1
|
van Vliet EA, Immonen R, Prager O, Friedman A, Bankstahl JP, Wright DK, O'Brien TJ, Potschka H, Gröhn O, Harris NG. A companion to the preclinical common data elements and case report forms for in vivo rodent neuroimaging: A report of the TASK3-WG3 Neuroimaging Working Group of the ILAE/AES Joint Translational Task Force. Epilepsia Open 2022. [PMID: 35962745 DOI: 10.1002/epi4.12643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 02/01/2022] [Indexed: 11/10/2022] Open
Abstract
The International League Against Epilepsy/American Epilepsy Society (ILAE/AES) Joint Translational Task Force established the TASK3 working groups to create common data elements (CDEs) for various aspects of preclinical epilepsy research studies, which could help improve the standardization of experimental designs. In this article, we discuss CDEs for neuroimaging data that are collected in rodent models of epilepsy, with a focus on adult rats and mice. We provide detailed CDE tables and case report forms (CRFs), and with this companion manuscript, we discuss the methodologies for several imaging modalities and the parameters that can be collected.
Collapse
Affiliation(s)
- Erwin A van Vliet
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam UMC Location University of Amsterdam, Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Riikka Immonen
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Ofer Prager
- Departments of Physiology and Cell Biology, Cognitive and Brain Sciences, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Alon Friedman
- Departments of Physiology and Cell Biology, Cognitive and Brain Sciences, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Department of Medical Neuroscience and Brain Repair Center, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jens P Bankstahl
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| | - David K Wright
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Terence J O'Brien
- The Royal Melbourne Hospital, The University of Melbourne, The Alfred Hospital, Monash University, Melbourne, Victoria, Australia
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University, Munich, Germany
| | - Olli Gröhn
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Neil G Harris
- Department of Neurosurgery UCLA, UCLA Brain Injury Research Center, Los Angeles, California, USA
- Intellectual and Developmental Disabilities Research Center, UCLA, Los Angeles, California, USA
| |
Collapse
|
2
|
Krishnan V, Xu J, Mendoza AG, Koretsky A, Anderson SA, Pelled G. High-resolution MEMRI characterizes laminar specific ascending and descending spinal cord pathways in rats. J Neurosci Methods 2020; 340:108748. [PMID: 32335077 PMCID: PMC7281828 DOI: 10.1016/j.jneumeth.2020.108748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 04/19/2020] [Accepted: 04/19/2020] [Indexed: 11/17/2022]
Abstract
BACKGROUND The spinal cord is composed of nine distinct cellular laminae that currently can only be visualized by histological methods. Developing imaging methods that can visualize laminar architecture in-vivo is of significant interest. Manganese enhanced magnetic resonance imaging (MEMRI) yields valuable architectural and functional information about the brain and has great potential in characterizing neural pathways in the spinal cord. Here we apply MEMRI to visualize laminae architecture in the thoracic region of the spinal cord with ultra-high resolution. NEW METHOD Manganese chloride (MnCl2) was delivered systemically and imaging of the lumbar and thoracic spinal cord levels was acquired in high field, 11.7 T MRI scanner, 48 h following MnCl2 administration. RESULTS Here we demonstrate laminar specific signal enhancement in the spinal cord of rats administered with MnCl2 with 69 μm in-plane resolution. We also report reduced T1 values over time in MnCl2 groups across laminae IIX. COMPARISONS WITH EXISTING METHODS This is the first study to demonstrate that MEMRI is capable of identifying spinal laminae at a high resolution of 69 μm in a living animal. This would enable the visualization of architecture and function of distinct regions with improved resolution, in healthy and diseased animal models. CONCLUSIONS The regions with the largest T1 enhancements were observed to correspond to laminae that contain either high cell density or large motor neurons, making MEMRI an excellent tool for studying spinal cord architecture, physiology and function in different animal models.
Collapse
Affiliation(s)
- Vijai Krishnan
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, United States; The Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
| | - Jiadi Xu
- Johns Hopkins Medicine Department of Radiology and Radiological Science, Baltimore, MD, United States
| | - Albert German Mendoza
- Johns Hopkins Medicine Department of Radiology and Radiological Science, Baltimore, MD, United States
| | - Alan Koretsky
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Stasia A Anderson
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Galit Pelled
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, United States; The Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States; Department of Radiology, Michigan State University, East Lansing, MI, United States; Johns Hopkins Medicine Department of Radiology and Radiological Science, Baltimore, MD, United States.
| |
Collapse
|
3
|
Yang J, Li Q. Manganese-Enhanced Magnetic Resonance Imaging: Application in Central Nervous System Diseases. Front Neurol 2020; 11:143. [PMID: 32161572 PMCID: PMC7052353 DOI: 10.3389/fneur.2020.00143] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 02/07/2020] [Indexed: 12/12/2022] Open
Abstract
Manganese-enhanced magnetic resonance imaging (MEMRI) relies on the strong paramagnetism of Mn2+. Mn2+ is a calcium ion analog and can enter excitable cells through voltage-gated calcium channels. Mn2+ can be transported along the axons of neurons via microtubule-based fast axonal transport. Based on these properties, MEMRI is used to describe neuroanatomical structures, monitor neural activity, and evaluate axonal transport rates. The application of MEMRI in preclinical animal models of central nervous system (CNS) diseases can provide more information for the study of disease mechanisms. In this article, we provide a brief review of MEMRI use in CNS diseases ranging from neurodegenerative diseases to brain injury and spinal cord injury.
Collapse
Affiliation(s)
- Jun Yang
- Department of Radiology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital & Cancer Center, Kunming, China
| | - Qinqing Li
- Department of Radiology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital & Cancer Center, Kunming, China
| |
Collapse
|
4
|
Zheng N, Su P, Liu Y, Wang H, Nie B, Fang X, Xu Y, Lin K, Lv P, He X, Guo Y, Shan B, Manyande A, Wang J, Xu F. Detection of neural connections with ex vivo MRI using a ferritin-encoding trans-synaptic virus. Neuroimage 2019; 197:133-142. [DOI: 10.1016/j.neuroimage.2019.04.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 03/06/2019] [Accepted: 04/11/2019] [Indexed: 12/11/2022] Open
|
5
|
Saar G, Millo CM, Szajek LP, Bacon J, Herscovitch P, Koretsky AP. Anatomy, Functionality, and Neuronal Connectivity with Manganese Radiotracers for Positron Emission Tomography. Mol Imaging Biol 2019; 20:562-574. [PMID: 29396750 DOI: 10.1007/s11307-018-1162-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE Manganese ion has been extensively used as a magnetic resonance imaging (MRI) contrast agent in preclinical studies to assess tissue anatomy, function, and neuronal connectivity. Unfortunately, its use in human studies has been limited by cellular toxicity and the need to use a very low dose. The much higher sensitivity of positron emission tomography (PET) over MRI enables the use of lower concentrations of manganese, potentially expanding the methodology to humans. PROCEDURES PET tracers manganese-51 (Mn-51, t1/2 = 46 min) and manganese-52 (Mn-52, t1/2 = 5.6 days) were used in this study. The biodistribution of manganese in animals in the brain and other tissues was studied as well as the uptake in the pancreas after glucose stimulation as a functional assay. Finally, neuronal connectivity in the olfactory pathway following nasal administration of the divalent radioactive Mn-52 ([52Mn]Mn2+) was imaged. RESULTS PET imaging with the divalent radioactive Mn-51 ([51Mn]Mn2+) and [52Mn]Mn2+ in both rodents and monkeys demonstrates that the accumulation of activity in different organs is similar to that observed in rodent MRI studies following systemic administration. Furthermore, we demonstrated the ability of manganese to enter excitable cells. We followed activity-induced [51Mn]Mn2+ accumulation in the pancreas after glucose stimulation and showed that [52Mn]Mn2+ can be used to trace neuronal connections analogous to manganese-enhanced MRI neuronal tracing studies. CONCLUSIONS The results were consistent with manganese-enhanced MRI studies, despite the much lower manganese concentration used for PET (100 mM Mn2+ for MRI compared to ~ 0.05 mM for PET). This indicates that uptake and transport mechanisms are comparable even at low PET doses. This helps establish the use of manganese-based radiotracers in both preclinical and clinical studies to assess anatomy, function, and connectivity.
