1
|
Albanese GA, Marini F, Morasso P, Campus C, Zenzeri J. μ-band desynchronization in the contralateral central and central-parietal areas predicts proprioceptive acuity. Front Hum Neurosci 2023; 17:1000832. [PMID: 37007684 PMCID: PMC10050694 DOI: 10.3389/fnhum.2023.1000832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 02/28/2023] [Indexed: 03/17/2023] Open
Abstract
IntroductionPosition sense, which belongs to the sensory stream called proprioception, is pivotal for proper movement execution. Its comprehensive understanding is needed to fill existing knowledge gaps in human physiology, motor control, neurorehabilitation, and prosthetics. Although numerous studies have focused on different aspects of proprioception in humans, what has not been fully investigated so far are the neural correlates of proprioceptive acuity at the joints.MethodsHere, we implemented a robot-based position sense test to elucidate the correlation between patterns of neural activity and the degree of accuracy and precision exhibited by the subjects. Eighteen healthy participants performed the test, and their electroencephalographic (EEG) activity was analyzed in its μ band (8–12 Hz), as the frequency band related to voluntary movement and somatosensory stimulation.ResultsWe observed a significant positive correlation between the matching error, representing proprioceptive acuity, and the strength of the activation in contralateral hand motor and sensorimotor areas (left central and central-parietal areas). In absence of visual feedback, these same regions of interest (ROIs) presented a higher activation level compared to the association and visual areas. Remarkably, central and central-parietal activation was still observed when visual feedback was added, although a consistent activation in association and visual areas came up.ConclusionSumming up, this study supports the existence of a specific link between the magnitude of activation of motor and sensorimotor areas related to upper limb proprioceptive processing and the proprioceptive acuity at the joints.
Collapse
Affiliation(s)
- Giulia Aurora Albanese
- Department of Robotics, Brain and Cognitive Sciences, Fondazione Istituto Italiano di Tecnologia, Genoa, Italy
- Department of Informatics, Bioengineering, Robotics and Systems Engineering (DIBRIS), University of Genoa, Genoa, Italy
- *Correspondence: Giulia Aurora Albanese,
| | | | - Pietro Morasso
- Department of Robotics, Brain and Cognitive Sciences, Fondazione Istituto Italiano di Tecnologia, Genoa, Italy
| | - Claudio Campus
- U-VIP Unit for Visually Impaired People, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Jacopo Zenzeri
- Department of Robotics, Brain and Cognitive Sciences, Fondazione Istituto Italiano di Tecnologia, Genoa, Italy
- ReWing S.r.l., Milan, Italy
| |
Collapse
|
2
|
Fabre M, Antoine M, Robitaille MG, Ribot-Ciscar E, Ackerley R, Aimonetti JM, Chavet P, Blouin J, Simoneau M, Mouchnino L. Large Postural Sways Prevent Foot Tactile Information From Fading: Neurophysiological Evidence. Cereb Cortex Commun 2021; 2:tgaa094. [PMID: 34296149 PMCID: PMC8152841 DOI: 10.1093/texcom/tgaa094] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 11/25/2020] [Accepted: 12/15/2020] [Indexed: 11/15/2022] Open
Abstract
Cutaneous foot receptors are important for balance control, and their activation during quiet standing depends on the speed and the amplitude of postural oscillations. We hypothesized that the transmission of cutaneous input to the cortex is reduced during prolonged small postural sways due to receptor adaptation during continued skin compression. Central mechanisms would trigger large sways to reactivate the receptors. We compared the amplitude of positive and negative post-stimulation peaks (P50N90) somatosensory cortical potentials evoked by the electrical stimulation of the foot sole during small and large sways in 16 young adults standing still with their eyes closed. We observed greater P50N90 amplitudes during large sways compared with small sways consistent with increased cutaneous transmission during large sways. Postural oscillations computed 200 ms before large sways had smaller amplitudes than those before small sways, providing sustained compression within a small foot sole area. Cortical source analyses revealed that during this interval, the activity of the somatosensory areas decreased, whereas the activity of cortical areas engaged in motor planning (supplementary motor area, dorsolateral prefrontal cortex) increased. We concluded that large sways during quiet standing represent self-generated functional behavior aiming at releasing skin compression to reactivate mechanoreceptors. Such balance motor commands create sensory reafference that help control postural sway.
