies on contrasts that are due to the shortening of the T (1) relaxation time of tissue water protons that become exposed to paramagnetic manganese ions. In experimental animals, the technique combines the high spatial resolution achievable by MRI with the biological information gathered by tissue-specific or functionally induced accumulations of manganese. After in vivo administration, manganese ions may enter cells via voltage-gated calcium channels. In the nervous system, manganese ions are actively transported along the axon. Based on these properties, MEMRI is increasingly used to delineate neuroanatomical structures, assess differences in functional brain activity, and unravel neuronal connectivities in both healthy animals and models of neurological disorders. Because of the cellular toxicity of manganese, a major challenge for a successful MEMRI study is to achieve the lowest possible dose for a particular biological question. Moreover, the interpretation of MEMRI findings requires a profound knowledge of the behavior of manganese in complex organ systems under physiological and pathological conditions. Starting with an overview of manganese pharmacokinetics and mechanisms of toxicity, this chapter covers experimental methods and protocols for applications in neuroscience.
Collapse
Affiliation(s)
- Susann Boretius
- Biomedizinische NMR Forschungs GmbH am Max-Planck-Institut für biophysikalische Chemie, 37077 Göttingen, Germany.
| | | |
Collapse
|
26
|
|
27
|
Lassmann H. Axonal and neuronal pathology in multiple sclerosis: what have we learnt from animal models. Exp Neurol 2009; 225:2-8. [PMID: 19840788 DOI: 10.1016/j.expneurol.2009.10.009] [Citation(s) in RCA: 126] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Revised: 10/08/2009] [Accepted: 10/10/2009] [Indexed: 12/21/2022]
Abstract
Axonal and neuronal injury and loss are of critical importance for permanent clinical disability in multiple sclerosis patients. Axonal injury occurs already early during the disease and accumulates with disease progression. It is not restricted to focal demyelinated lesions in the white matter, but also affects the normal appearing white matter and the grey matter. Experimental studies show that many different immunological mechanisms may lead to axonal and neuronal injury, including antigen-specific destruction by specific T-cells and auto-antibodies as well as injury induced by products of activated macrophages and microglia. They all appear to be relevant for multiple sclerosis pathogensis in different patients and at different stages of the disease. However, in MS lesions a major mechanism of axonal and neuronal damage appears to be related to the action of reactive oxygen and nitrogen species, which may induce neuronal injury through impairment of mitochondrial function and subsequent energy failure.
Collapse
Affiliation(s)
- Hans Lassmann
- Centre for Brain Research, Medical University of Vienna, Spitalgasse 4, A-1090 Wien, Austria.
| |
Collapse
|
28
|
Gadjanski I, Boretius S, Williams SK, Lingor P, Knöferle J, Sättler MB, Fairless R, Hochmeister S, Sühs KW, Michaelis T, Frahm J, Storch MK, Bähr M, Diem R. Role of n-type voltage-dependent calcium channels in autoimmune optic neuritis. Ann Neurol 2009; 66:81-93. [DOI: 10.1002/ana.21668] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
29
|
Berkowitz BA, Roberts R. Prognostic MRI biomarkers of treatment efficacy for retinopathy. NMR IN BIOMEDICINE 2008; 21:957-967. [PMID: 18729237 DOI: 10.1002/nbm.1303] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
There is a pressing need for retina-specific imaging biomarkers that robustly measure early (subclinical) changes in physiology, are linked to the histopathology responsible for vision loss, and, importantly, predict treatment efficacy. This review focuses on the following four MRI markers that we have developed and applied in preclinical and clinical settings: preretinal vitreous oxygen level (a steady-state biomarker of inner retinal oxygen tension); leakage of contrast agent into the vitreous (a steady-state biomarker of blood-retinal barrier permeability surface area product); change in preretinal vitreous oxygen tension during a hyperoxic provocation (a functional biomarker of vascular autoregulation); and retinal uptake of systemically administered manganese during a visual task (a functional biomarker of intraretinal ion regulation). We conclude that functional biomarkers are most promising for prognostic evaluation of treatment efficacy earlier in the course of retinopathy than is currently possible.
Collapse
Affiliation(s)
- Bruce A Berkowitz
- Department of Anatomy and Cell Biology, Wayne State University, Detroit, MI 48201, USA.
| | | |
Collapse
|