Collapse
Affiliation(s)
- Galit Saar
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Corina M Millo
- PET Department, Clinical Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Lawrence P Szajek
- PET Department, Clinical Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jeff Bacon
- PET Department, Clinical Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Peter Herscovitch
- PET Department, Clinical Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Alan P Koretsky
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
6
|
Saar G, Koretsky AP. Manganese Enhanced MRI for Use in Studying Neurodegenerative Diseases. Front Neural Circuits 2019; 12:114. [PMID: 30666190 PMCID: PMC6330305 DOI: 10.3389/fncir.2018.00114] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 12/10/2018] [Indexed: 12/13/2022] Open
Abstract
MRI has been extensively used in neurodegenerative disorders, such as Alzheimer’s disease (AD), frontal-temporal dementia (FTD), mild cognitive impairment (MCI), Parkinson’s disease (PD), Huntington’s disease (HD) and amyotrophic lateral sclerosis (ALS). MRI is important for monitoring the neurodegenerative components in other diseases such as epilepsy, stroke and multiple sclerosis (MS). Manganese enhanced MRI (MEMRI) has been used in many preclinical studies to image anatomy and cytoarchitecture, to obtain functional information in areas of the brain and to study neuronal connections. This is due to Mn2+ ability to enter excitable cells through voltage gated calcium channels and be actively transported in an anterograde manner along axons and across synapses. The broad range of information obtained from MEMRI has led to the use of Mn2+ in many animal models of neurodegeneration which has supplied important insight into brain degeneration in preclinical studies. Here we provide a brief review of MEMRI use in neurodegenerative diseases and in diseases with neurodegenerative components in animal studies and discuss the potential translation of MEMRI to clinical use in the future.
Collapse
Affiliation(s)
- Galit Saar
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health, Bethesda, MD, United States
| | - Alan P Koretsky
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
7
|
Bedenk BT, Almeida-Corrêa S, Jurik A, Dedic N, Grünecker B, Genewsky AJ, Kaltwasser SF, Riebe CJ, Deussing JM, Czisch M, Wotjak CT. Mn 2+ dynamics in manganese-enhanced MRI (MEMRI): Ca v1.2 channel-mediated uptake and preferential accumulation in projection terminals. Neuroimage 2017; 169:374-382. [PMID: 29277401 DOI: 10.1016/j.neuroimage.2017.12.054] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 11/27/2017] [Accepted: 12/18/2017] [Indexed: 12/11/2022] Open
Abstract
Manganese-enhanced magnetic resonance imaging (MEMRI) exploits the biophysical similarity of Ca2+ and Mn2+ to map the brain's activity in vivo. However, to what extent different Ca2+ channels contribute to the enhanced signal that MEMRI provides and how Mn2+ dynamics influence Mn2+ brain accumulation after systemic administration of MnCl2 are not yet fully understood. Here, we demonstrate that mice lacking the L-type Ca2+ channel 1.2 (Cav1.2) in the CNS show approximately 50% less increase in MEMRI contrast after repeated systemic MnCl2 injections, as compared to control mice. In contrast, genetic deletion of L-type Ca2+ channel 1.3 (Cav1.3) did not reduce signal. Brain structure- or cell type-specific deletion of Cav1.2 in combination with voxel-wise MEMRI analysis revealed a preferential accumulation of Mn2+ in projection terminals, which was confirmed by local MnCl2 administration to defined brain areas. Taken together, we provide unequivocal evidence that Cav1.2 represents an important channel for neuronal Mn2+ influx after systemic injections. We also show that after neuronal uptake, Mn2+ preferentially accumulates in projection terminals.
Collapse
Affiliation(s)
- Benedikt T Bedenk
- Max Planck Institute of Psychiatry, Dept. Stress Neurobiology & Neurogenetics, Kraepelinstr. 2-10, 80804 Munich, Germany; Max Planck Institute of Psychiatry, Core Unit Neuroimaging, Kraepelinstr. 2-10, 80804 Munich, Germany
| | - Suellen Almeida-Corrêa
- Max Planck Institute of Psychiatry, Dept. Stress Neurobiology & Neurogenetics, Kraepelinstr. 2-10, 80804 Munich, Germany
| | - Angela Jurik
- Max Planck Institute of Psychiatry, Dept. Stress Neurobiology & Neurogenetics, Kraepelinstr. 2-10, 80804 Munich, Germany
| | - Nina Dedic
- Max Planck Institute of Psychiatry, Dept. Stress Neurobiology & Neurogenetics, Kraepelinstr. 2-10, 80804 Munich, Germany
| | - Barbara Grünecker
- Max Planck Institute of Psychiatry, Core Unit Neuroimaging, Kraepelinstr. 2-10, 80804 Munich, Germany
| | - Andreas J Genewsky
- Max Planck Institute of Psychiatry, Dept. Stress Neurobiology & Neurogenetics, Kraepelinstr. 2-10, 80804 Munich, Germany
| | - Sebastian F Kaltwasser
- Max Planck Institute of Psychiatry, Dept. Stress Neurobiology & Neurogenetics, Kraepelinstr. 2-10, 80804 Munich, Germany
| | - Caitlin J Riebe
- Max Planck Institute of Psychiatry, Dept. Stress Neurobiology & Neurogenetics, Kraepelinstr. 2-10, 80804 Munich, Germany
| | - Jan M Deussing
- Max Planck Institute of Psychiatry, Dept. Stress Neurobiology & Neurogenetics, Kraepelinstr. 2-10, 80804 Munich, Germany
| | - Michael Czisch
- Max Planck Institute of Psychiatry, Core Unit Neuroimaging, Kraepelinstr. 2-10, 80804 Munich, Germany
| | - Carsten T Wotjak
- Max Planck Institute of Psychiatry, Dept. Stress Neurobiology & Neurogenetics, Kraepelinstr. 2-10, 80804 Munich, Germany.
| |
Collapse
|
8
|
Ashinsky BG, Bouhrara M, Coletta CE, Lehallier B, Urish KL, Lin PC, Goldberg IG, Spencer RG. Predicting early symptomatic osteoarthritis in the human knee using machine learning classification of magnetic resonance images from the osteoarthritis initiative. J Orthop Res 2017; 35:2243-2250. [PMID: 28084653 PMCID: PMC5969573 DOI: 10.1002/jor.23519] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 01/06/2017] [Indexed: 02/06/2023]
Abstract
The purpose of this study is to evaluate the ability of a machine learning algorithm to classify in vivo magnetic resonance images (MRI) of human articular cartilage for development of osteoarthritis (OA). Sixty-eight subjects were selected from the osteoarthritis initiative (OAI) control and incidence cohorts. Progression to clinical OA was defined by the development of symptoms as quantified by the Western Ontario and McMaster Universities Arthritis (WOMAC) questionnaire 3 years after baseline evaluation. Multi-slice T2 -weighted knee images, obtained through the OAI, of these subjects were registered using a nonlinear image registration algorithm. T2 maps of cartilage from the central weight bearing slices of the medial femoral condyle were derived from the registered images using the multiple available echo times and were classified for "progression to symptomatic OA" using the machine learning tool, weighted neighbor distance using compound hierarchy of algorithms representing morphology (WND-CHRM). WND-CHRM classified the isolated T2 maps for the progression to symptomatic OA with 75% accuracy. CLINICAL SIGNIFICANCE Machine learning algorithms applied to T2 maps have the potential to provide important prognostic information for the development of OA. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:2243-2250, 2017.
Collapse
Affiliation(s)
- Beth G Ashinsky
- Laboratory of Clinical Investigation, Magnetic Resonance Imaging and Spectroscopy Section, National Institute on Aging, NIH, 251 Bayview Boulevard, Baltimore 21224, Maryland
| | - Mustapha Bouhrara
- Laboratory of Clinical Investigation, Magnetic Resonance Imaging and Spectroscopy Section, National Institute on Aging, NIH, 251 Bayview Boulevard, Baltimore 21224, Maryland
| | - Christopher E Coletta
- Image Informatics and Computational Biology Unit, National Institute on Aging, NIH, Baltimore, Maryland
| | - Benoit Lehallier
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California
| | - Kenneth L Urish
- Bone and Joint Center, Magee Women's Hospital, Department of Orthopaedic Surgery, Pittsburgh, Pennsylvania
| | - Ping-Chang Lin
- Department of Radiology, College of Medicine, Howard University, Washington, DC, Washington
| | - Ilya G Goldberg
- Image Informatics and Computational Biology Unit, National Institute on Aging, NIH, Baltimore, Maryland
| | - Richard G Spencer
- Laboratory of Clinical Investigation, Magnetic Resonance Imaging and Spectroscopy Section, National Institute on Aging, NIH, 251 Bayview Boulevard, Baltimore 21224, Maryland
| |
Collapse
|
9
|
Multi-system state shifts and cognitive deficits induced by chronic morphine during abstinence. Neurosci Lett 2017; 640:144-151. [PMID: 27984200 DOI: 10.1016/j.neulet.2016.10.057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 10/27/2016] [Accepted: 10/27/2016] [Indexed: 11/20/2022]
Abstract
Chronic morphine administration induces neural plasticity followed by withdraw. And clinic observation indicates that obvious cognitive deficits are found during withdrawal. However, current neural substrates that regulate dysfunction in withdrawal are unknown. In our studies, chronic morphine administration was used to induce the spontaneous withdrawal model in rats. A series of cognitive abilities was tested to explore brain function. To further evaluate the neural substrates of dysfunction, Manganese-enhanced MRI(MEMRI) was used to map the dysfunctional regions in vivo.We observed that chronic morphine administration could induce obvious withdrawal behaviors in abstinence followed by cognitive impairments, such as impairments in working memory, reward, interaction and enhancement of anxiety. Our in-vivo MEMRI data using the voxel-wise comparisons showed that the manganese-enhanced signal intensity (VMI) within morphine withdrawal groups was increased in cingulate cortex (Cg), secondary motor cortex (M2), CA3 subfield of hippocampus, dorsal striatum (D-striatum), retrosplenial cortex (RS), shell subregion of NAc (AcbSh), core subregion of NAc (AcbC), central nucleus of amygdala (CeC), basolateral amygdaloid nucleus (BLA), central amygdaloid nucleus (CeM), anterior hypothalamic area, central (AHC), ventral tegmental area (VTA) and scaphoid thalamic nucleus (SC).However, decreasing of VMI was found in the ventrolateral striatum (V-striatum) and lateral posterior thalamic nucleus (LP) compared to the control group. These brain regions were beleived to be components of the memory, executive, limbic and regulatory systems. Therefore, our present studies indicate that withdrawal induced by chronic morphine adiministration could disturb brain function leading to multi-systems state shifts and cognitive deficits in abstinence.