Collapse
Affiliation(s)
- Marie Fabre
- Laboratoire de Neurosciences Cognitives, Aix Marseille Université, CNRS, FR 3C, Marseille 13331, France
| | - Marine Antoine
- Département de kinésiologie, Faculté de médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | | | - Edith Ribot-Ciscar
- LNSC (Laboratoire de Neurosciences Sensorielles et Cognitives - UMR 7260, FR3C), Aix Marseille Université, CNRS, Marseille 13331, France
| | - Rochelle Ackerley
- LNSC (Laboratoire de Neurosciences Sensorielles et Cognitives - UMR 7260, FR3C), Aix Marseille Université, CNRS, Marseille 13331, France
| | - Jean-Marc Aimonetti
- LNSC (Laboratoire de Neurosciences Sensorielles et Cognitives - UMR 7260, FR3C), Aix Marseille Université, CNRS, Marseille 13331, France
| | - Pascale Chavet
- Institut des Sciences du Mouvement, Aix Marseille Université, CNRS, Marseille 13288, France
| | - Jean Blouin
- Laboratoire de Neurosciences Cognitives, Aix Marseille Université, CNRS, FR 3C, Marseille 13331, France
| | - Martin Simoneau
- Département de kinésiologie, Faculté de médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Laurence Mouchnino
- Laboratoire de Neurosciences Cognitives, Aix Marseille Université, CNRS, FR 3C, Marseille 13331, France
| |
Collapse
|
3
|
Breveglieri R, Bosco A, Borgomaneri S, Tessari A, Galletti C, Avenanti A, Fattori P. Transcranial Magnetic Stimulation Over the Human Medial Posterior Parietal Cortex Disrupts Depth Encoding During Reach Planning. Cereb Cortex 2021; 31:267-280. [PMID: 32995831 DOI: 10.1093/cercor/bhaa224] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/01/2020] [Accepted: 07/23/2020] [Indexed: 11/12/2022] Open
Abstract
Accumulating evidence supports the view that the medial part of the posterior parietal cortex (mPPC) is involved in the planning of reaching, but while plenty of studies investigated reaching performed toward different directions, only a few studied different depths. Here, we investigated the causal role of mPPC (putatively, human area V6A-hV6A) in encoding depth and direction of reaching. Specifically, we applied single-pulse transcranial magnetic stimulation (TMS) over the left hV6A at different time points while 15 participants were planning immediate, visually guided reaching by using different eye-hand configurations. We found that TMS delivered over hV6A 200 ms after the Go signal affected the encoding of the depth of reaching by decreasing the accuracy of movements toward targets located farther with respect to the gazed position, but only when they were also far from the body. The effectiveness of both retinotopic (farther with respect to the gaze) and spatial position (far from the body) is in agreement with the presence in the monkey V6A of neurons employing either retinotopic, spatial, or mixed reference frames during reach plan. This work provides the first causal evidence of the critical role of hV6A in the planning of visually guided reaching movements in depth.
Collapse
Affiliation(s)
- Rossella Breveglieri
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Annalisa Bosco
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Sara Borgomaneri
- Center for studies and research in Cognitive Neuroscience, University of Bologna, 47521 Cesena, Italy.,IRCCS, Santa Lucia Foundation, 00179 Rome, Italy
| | - Alessia Tessari
- Department of Psychology, University of Bologna, 40127 Bologna, Italy
| | - Claudio Galletti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Alessio Avenanti
- Center for studies and research in Cognitive Neuroscience, University of Bologna, 47521 Cesena, Italy.,Center for research in Neuropsychology and Cognitive Neurosciences, Catholic University of Maule, 3460000 Talca, Chile
| | - Patrizia Fattori
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
4
|
Goodman R, Manson GA, Tremblay L. Age-related Differences in Sensorimotor Transformations for Visual and/or Somatosensory Targets: Planning or Execution? Exp Aging Res 2020; 46:128-138. [DOI: 10.1080/0361073x.2020.1716153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Rachel Goodman
- Perceptual-Motor Behaviour Laboratory, Centre for Motor Control, Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
| | - Gerome A. Manson
- Perceptual-Motor Behaviour Laboratory, Centre for Motor Control, Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
| | - Luc Tremblay
- Perceptual-Motor Behaviour Laboratory, Centre for Motor Control, Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Marini F, Zenzeri J, Pippo V, Morasso P, Campus C. Neural correlates of proprioceptive upper limb position matching. Hum Brain Mapp 2019; 40:4813-4826. [PMID: 31348604 PMCID: PMC6865654 DOI: 10.1002/hbm.24739] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 11/06/2022] Open
Abstract
Proprioceptive information allows humans to perform smooth coordinated movements by constantly updating one's mind with knowledge of the position of one's limbs in space. How this information is combined with other sensory modalities and centrally processed to form conscious perceptions of limb position remains relatively unknown. What has proven even more elusive is pinpointing the contribution of proprioception in cortical activity related to motion. This study addresses these gaps by examining electrocortical dynamics while participants performed an upper limb position matching task in two conditions, namely with proprioceptive feedback or with both visual and proprioceptive feedback. Specifically, we evaluated the reduction of the electroencephalographic power (desynchronization) in the μ frequency band (8-12 Hz), which is known to characterize the neural activation associated with motor control and behavior. We observed a stronger desynchronization in the left motor and somatosensory areas, contralateral to the moving limb while, parietal and occipital regions, identifying association and visual areas, respectively, exhibited a similar activation level in the two hemispheres. Pertaining to the influence of the two experimental conditions it affected only movement's offset, and precisely we found that when matching movements are performed relying only on proprioceptive information, a lower cortical activity is entailed. This effect was strongest in the visual and association areas, while there was a minor effect in the hand motor and somatosensory areas.