Collapse
|
10
|
van Vliet EA, Dedeurwaerdere S, Cole AJ, Friedman A, Koepp MJ, Potschka H, Immonen R, Pitkänen A, Federico P. WONOEP appraisal: Imaging biomarkers in epilepsy. Epilepsia 2016; 58:315-330. [PMID: 27883181 DOI: 10.1111/epi.13621] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2016] [Indexed: 01/04/2023]
Abstract
Neuroimaging offers a wide range of opportunities to obtain information about neuronal activity, brain inflammation, blood-brain barrier alterations, and various molecular alterations during epileptogenesis or for the prediction of pharmacoresponsiveness as well as postoperative outcome. Imaging biomarkers were examined during the XIII Workshop on Neurobiology of Epilepsy (XIII WONOEP) organized in 2015 by the Neurobiology Commission of the International League Against Epilepsy (ILAE). Here we present an extended summary of the discussed issues and provide an overview of the current state of knowledge regarding the biomarker potential of different neuroimaging approaches for epilepsy.
Collapse
Affiliation(s)
- Erwin A van Vliet
- Department of (Neuro)Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Andrew J Cole
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, U.S.A
| | - Alon Friedman
- Department of Brain and Cognitive Sciences, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva, Israel.,Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Matthias J Koepp
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, United Kingdom
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilian-University, Munich, Germany
| | - Riikka Immonen
- Department of Neurobiology, A I Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Asla Pitkänen
- Department of Neurobiology, A I Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Paolo Federico
- Departments of Clinical Neurosciences and Radiology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
11
|
Demain B, Davoust C, Plas B, Bolan F, Boulanouar K, Renaud L, Darmana R, Vaysse L, Vieu C, Loubinoux I. Corticospinal Tract Tracing in the Marmoset with a Clinical Whole-Body 3T Scanner Using Manganese-Enhanced MRI. PLoS One 2015; 10:e0138308. [PMID: 26398500 PMCID: PMC4580626 DOI: 10.1371/journal.pone.0138308] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 08/28/2015] [Indexed: 11/18/2022] Open
Abstract
Manganese-enhanced MRI (MEMRI) has been described as a powerful tool to depict the architecture of neuronal circuits. In this study we investigated the potential use of in vivo MRI detection of manganese for tracing neuronal projections from the primary motor cortex (M1) in healthy marmosets (Callithrix Jacchus). We determined the optimal dose of manganese chloride (MnCl2) among 800, 400, 40 and 8 nmol that led to manganese-induced hyperintensity furthest from the injection site, as specific to the corticospinal tract as possible, and that would not induce motor deficit. A commonly available 3T human clinical MRI scanner and human knee coil were used to follow hyperintensity in the corticospinal tract 24h after injection. A statistical parametric map of seven marmosets injected with the chosen dose, 8 nmol, showed the corticospinal tract and M1 connectivity with the basal ganglia, substantia nigra and thalamus. Safety was determined for the lowest dose that did not induce dexterity and grip strength deficit, and no behavioral effects could be seen in marmosets who received multiple injections of manganese one month apart. In conclusion, our study shows for the first time in marmosets, a reliable and reproducible way to perform longitudinal ME-MRI experiments to observe the integrity of the marmoset corticospinal tract on a clinical 3T MRI scanner.
Collapse
Affiliation(s)
- Boris Demain
- Inserm, Imagerie cérébrale et handicaps neurologiques, UMR 825, F-31024, Toulouse, France
- Université de Toulouse, UPS, Imagerie cérébrale et handicaps neurologiques, UMR 825, CHU Purpan, Place du Dr Baylac, F-31059, Toulouse, Cedex 9, France
- CNRS-LAAS, 7 avenue du colonel Roche, F-31077, Toulouse, France
| | - Carole Davoust
- Inserm, Imagerie cérébrale et handicaps neurologiques, UMR 825, F-31024, Toulouse, France
- Université de Toulouse, UPS, Imagerie cérébrale et handicaps neurologiques, UMR 825, CHU Purpan, Place du Dr Baylac, F-31059, Toulouse, Cedex 9, France
| | - Benjamin Plas
- Inserm, Imagerie cérébrale et handicaps neurologiques, UMR 825, F-31024, Toulouse, France
- Université de Toulouse, UPS, Imagerie cérébrale et handicaps neurologiques, UMR 825, CHU Purpan, Place du Dr Baylac, F-31059, Toulouse, Cedex 9, France
- Pôle Neurosciences, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Faye Bolan
- Inserm, Imagerie cérébrale et handicaps neurologiques, UMR 825, F-31024, Toulouse, France
- Université de Toulouse, UPS, Imagerie cérébrale et handicaps neurologiques, UMR 825, CHU Purpan, Place du Dr Baylac, F-31059, Toulouse, Cedex 9, France
| | - Kader Boulanouar
- Inserm, Imagerie cérébrale et handicaps neurologiques, UMR 825, F-31024, Toulouse, France
- Université de Toulouse, UPS, Imagerie cérébrale et handicaps neurologiques, UMR 825, CHU Purpan, Place du Dr Baylac, F-31059, Toulouse, Cedex 9, France
| | - Luc Renaud
- CNRS, Centre de Recherche Cerveau & Cognition, UMR 5549, F-31024, Toulouse, France
| | - Robert Darmana
- Inserm, Imagerie cérébrale et handicaps neurologiques, UMR 825, F-31024, Toulouse, France
- Université de Toulouse, UPS, Imagerie cérébrale et handicaps neurologiques, UMR 825, CHU Purpan, Place du Dr Baylac, F-31059, Toulouse, Cedex 9, France
| | - Laurence Vaysse
- Inserm, Imagerie cérébrale et handicaps neurologiques, UMR 825, F-31024, Toulouse, France
- Université de Toulouse, UPS, Imagerie cérébrale et handicaps neurologiques, UMR 825, CHU Purpan, Place du Dr Baylac, F-31059, Toulouse, Cedex 9, France
| | - Christophe Vieu
- CNRS-LAAS, 7 avenue du colonel Roche, F-31077, Toulouse, France
| | - Isabelle Loubinoux
- Inserm, Imagerie cérébrale et handicaps neurologiques, UMR 825, F-31024, Toulouse, France
- Université de Toulouse, UPS, Imagerie cérébrale et handicaps neurologiques, UMR 825, CHU Purpan, Place du Dr Baylac, F-31059, Toulouse, Cedex 9, France
- * E-mail:
| |
Collapse
|
12
|
Spatial memory training induces morphological changes detected by manganese-enhanced MRI in the hippocampal CA3 mossy fiber terminal zone. Neuroimage 2015; 128:227-237. [PMID: 26254115 DOI: 10.1016/j.neuroimage.2015.07.084] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 07/22/2015] [Accepted: 07/30/2015] [Indexed: 01/03/2023] Open
Abstract
Hippocampal mossy fibers (MFs) can show plasticity of their axon terminal arbor consequent to learning a spatial memory task. Such plasticity is seen as translaminar sprouting from the stratum lucidum (SL) of CA3 into the stratum pyramidale (SP) and the stratum oriens (SO). However, the functional role of this presynaptic remodeling is still obscure. In vivo imaging that allows longitudinal observation of such remodeling could provide a deeper understanding of this presynaptic growth phenomenon as it occurs over time. Here we used manganese-enhanced magnetic resonance imaging (MEMRI), which shows a high-contrast area that co-localizes with the MFs. This technique was applied in the detection of learning-induced MF plasticity in two strains of rats. Quantitative analysis of a series of sections in the rostral dorsal hippocampus showed increases in the CA3a' area in MEMRI of trained Wistar rats consistent with the increased SO+SP area seen in the Timm's staining. MF plasticity was not seen in the trained Lister-Hooded rats in either MEMRI or in Timm's staining. This indicates the potential of MEMRI for revealing neuro-architectures and plasticity of the hippocampal MF system in vivo in longitudinal studies.