Collapse
Affiliation(s)
- Francesca Marini
- Department of Robotics, Brain and Cognitive SciencesIstituto Italiano di TecnologiaGenoaItaly
| | - Jacopo Zenzeri
- Department of Robotics, Brain and Cognitive SciencesIstituto Italiano di TecnologiaGenoaItaly
| | - Valentina Pippo
- Department of Robotics, Brain and Cognitive SciencesIstituto Italiano di TecnologiaGenoaItaly
| | - Pietro Morasso
- Department of Robotics, Brain and Cognitive SciencesIstituto Italiano di TecnologiaGenoaItaly
| | - Claudio Campus
- U‐VIP Unit for Visually Impaired PeopleIstituto Italiano di TecnologiaGenoaItaly
| |
Collapse
|
6
|
Marini F, Zenzeri J, Pippo V, Morasso P, Campus C. Movement related activity in the μ band of the human EEG during a robot-based proprioceptive task. IEEE Int Conf Rehabil Robot 2019; 2019:1019-1024. [PMID: 31374763 DOI: 10.1109/icorr.2019.8779552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Innovative research in the fields of prosthetic, neurorehabilitation, motor control and human physiology has been focusing on the study of proprioception, the sense through which we perceive the position and movement of our body, and great achievements have been obtained regarding its assessment and characterization. However, how proprioceptive signals are combined with other sensory modalities and processed by the central nervous system to form a conscious body image, is still unknown. Such a crucial question was addressed in this study, which involved 23 healthy subjects, by combining a robot-based proprioceptive test with a specific analysis of electroencephalographic activity (EEG) in the $\mu$ frequency band (8-12 Hz). We observed important activation in the motor area contralateral to the moving hand, and besides, a substantial bias in brain activation and proprioceptive acuity when visual feedback was provided in addition to the proprioceptive information during movement execution. In details, brain activation and proprioceptive acuity were both higher in case of movements performed with visual feedback. Remarkably, we also found a correlation between the level of activation in the brain motor area contralateral to the moving hand and the value of proprioceptive acuity.
Collapse
|
7
|
Manson GA, Tremblay L, Lebar N, de Grosbois J, Mouchnino L, Blouin J. Auditory cues for somatosensory targets invoke visuomotor transformations: Behavioral and electrophysiological evidence. PLoS One 2019; 14:e0215518. [PMID: 31048853 PMCID: PMC6497427 DOI: 10.1371/journal.pone.0215518] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 04/03/2019] [Indexed: 11/18/2022] Open
Abstract
Prior to goal-directed actions, somatosensory target positions can be localized using either an exteroceptive or an interoceptive body representation. The goal of the present study was to investigate if the body representation selected to plan reaches to somatosensory targets is influenced by the sensory modality of the cue indicating the target’s location. In the first experiment, participants reached to somatosensory targets prompted by either an auditory or a vibrotactile cue. As a baseline condition, participants also performed reaches to visual targets prompted by an auditory cue. Gaze-dependent reaching errors were measured to determine the contribution of the exteroceptive representation to motor planning processes. The results showed that reaches to both auditory-cued somatosensory targets and auditory-cued visual targets exhibited larger gaze-dependent reaching errors than reaches to vibrotactile-cued somatosensory targets. Thus, an exteroceptive body representation was likely used to plan reaches to auditory-cued somatosensory targets but not to vibrotactile-cued somatosensory targets. The second experiment examined the influence of using an exteroceptive body representation to plan movements to somatosensory targets on pre-movement neural activations. Cortical responses to a task-irrelevant visual flash were measured as participants planned movements to either auditory-cued somatosensory or auditory-cued visual targets. Larger responses (i.e., visual-evoked potentials) were found when participants planned movements to somatosensory vs. visual targets, and source analyses revealed that these activities were localized to the left occipital and left posterior parietal areas. These results suggest that visual and visuomotor processing networks were more engaged when using the exteroceptive body representation to plan movements to somatosensory targets, than when planning movements to external visual targets.