Collapse
|
13
|
Talley Watts L, Shen Q, Deng S, Chemello J, Duong TQ. Manganese-Enhanced Magnetic Resonance Imaging of Traumatic Brain Injury. J Neurotrauma 2015; 32:1001-10. [PMID: 25531419 DOI: 10.1089/neu.2014.3737] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Calcium dysfunction is involved in secondary traumatic brain injury (TBI). Manganese-enhanced MRI (MEMRI), in which the manganese ion acts as a calcium analog and a MRI contrast agent, was used to study rats subjected to a controlled cortical impact. Comparisons were made with conventional T2 MRI, sensorimotor behavior, and immunohistology. The major findings were: (1) Low-dose manganese (29 mg/kg) yielded excellent contrast with no negative effects on behavior scores relative to vehicle; (2) T1-weighted MEMRI was hyperintense in the impact area at 1-3 h, hypointense on day 2, and markedly hypointense with a hyperintense area surrounding the core on days 7 and/or 14, in contrast to the vehicle group, which did not show a biphasic profile; (3) in the hyperacute phase, the area of hyperintense T1-weighted MEMRI was larger than that of T2 MRI; (4) glial fibrillary acidic protein staining revealed that the MEMRI signal void in the impact core and the hyperintense area surrounding the core on day 7 and/or 14 corresponded to tissue cavitation and reactive gliosis, respectively; (5) T2 MRI showed little contrast in the impact core at 2 h, hyperintense on day 2 (indicative of vasogenic edema), hyperintense in some animals but pseudonormalized in others on day 7 and/or 14; (6) behavioral deficit peaked on day 2. We concluded that MEMRI detected early excitotoxic injury in the hyperacute phase, preceding vasogenic edema. In the subacute phase, MEMRI detected contrast consistent with tissue cavitation and reactive gliosis. MEMRI offers novel contrasts of biological processes that complement conventional MRI in TBI.
Collapse
Affiliation(s)
- Lora Talley Watts
- 1 Research Imaging Institute, University of Texas Health Science Center , San Antonio, Texas.,2 Department of Cellular and Structure Biology, University of Texas Health Science Center , San Antonio, Texas.,3 Department of Neurology, University of Texas Health Science Center , San Antonio, Texas
| | - Qiang Shen
- 1 Research Imaging Institute, University of Texas Health Science Center , San Antonio, Texas.,4 Department of Ophthalmology, University of Texas Health Science Center , San Antonio, Texas
| | - Shengwen Deng
- 1 Research Imaging Institute, University of Texas Health Science Center , San Antonio, Texas
| | - Jonathan Chemello
- 1 Research Imaging Institute, University of Texas Health Science Center , San Antonio, Texas
| | - Timothy Q Duong
- 1 Research Imaging Institute, University of Texas Health Science Center , San Antonio, Texas.,4 Department of Ophthalmology, University of Texas Health Science Center , San Antonio, Texas.,5 South Texas Veterans Health Care System , San Antonio, Texas
| |
Collapse
|
14
|
Auffret M, Samim I, Lepore M, Gruetter R, Just N. Quantitative activity-induced manganese-dependent MRI for characterizing cortical layers in the primary somatosensory cortex of the rat. Brain Struct Funct 2014; 221:695-707. [PMID: 25366973 DOI: 10.1007/s00429-014-0933-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 10/24/2014] [Indexed: 11/29/2022]
Abstract
The ability of Mn(2+) to follow Ca(2+) pathways upon stimulation transform them into remarkable surrogate markers of neuronal activity using activity-induced manganese-dependent MRI (AIM-MRI). In the present study, a precise follow-up of physiological parameters during MnCl2 and mannitol infusions improved the reproducibility of AIM-MRI allowing in-depth evaluation of the technique. Pixel-by-pixel T1 data were investigated using histogram distributions in the barrel cortex (BC) and the thalamus before and after Mn(2+) infusion, after blood brain barrier opening and after BC activation. Mean BC T1 values dropped significantly upon trigeminal nerve (TGN) stimulation (-38 %, P = 0.02) in accordance with previous literature findings. T1 histogram distributions showed that 34 % of T1s in the range 600-1500 ms after Mn(2+ )+ mannitol infusions shifted to 50-350 ms after TGN stimulation corresponding to a twofold increase of the percentage of pixels with the lowest T1s in BC. Moreover, T1 changes in response to stimulation increased significantly from superficial cortical layers (I-III) to deeper layers (V-VI). Cortical cytoarchitecture detection during a functional paradigm was performed extending the potential of AIM-MRI. Quantitative AIM-MRI could thus offer a means to interpret local neural activity across cortical layers while identification of the role of calcium dynamics in vivo during brain activation could play a key role in resolving neurovascular coupling mechanisms.
Collapse
Affiliation(s)
- Matthieu Auffret
- Laboratory for Functional and Metabolic Imaging (LIFMET), Centre d'Imagerie Biomédicale-Animal Imaging and Technology Core (CIBM-AIT), Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
| | - Idrees Samim
- Laboratory for Functional and Metabolic Imaging (LIFMET), Centre d'Imagerie Biomédicale-Animal Imaging and Technology Core (CIBM-AIT), Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
| | - Mario Lepore
- Laboratory for Functional and Metabolic Imaging (LIFMET), Centre d'Imagerie Biomédicale-Animal Imaging and Technology Core (CIBM-AIT), Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
| | - Rolf Gruetter
- Laboratory for Functional and Metabolic Imaging (LIFMET), Centre d'Imagerie Biomédicale-Animal Imaging and Technology Core (CIBM-AIT), Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
| | - Nathalie Just
- Laboratory for Functional and Metabolic Imaging (LIFMET), Centre d'Imagerie Biomédicale-Animal Imaging and Technology Core (CIBM-AIT), Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland.
| |
Collapse
|
15
|
Richards K, Calamante F, Tournier JD, Kurniawan ND, Sadeghian F, Retchford AR, Jones GD, Reid CA, Reutens DC, Ordidge R, Connelly A, Petrou S. Mapping somatosensory connectivity in adult mice using diffusion MRI tractography and super-resolution track density imaging. Neuroimage 2014; 102 Pt 2:381-92. [DOI: 10.1016/j.neuroimage.2014.07.048] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Revised: 07/07/2014] [Accepted: 07/22/2014] [Indexed: 12/13/2022] Open
|
16
|
Yu X, Koretsky AP. Interhemispheric plasticity protects the deafferented somatosensory cortex from functional takeover after nerve injury. Brain Connect 2014; 4:709-17. [PMID: 25117691 DOI: 10.1089/brain.2014.0259] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Functional changes across brain hemispheres have been reported after unilateral cortical or peripheral nerve injury. Interhemispheric callosal connections usually underlie this cortico-cortical plasticity. However, the effect of the altered callosal inputs on local cortical plasticity in the adult brain is not well studied. Ipsilateral functional magnetic resonance imaging (fMRI) activation has been reliably detected in the deafferented barrel cortex (BC) at 2 weeks after unilateral infraorbital denervation (IO) in adult rats. The ipsilateral fMRI signal relies on callosal-mediated interhemispheric plasticity. This form of interhemispheric plasticity provides a good chronic model to study the interaction between callosal inputs and local cortical plasticity. The receptive field of forepaw in the primary somatosensory cortex (S1), which is adjacent to the BC, was mapped with fMRI. The S1 receptive field expanded to take over a portion of the BC in 2 weeks after both ascending inputs and callosal inputs were removed in IO rats with ablated contralateral BC (IO+ablation). This expansion, estimated specifically by fMRI mapping, is significantly larger than what has been observed in the IO rats with intact callosal connectivity, as well as in the rats with sham surgery. This work indicates that altered callosal inputs prevent the functional takeover of the deafferented BC from adjacent cortices and may help preserve the functional identity of the BC.
Collapse
Affiliation(s)
- Xin Yu
- National Institute of Neurological Disorders and Stroke, National Institutes of Health , Bethesda, Maryland
| | | |
Collapse
|
17
|
Chan KC, Fan SJ, Chan RW, Cheng JS, Zhou IY, Wu EX. In vivo visuotopic brain mapping with manganese-enhanced MRI and resting-state functional connectivity MRI. Neuroimage 2014; 90:235-45. [PMID: 24394694 PMCID: PMC3951771 DOI: 10.1016/j.neuroimage.2013.12.056] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 12/16/2013] [Accepted: 12/23/2013] [Indexed: 12/16/2022] Open
Abstract
The rodents are an increasingly important model for understanding the mechanisms of development, plasticity, functional specialization and disease in the visual system. However, limited tools have been available for assessing the structural and functional connectivity of the visual brain network globally, in vivo and longitudinally. There are also ongoing debates on whether functional brain connectivity directly reflects structural brain connectivity. In this study, we explored the feasibility of manganese-enhanced MRI (MEMRI) via 3 different routes of Mn(2+) administration for visuotopic brain mapping and understanding of physiological transport in normal and visually deprived adult rats. In addition, resting-state functional connectivity MRI (RSfcMRI) was performed to evaluate the intrinsic functional network and structural-functional relationships in the corresponding anatomical visual brain connections traced by MEMRI. Upon intravitreal, subcortical, and intracortical Mn(2+) injection, different topographic and layer-specific Mn enhancement patterns could be revealed in the visual cortex and subcortical visual nuclei along retinal, callosal, cortico-subcortical, transsynaptic and intracortical horizontal connections. Loss of visual input upon monocular enucleation to adult rats appeared to reduce interhemispheric polysynaptic Mn(2+) transfer but not intra- or inter-hemispheric monosynaptic Mn(2+) transport after Mn(2+) injection into visual cortex. In normal adults, both structural and functional connectivity by MEMRI and RSfcMRI was stronger interhemispherically between bilateral primary/secondary visual cortex (V1/V2) transition zones (TZ) than between V1/V2 TZ and other cortical nuclei. Intrahemispherically, structural and functional connectivity was stronger between visual cortex and subcortical visual nuclei than between visual cortex and other subcortical nuclei. The current results demonstrated the sensitivity of MEMRI and RSfcMRI for assessing the neuroarchitecture, neurophysiology and structural-functional relationships of the visual brains in vivo. These may possess great potentials for effective monitoring and understanding of the basic anatomical and functional connections in the visual system during development, plasticity, disease, pharmacological interventions and genetic modifications in future studies.
Collapse
Affiliation(s)
- Kevin C Chan
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Pokfulam, Hong Kong SAR, China; Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China; UPMC Eye Center, Ophthalmology and Visual Science Research Center, Louis J. Fox Center for Vision Restoration, Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for the Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, Pittsburgh, PA, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Shu-Juan Fan
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Pokfulam, Hong Kong SAR, China; Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Russell W Chan
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Pokfulam, Hong Kong SAR, China; Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Joe S Cheng
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Pokfulam, Hong Kong SAR, China; Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Iris Y Zhou
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Pokfulam, Hong Kong SAR, China; Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Ed X Wu
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Pokfulam, Hong Kong SAR, China; Department of Anatomy, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| |
Collapse
|
18
|
Daoust A, Bohic S, Saoudi Y, Debacker C, Gory-Fauré S, Andrieux A, Barbier EL, Deloulme JC. Neuronal transport defects of the MAP6 KO mouse - a model of schizophrenia - and alleviation by Epothilone D treatment, as observed using MEMRI. Neuroimage 2014; 96:133-42. [PMID: 24704457 DOI: 10.1016/j.neuroimage.2014.03.071] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 03/18/2014] [Accepted: 03/25/2014] [Indexed: 11/28/2022] Open
Abstract
The MAP6 (microtubule-associated protein 6) KO mouse is a microtubule-deficient model of schizophrenia that exhibits severe behavioral disorders that are associated with synaptic plasticity anomalies. These defects are alleviated not only by neuroleptics, which are the gold standard molecules for the treatment of schizophrenia, but also by Epothilone D (Epo D), which is a microtubule-stabilizing molecule. To compare the neuronal transport between MAP6 KO and wild-type mice and to measure the effect of Epo D treatment on neuronal transport in KO mice, MnCl2 was injected in the primary somatosensory cortex. Then, using manganese-enhanced magnetic resonance imaging (MEMRI), we followed the propagation of Mn(2+) through axonal tracts and brain regions that are connected to the somatosensory cortex. In MAP6 KO mice, the measure of the MRI relative signal intensity over 24h revealed that the Mn(2+) transport rate was affected with a stronger effect on long-range and polysynaptic connections than in short-range and monosynaptic tracts. The chronic treatment of MAP6 KO mice with Epo D strongly increased Mn(2+) propagation within both mono- and polysynaptic connections. Our results clearly indicate an in vivo deficit in neuronal Mn(2+) transport in KO MAP6 mice, which might be due to both axonal transport defects and synaptic transmission impairments. Epo D treatment alleviated the axonal transport defects, and this improvement most likely contributes to the positive effect of Epo D on behavioral defects in KO MAP6 mice.
Collapse
Affiliation(s)
- Alexia Daoust
- Inserm U836, Equipe NeuroImagerie Fonctionnelle et Perfusion Cérébrale, BP170, Grenoble 38042, France; Université Joseph Fourier, Grenoble Institut des Neurosciences, Grenoble, France
| | - Sylvain Bohic
- Inserm U836, Equipe NeuroImagerie Fonctionnelle et Perfusion Cérébrale, BP170, Grenoble 38042, France; Université Joseph Fourier, Grenoble Institut des Neurosciences, Grenoble, France; European Synchrotron Radiation Facility (ESRF), Grenoble, France
| | - Yasmina Saoudi
- Université Joseph Fourier, Grenoble Institut des Neurosciences, Grenoble, France; Inserm U836, Equipe Physiopathologie du Cytosquelette, Grenoble, France; Commissariat à l'Energie Atomique et aux Energies Alternatives, iRTSV-GPC, Grenoble, France
| | - Clément Debacker
- Inserm U836, Equipe NeuroImagerie Fonctionnelle et Perfusion Cérébrale, BP170, Grenoble 38042, France; Université Joseph Fourier, Grenoble Institut des Neurosciences, Grenoble, France; Bruker Biospin MRI, Ettlingen, Germany
| | - Sylvie Gory-Fauré
- Université Joseph Fourier, Grenoble Institut des Neurosciences, Grenoble, France; Inserm U836, Equipe Physiopathologie du Cytosquelette, Grenoble, France; Commissariat à l'Energie Atomique et aux Energies Alternatives, iRTSV-GPC, Grenoble, France
| | - Annie Andrieux
- Université Joseph Fourier, Grenoble Institut des Neurosciences, Grenoble, France; Inserm U836, Equipe Physiopathologie du Cytosquelette, Grenoble, France; Commissariat à l'Energie Atomique et aux Energies Alternatives, iRTSV-GPC, Grenoble, France
| | - Emmanuel Luc Barbier
- Inserm U836, Equipe NeuroImagerie Fonctionnelle et Perfusion Cérébrale, BP170, Grenoble 38042, France; Université Joseph Fourier, Grenoble Institut des Neurosciences, Grenoble, France.
| | - Jean-Christophe Deloulme
- Université Joseph Fourier, Grenoble Institut des Neurosciences, Grenoble, France; Inserm U836, Equipe Physiopathologie du Cytosquelette, Grenoble, France; Commissariat à l'Energie Atomique et aux Energies Alternatives, iRTSV-GPC, Grenoble, France.
| |
Collapse
|
19
|
Yu X, Qian C, Chen DY, Dodd S, Koretsky AP. Deciphering laminar-specific neural inputs with line-scanning fMRI. Nat Methods 2014; 11:55-8. [PMID: 24240320 PMCID: PMC4276040 DOI: 10.1038/nmeth.2730] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 10/23/2013] [Indexed: 11/08/2022]
Abstract
Using a line-scanning method during functional magnetic resonance imaging (fMRI), we obtained high temporal (50-ms) and spatial (50-μm) resolution information along the cortical thickness and showed that the laminar position of fMRI onset coincides with distinct neural inputs in rat somatosensory and motor cortices. This laminar-specific fMRI onset allowed us to identify the neural inputs underlying ipsilateral fMRI activation in the barrel cortex due to peripheral denervation-induced plasticity.
Collapse
Affiliation(s)
- Xin Yu
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Chunqi Qian
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Der-yow Chen
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Stephen Dodd
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Alan P. Koretsky
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
20
|
Maddage R, Marques JP, Gruetter R. Phase-based manganese enhanced MRI, a new methodology to enhance brain cytoarchitectural contrast and study manganese uptake. Magn Reson Med 2013; 72:1246-56. [DOI: 10.1002/mrm.25037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 10/16/2013] [Accepted: 10/16/2013] [Indexed: 12/24/2022]
Affiliation(s)
- Rajika Maddage
- Laboratory for Functional and Metabolic Imaging; École Polytechnique Fédérale de Lausanne; Lausanne Switzerland
| | - José P. Marques
- Department of Radiology; Université de Lausanne; Lausanne Switzerland
| | - Rolf Gruetter
- Laboratory for Functional and Metabolic Imaging; École Polytechnique Fédérale de Lausanne; Lausanne Switzerland
- Department of Radiology; Université de Lausanne; Lausanne Switzerland
- Department of Radiology; Université de Geneve; Geneve Switzerland
| |
Collapse
|
21
|
Zhou IY, Liang YX, Chan RW, Gao PP, Cheng JS, Hu Y, So KF, Wu EX. Brain resting-state functional MRI connectivity: morphological foundation and plasticity. Neuroimage 2013; 84:1-10. [PMID: 23988270 DOI: 10.1016/j.neuroimage.2013.08.037] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 07/26/2013] [Accepted: 08/16/2013] [Indexed: 01/21/2023] Open
Abstract
Despite the immense ongoing efforts to map brain functional connections and organizations with resting-state functional MRI (rsfMRI), the mechanisms governing the temporally coherent rsfMRI signals remain unclear. In particular, there is a lack of direct evidence regarding the morphological foundation and plasticity of these rsfMRI derived connections. In this study, we investigated the role of axonal projections in rsfMRI connectivity and its plasticity. Well-controlled rodent models of complete and posterior corpus callosotomy were longitudinally examined with rsfMRI at 7T in conjunction with intracortical EEG recording and functional MRI tracing of interhemispheric neuronal pathways by manganese (Mn(2+)). At post-callosotomy day 7, significantly decreased interhemispheric rsfMRI connectivity was observed in both groups in the specific cortical areas whose callosal connections were severed. At day 28, the disrupted connectivity was restored in the partial callosotomy group but not in the complete callosotomy group, likely due to the compensation that occurred through the remaining interhemispheric axonal pathways. This restoration - along with the increased intrahemispheric functional connectivity observed in both groups at day 28 - highlights the remarkable adaptation and plasticity in brain rsfMRI connections. These rsfMRI findings were paralleled by the intracortical EEG recording and Mn(2+) tracing results. Taken together, our experimental results directly demonstrate that axonal connections are the indispensable foundation for rsfMRI connectivity and that such functional connectivity can be plastic and dynamically reorganized atop the morphological connections.
Collapse
Affiliation(s)
- Iris Y Zhou
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Pokfulam, Hong Kong, China; Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Chan KC, Wu EX. In vivo manganese-enhanced MRI for visuotopic brain mapping. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2013; 2012:2279-82. [PMID: 23366378 DOI: 10.1109/embc.2012.6346417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This study explored the feasibility of localized manganese-enhanced MRI (MEMRI) via 3 different routes of Mn(2+) administrations for visuotopic brain mapping of retinal, callosal, cortico-subcortical, transsynaptic and horizontal connections in normal adult rats. Upon fractionated intravitreal Mn(2+) injection, Mn enhancements were observed in the contralateral superior colliculus (SC) and lateral geniculate nucleus (LGN) by 45-60% at 1-3 days after initial Mn(2+) injection and in the contralateral primary visual cortex (V1) by about 10% at 2-3 days after initial Mn(2+) injection. Direct, single-dose Mn(2+) injection to the LGN resulted in Mn enhancement by 13-21% in V1 and 8-11% in SC of the ipsilateral hemisphere at 8 to 24 hours after Mn(2+) administration. Intracortical, single-dose Mn(2+) injection to the visual cortex resulted in Mn enhancement by 53-65% in ipsilateral LGN, 15-26% in ipsilateral SC, 32-34% in the splenium of corpus callosum and 17-25% in contralateral V1/V2 transition zone at 8 to 24 hours after Mn(2+) administration. Notably, some patchy patterns were apparent near the V1/V2 border of the contralateral hemisphere. Laminar-specific horizontal cortical connections were also observed in the ipsilateral hemisphere. The current results demonstrated the sensitivity of MEMRI for assessing the neuroarchitecture of the visual brains in vivo without depth-limitation, and may possess great potentials for studying the basic neural components and connections in the visual system longitudinally during development, plasticity, pharmacological interventions and genetic modifications.
Collapse
Affiliation(s)
- Kevin C Chan
- Laboratory of Biomedical Imaging and Signal Processing and the Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong SAR, China.
| | | |
Collapse
|
23
|
Yu X, Chung S, Chen DY, Wang S, Dodd SJ, Walters JR, Isaac JTR, Koretsky AP. Thalamocortical inputs show post-critical-period plasticity. Neuron 2012; 74:731-42. [PMID: 22632730 DOI: 10.1016/j.neuron.2012.04.024] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2012] [Indexed: 11/19/2022]
Abstract
Experience-dependent plasticity in the adult brain has clinical potential for functional rehabilitation following central and peripheral nerve injuries. Here, plasticity induced by unilateral infraorbital (IO) nerve resection in 4-week-old rats was mapped using MRI and synaptic mechanisms were elucidated by slice electrophysiology. Functional MRI demonstrates a cortical potentiation compared to thalamus 2 weeks after IO nerve resection. Tracing thalamocortical (TC) projections with manganese-enhanced MRI revealed circuit changes in the spared layer 4 (L4) barrel cortex. Brain slice electrophysiology revealed TC input strengthening onto L4 stellate cells due to an increase in postsynaptic strength and the number of functional synapses. This work shows that the TC input is a site for robust plasticity after the end of the previously defined critical period for this input. Thus, TC inputs may represent a major site for adult plasticity in contrast to the consensus that adult plasticity mainly occurs at cortico-cortical connections.
Collapse
Affiliation(s)
- Xin Yu
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Mørch YA, Sandvig I, Olsen O, Donati I, Thuen M, Skjåk-Braek G, Haraldseth O, Brekken C. Mn-alginate gels as a novel system for controlled release of Mn2+ in manganese-enhanced MRI. CONTRAST MEDIA & MOLECULAR IMAGING 2012; 7:265-75. [PMID: 22434640 DOI: 10.1002/cmmi.493] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The aim of the present study was to test alginate gels of different compositions as a system for controlled release of manganese ions (Mn(2+)) for application in manganese-enhanced MRI (MEMRI), in order to circumvent the challenge of achieving optimal MRI resolution without resorting to high, potentially cytotoxic doses of Mn(2+). Elemental analysis and stability studies of Mn-alginate revealed marked differences in ion binding capacity, rendering Mn/Ba-alginate gels with high guluronic acid content most stable. The findings were corroborated by corresponding differences in the release rate of Mn(2+) from alginate beads in vitro using T(1)-weighted MRI. Furthermore, intravitreal (ivit) injection of Mn-alginate beads yielded significant enhancement of the rat retina and retinal ganglion cell (RGC) axons 24 h post-injection. Subsequent compartmental modelling and simulation of ivit Mn(2+) transport and concentration revealed that application of slow release contrast agents can achieve a significant reduction of ivit Mn(2+) concentration compared with bolus injection. This is followed by a concomitant increase in the availability of ivit Mn(2+) for uptake by RGC, corresponding to significantly increased time constants. Our results provide proof-of-concept for the applicability of Mn-alginate gels as a system for controlled release of Mn(2+) for optimized MEMRI application.
Collapse
Affiliation(s)
- Yrr A Mørch
- Department of Biotechnology, Norwegian University of Science and Technology, Trondheim, Norway.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Hoehn M, Aswendt M. Structure-function relationship of cerebral networks in experimental neuroscience: contribution of magnetic resonance imaging. Exp Neurol 2012; 242:65-73. [PMID: 22572591 DOI: 10.1016/j.expneurol.2012.04.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 03/20/2012] [Accepted: 04/23/2012] [Indexed: 11/25/2022]
Abstract
The analysis of neuronal networks, their interactions in resting condition as well as during brain activation have become of great interest for a better understanding of the signal processing of the brain during sensory stimulus or cognitive tasks. Parallel to the study of the functional networks and their dynamics, the underlying network structure is highly important as it provides the basis of the functional interaction. Moreover, under pathological conditions, some nodes in such a net may be impaired and the function of the whole network affected. Mechanisms such as functional deficit and improvement, and plastic reorganization are increasingly discussed in the context of existing structural and functional networks. While many of these aspects have been followed in human and clinical studies, the experimental range is limited for obvious reasons. Here, animal experimental studies are needed as they permit longer scan times and, moreover, comparison with invasive histology. Experimental non-invasive imaging modalities are now able to perform impressive contributions. In this review we try to highlight most recent new cutting-edge developments and applications in experimental neuroscience of functional and structural networks of the brain, relying on non-invasive imaging. We focus primarily on the potential of experimental Magnetic Resonance Imaging (MRI), but also touch upon micro positron emission tomography (μPET) and optical imaging developments where they are applicable to the topic of the present review.
Collapse
Affiliation(s)
- Mathias Hoehn
- In-vivo-NMR Laboratory, Max Planck Institute for Neurological Research, Cologne, Germany.
| | | |
Collapse
|
26
|
Is there a path beyond BOLD? Molecular imaging of brain function. Neuroimage 2012; 62:1208-15. [PMID: 22406355 DOI: 10.1016/j.neuroimage.2012.02.076] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 02/18/2012] [Accepted: 02/27/2012] [Indexed: 12/20/2022] Open
Abstract
The dependence of BOLD on neuro-vascular coupling leaves it many biological steps removed from direct monitoring of neural function. MRI based approaches have been developed aimed at reporting more directly on brain function. These include: manganese enhanced MRI as a surrogate for calcium ion influx; agents responsive to calcium concentrations; approaches to measure membrane potential; agents to measure neurotransmitters; and strategies to measure gene expression. This work has led to clever design of molecular imaging tools and many contributions to studies of brain function in animal models. However, a robust approach that has potential to get MRI closer to neurons in the human brain has not yet emerged.
Collapse
|
27
|
Lee YC, Chen DY, Dodd SJ, Bouraoud N, Koretsky AP, Krishnan KM. The use of silica coated MnO nanoparticles to control MRI relaxivity in response to specific physiological changes. Biomaterials 2012; 33:3560-7. [PMID: 22341582 DOI: 10.1016/j.biomaterials.2012.01.062] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 01/31/2012] [Indexed: 12/27/2022]
Abstract
MnO nanoparticles have been tested to engineer a delayed increase in MRI T(1) relaxivity caused by cellular uptake via endocytosis into acidic compartments. Various coatings on core-shell structured MnO nanoparticles were tested for those that had the lowest T(1) relaxivity at pH 7.4, a pH where MnO does not dissolve into Mn(2+) ions. The rate of dissolution and release of Mn(2+) of the different coated MnO particles as well as changes in T(1) relaxivity were measured at pH 5, a pH routinely obtained in the endosomal-lysosomal pathway. Of a number of coatings, silica coated MnO (MnO@SiO(2)) had the lowest relaxivity at pH 7.4 (0.29 mm(-1) sec(-1)). About one third of the MnO dissolved within 20 min and the T(1) relaxivity increased to that of free Mn(2+) (6.10 mm(-1) sec(-1)) after three days at pH 5. MRI of MnO@SiO(2) particles injected into the rat brain showed time-dependent signal changes consistent with the in vitro rates. Thalamocortical tract-tracing could be observed due to the released Mn(2+). Intravenous infusion of MnO@SiO(2) particles showed little enhancement in any tissue except gallbladder. The gallbladder enhancement was interpreted to be due to endocytosis by liver cells and excretion of Mn(2+) ions into the gallbladder. The MnO@SiO(2) core-shell nanoparticles show the best potential for delaying the release of MRI contrast until endocytosis into low pH compartments activate MRI contrast. The delayed enhancement may have benefits for targeting MRI contrast to specific cells and surface receptors that are known to be recycled by endocytosis.
Collapse
Affiliation(s)
- Yi-Cheng Lee
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | |
Collapse
|
28
|
Eschenko O, Evrard HC, Neves RM, Beyerlein M, Murayama Y, Logothetis NK. Tracing of noradrenergic projections using manganese-enhanced MRI. Neuroimage 2012; 59:3252-65. [DOI: 10.1016/j.neuroimage.2011.11.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 10/08/2011] [Accepted: 11/09/2011] [Indexed: 11/29/2022] Open
|
29
|
Lehallier B, Andrey P, Maurin Y, Bonny JM. Iterative algorithm for spatial and intensity normalization of MEMRI images. Application to tract-tracing of rat olfactory pathways. Magn Reson Imaging 2011; 29:1304-16. [DOI: 10.1016/j.mri.2011.07.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 07/05/2011] [Accepted: 07/06/2011] [Indexed: 11/28/2022]
|
30
|
Duyn JH, Koretsky AP. Novel frontiers in ultra-structural and molecular MRI of the brain. Curr Opin Neurol 2011; 24:386-93. [PMID: 21734576 DOI: 10.1097/wco.0b013e328348972a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Recent developments in the MRI of the brain continue to expand its use in basic and clinical neuroscience. This review highlights some areas of recent progress. RECENT FINDINGS Higher magnetic field strengths and improved signal detectors have allowed improved visualization of the various properties of the brain, facilitating the anatomical definition of function-specific areas and their connections. For example, by sensitizing the MRI signal to the magnetic susceptibility of tissue, it is starting to become possible to reveal the laminar structure of the cortex and identify millimeter-scale fiber bundles. Using exogenous contrast agents, and innovative ways to manipulate contrast, it is becoming possible to highlight specific fiber tracts and cell populations. These techniques are bringing us closer to understanding the evolutionary blueprint of the brain, improving the detection and characterization of disease, and help to guide treatment. SUMMARY Recent MRI techniques are leading to more detailed and more specific contrast in the study of the brain.
Collapse
Affiliation(s)
- Jeff H Duyn
- Laboratory of Functional and Molecular Imaging, National Institutes of Health, Bethesda, Maryland 20892-1060, USA.
| | | |
Collapse
|
31
|
Chan KC, Cheng JS, Fan S, Zhou IY, Yang J, Wu EX. In vivo evaluation of retinal and callosal projections in early postnatal development and plasticity using manganese-enhanced MRI and diffusion tensor imaging. Neuroimage 2011; 59:2274-83. [PMID: 21985904 DOI: 10.1016/j.neuroimage.2011.09.055] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 08/22/2011] [Accepted: 09/22/2011] [Indexed: 12/14/2022] Open
Abstract
The rodents are an excellent model for understanding the development and plasticity of the visual system. In this study, we explored the feasibility of Mn-enhanced MRI (MEMRI) and diffusion tensor imaging (DTI) at 7 T for in vivo and longitudinal assessments of the retinal and callosal pathways in normal neonatal rodent brains and after early postnatal visual impairments. Along the retinal pathways, unilateral intravitreal Mn2+ injection resulted in Mn2+ uptake and transport in normal neonatal visual brains at postnatal days (P) 1, 5 and 10 with faster Mn2+ clearance than the adult brains at P60. The reorganization of retinocollicular projections was also detected by significant Mn2+ enhancement by 2%-10% in the ipsilateral superior colliculus (SC) of normal neonatal rats, normal adult mice and adult rats after neonatal monocular enucleation (ME) but not in normal adult rats or adult rats after monocular deprivation (MD). DTI showed a significantly higher fractional anisotropy (FA) by 21% in the optic nerve projected from the remaining eye of ME rats compared to normal rats at 6 weeks old, likely as a result of the retention of axons from the ipsilaterally uncrossed retinal ganglion cells, whereas the anterior and posterior retinal pathways projected from the enucleated or deprived eyes possessed lower FA after neonatal binocular enucleation (BE), ME and MD by 22%-56%, 18%-46% and 11%-15% respectively compared to normal rats, indicative of neurodegeneration or immaturity of white matter tracts. Along the visual callosal pathways, intracortical Mn2+ injection to the visual cortex of BE rats enhanced a larger projection volume by about 74% in the V1/V2 transition zone of the contralateral hemisphere compared to normal rats, without apparent DTI parametric changes in the splenium of corpus callosum. This suggested an adaptive change in interhemispheric connections and spatial specificity in the visual cortex upon early blindness. The results of this study may help determine the mechanisms of axonal uptake and transport, microstructural reorganization and functional activities in the living visual brains during development, diseases, plasticity and early interventions in a global and longitudinal setting.
Collapse
Affiliation(s)
- Kevin C Chan
- Laboratory of Biomedical Imaging and Signal Processing, Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | | | | | | | | | | |
Collapse
|
32
|
Bennewitz MF, Lobo TL, Nkansah MK, Ulas G, Brudvig GW, Shapiro EM. Biocompatible and pH-sensitive PLGA encapsulated MnO nanocrystals for molecular and cellular MRI. ACS NANO 2011; 5:3438-46. [PMID: 21495676 PMCID: PMC3102302 DOI: 10.1021/nn1019779] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Inorganic manganese-based particles are becoming attractive for molecular and cellular imaging, due to their ability to provide bright contrast on MRI, as opposed to the dark contrast generated from iron-based particles. Using a single emulsion technique, we have successfully fabricated pH-sensitive poly(lactic-co-glycolic acid) (PLGA)-encapsulated manganese oxide (MnO) nanocrystals. Two classes of particles were fabricated at ∼140 nm and 1.7 μm and incorporated 15 to 20 nm MnO nanocrystals with high encapsulation efficiencies. Intact particles at physiological pH cause little contrast in MRI, but following endocytosis into low pH compartments within the cells, the particles erode and MnO dissolves to release Mn(2+). This causes the cells to appear bright on MR images. The magnitude of the change in MRI properties is as high as 35-fold, making it the most dynamic "smart" MRI contrast agent yet reported. Possible applications of these MnO particles include slow release Mn(2+), tumor targeting, and confirmation of cell uptake.
Collapse
Affiliation(s)
| | - Tricia L. Lobo
- Magnetic Resonance Research Center Department of Diagnostic Radiology Yale University School of Medicine New Haven, CT 06510
| | | | - Gözde Ulas
- Department of Chemistry, Yale University
| | | | - Erik M. Shapiro
- Department of Biomedical Engineering, Yale University
- Magnetic Resonance Research Center Department of Diagnostic Radiology Yale University School of Medicine New Haven, CT 06510
- Corresponding author: , Ph: 203-785-2899, Fx: 203-785-6643
| |
Collapse
|
33
|
Abstract
Modifications in the behavior and architecture of neuronal networks are well documented to occur in association with learning and memory, as well as following injury. These plasticity mechanisms are crucial to ensure adequate processing of stimuli, and they also dictate the degree of recovery following peripheral or central nervous system injury. Nevertheless, the underlying neuronal mechanisms that determine the degree of plasticity of neuronal pathways are not fully understood. Recent developments in animal-dedicated magnetic resonance imaging (MRI) scanners and related hardware afford a high spatial and temporal resolution, making functional MRI and manganese-enhanced MRI emerging tools for studying reorganization of neuronal pathways in rodent models. Many of the observed changes in neuronal functions in rodent's brains following injury discussed here agree with clinical human fMRI findings. This demonstrates that animal model imaging can have a significant clinical impact in the neuronal plasticity and rehabilitation arenas.
Collapse
Affiliation(s)
- Galit Pelled
- Department of Radiology, Kennedy Krieger Institute, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
34
|
Wu CWH, Vasalatiy O, Liu N, Wu H, Cheal S, Chen DY, Koretsky AP, Griffiths GL, Tootell RBH, Ungerleider LG. Development of a MR-visible compound for tracing neuroanatomical connections in vivo. Neuron 2011; 70:229-43. [PMID: 21521610 PMCID: PMC3419536 DOI: 10.1016/j.neuron.2011.03.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2011] [Indexed: 10/18/2022]
Abstract
Traditional studies of neuroanatomical connections require injection of tracer compounds into living brains, then histology of the postmortem tissue. Here, we describe and validate a compound that reveals neuronal connections in vivo, using MRI. The classic anatomical tracer CTB (cholera-toxin subunit-B) was conjugated with a gadolinium-chelate to form GdDOTA-CTB. GdDOTA-CTB was injected into the primary somatosensory cortex (S1) or the olfactory pathway of rats. High-resolution MR images were collected at a range of time points at 11.7T and 7T. The transported GdDOTA-CTB was visible for at least 1 month post-injection, clearing within 2 months. Control injections of non-conjugated GdDOTA into S1 were not transported and cleared within 1-2 days. Control injections of Gd-Albumin were not transported either, clearing within 7 days. These MR results were verified by classic immunohistochemical staining for CTB, in the same animals. The GdDOTA-CTB neuronal transport was target specific, monosynaptic, stable for several weeks, and reproducible.
Collapse
Affiliation(s)
- Carolyn W-H Wu
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20814, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Inui T, Inui-Yamamoto C, Yoshioka Y, Ohzawa I, Shimura T. Activation of projective neurons from the nucleus accumbens to ventral pallidum by a learned aversive taste stimulus in rats: a manganese-enhanced magnetic resonance imaging study. Neuroscience 2011; 177:66-73. [DOI: 10.1016/j.neuroscience.2011.01.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Revised: 12/20/2010] [Accepted: 01/02/2011] [Indexed: 11/25/2022]
|
36
|
Abstract
Manganese-enhanced magnetic resonance imaging (MEMRI) relies on contrasts that are due to the shortening of the T (1) relaxation time of tissue water protons that become exposed to paramagnetic manganese ions. In experimental animals, the technique combines the high spatial resolution achievable by MRI with the biological information gathered by tissue-specific or functionally induced accumulations of manganese. After in vivo administration, manganese ions may enter cells via voltage-gated calcium channels. In the nervous system, manganese ions are actively transported along the axon. Based on these properties, MEMRI is increasingly used to delineate neuroanatomical structures, assess differences in functional brain activity, and unravel neuronal connectivities in both healthy animals and models of neurological disorders. Because of the cellular toxicity of manganese, a major challenge for a successful MEMRI study is to achieve the lowest possible dose for a particular biological question. Moreover, the interpretation of MEMRI findings requires a profound knowledge of the behavior of manganese in complex organ systems under physiological and pathological conditions. Starting with an overview of manganese pharmacokinetics and mechanisms of toxicity, this chapter covers experimental methods and protocols for applications in neuroscience.
Collapse
Affiliation(s)
- Susann Boretius
- Biomedizinische NMR Forschungs GmbH am Max-Planck-Institut für biophysikalische Chemie, 37077 Göttingen, Germany.
| | | |
Collapse
|
37
|
Krishnan KM. Biomedical Nanomagnetics: A Spin Through Possibilities in Imaging, Diagnostics, and Therapy. IEEE TRANSACTIONS ON MAGNETICS 2010; 46:2523-2558. [PMID: 20930943 PMCID: PMC2949969 DOI: 10.1109/tmag.2010.2046907] [Citation(s) in RCA: 341] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Biomedical nanomagnetics is a multidisciplinary area of research in science, engineering and medicine with broad applications in imaging, diagnostics and therapy. Recent developments offer exciting possibilities in personalized medicine provided a truly integrated approach, combining chemistry, materials science, physics, engineering, biology and medicine, is implemented. Emphasizing this perspective, here we address important issues for the rapid development of the field, i.e., magnetic behavior at the nanoscale with emphasis on the relaxation dynamics, synthesis and surface functionalization of nanoparticles and core-shell structures, biocompatibility and toxicity studies, biological constraints and opportunities, and in vivo and in vitro applications. Specifically, we discuss targeted drug delivery and triggered release, novel contrast agents for magnetic resonance imaging, cancer therapy using magnetic fluid hyperthermia, in vitro diagnostics and the emerging magnetic particle imaging technique, that is quantitative and sensitive enough to compete with established imaging methods. In addition, the physics of self-assembly, which is fundamental to both biology and the future development of nanoscience, is illustrated with magnetic nanoparticles. It is shown that various competing energies associated with self-assembly converge on the nanometer length scale and different assemblies can be tailored by varying particle size and size distribution. Throughout this paper, while we discuss our recent research in the broad context of the multidisciplinary literature, we hope to bridge the gap between related work in physics/chemistry/engineering and biology/medicine and, at the same time, present the essential concepts in the individual disciplines. This approach is essential as biomedical nanomagnetics moves into the next phase of innovative translational research with emphasis on development of quantitative in vivo imaging, targeted and triggered drug release, and image guided therapy including validation of delivery and therapy response.
Collapse
Affiliation(s)
- Kannan M Krishnan
- Department of Materials Science, University of Washington, Seattle, WA 98195-2120 USA
| |
Collapse
|
38
|
|
39
|
Abstract
As the concept of a network of injury has emerged in the treatment of epilepsy, the importance of evaluating that network noninvasively has also grown. Recently, studies utilizing magnetic resonance spectroscopic imaging, manganese-enhanced MRI and functional (f)MRI measures of resting state connectivity have demonstrated their ability to detect injury and dysfunction in cerebral networks involved in the propagation of seizures. The ability to noninvasively detect neuronal injury and dysfunction throughout cerebral networks should improve surgical planning, provide guidance for placement of devices that target network propagation and provide insights into the mechanisms of recurrence following resective surgery.
Collapse
Affiliation(s)
- Hoby Hetherington
- Departments of Neurosurgery and Diagnostic Radiology, Yale University, 404 Tompkins East, 333 Cedar St, New Haven, CT 06525, USA ∎
| |
Collapse
|