Collapse
Affiliation(s)
- Gerome A. Manson
- Aix-Marseille University, CNRS, LNC FR 3C, Marseille, France
- University of Toronto, Centre for Motor Control, Faculty of Kinesiology and Physical Education, Toronto, Ontario, Canada
- * E-mail:
| | - Luc Tremblay
- University of Toronto, Centre for Motor Control, Faculty of Kinesiology and Physical Education, Toronto, Ontario, Canada
| | - Nicolas Lebar
- Aix-Marseille University, CNRS, LNC FR 3C, Marseille, France
| | - John de Grosbois
- University of Toronto, Centre for Motor Control, Faculty of Kinesiology and Physical Education, Toronto, Ontario, Canada
| | | | - Jean Blouin
- Aix-Marseille University, CNRS, LNC FR 3C, Marseille, France
| |
Collapse
|
8
|
Mossbridge J, Zweig J, Grabowecky M, Suzuki S. An Association between Auditory-Visual Synchrony Processing and Reading Comprehension: Behavioral and Electrophysiological Evidence. J Cogn Neurosci 2017; 29:435-447. [PMID: 28129060 DOI: 10.1162/jocn_a_01052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The perceptual system integrates synchronized auditory-visual signals in part to promote individuation of objects in cluttered environments. The processing of auditory-visual synchrony may more generally contribute to cognition by synchronizing internally generated multimodal signals. Reading is a prime example because the ability to synchronize internal phonological and/or lexical processing with visual orthographic processing may facilitate encoding of words and meanings. Consistent with this possibility, developmental and clinical research has suggested a link between reading performance and the ability to compare visual spatial/temporal patterns with auditory temporal patterns. Here, we provide converging behavioral and electrophysiological evidence suggesting that greater behavioral ability to judge auditory-visual synchrony (Experiment 1) and greater sensitivity of an electrophysiological marker of auditory-visual synchrony processing (Experiment 2) both predict superior reading comprehension performance, accounting for 16% and 25% of the variance, respectively. These results support the idea that the mechanisms that detect auditory-visual synchrony contribute to reading comprehension.
Collapse
|
9
|
Blouin J, Bresciani JP, Guillaud E, Simoneau M. Prediction in the Vestibular Control of Arm Movements. Multisens Res 2016; 28:487-505. [PMID: 26595953 DOI: 10.1163/22134808-00002501] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The contribution of vestibular signals to motor control has been evidenced in postural, locomotor, and oculomotor studies. Here, we review studies showing that vestibular information also contributes to the control of arm movements during whole-body motion. The data reviewed suggest that vestibular information is used by the arm motor system to maintain the initial hand position or the planned hand trajectory unaltered during body motion. This requires integration of vestibular and cervical inputs to determine the trunk motion dynamics. These studies further suggest that the vestibular control of arm movement relies on rapid and efficient vestibulomotor transformations that cannot be considered automatic. We also reviewed evidence suggesting that the vestibular afferents can be used by the brain to predict and counteract body-rotation-induced torques (e.g., Coriolis) acting on the arm when reaching for a target while turning the trunk.
Collapse
|
10
|
Blouin J, Saradjian AH, Lebar N, Guillaume A, Mouchnino L. Opposed optimal strategies of weighting somatosensory inputs for planning reaching movements toward visual and proprioceptive targets. J Neurophysiol 2014; 112:2290-301. [DOI: 10.1152/jn.00857.2013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Behavioral studies have suggested that the brain uses a visual estimate of the hand to plan reaching movements toward visual targets and somatosensory inputs in the case of somatosensory targets. However, neural correlates for distinct coding of the hand according to the sensory modality of the target have not yet been identified. Here we tested the twofold hypothesis that the somatosensory input from the reaching hand is facilitated and inhibited, respectively, when planning movements toward somatosensory (unseen fingers) or visual targets. The weight of the somatosensory inputs was assessed by measuring the amplitude of the somatosensory evoked potential (SEP) resulting from vibration of the reaching finger during movement planning. The target sensory modality had no significant effect on SEP amplitude. However, Spearman's analyses showed significant correlations between the SEPs and reaching errors. When planning movements toward proprioceptive targets without visual feedback of the reaching hand, participants showing the greater SEPs were those who produced the smaller directional errors. Inversely, participants showing the smaller SEPs when planning movements toward visual targets with visual feedback of the reaching hand were those who produced the smaller directional errors. No significant correlation was found between the SEPs and radial or amplitude errors. Our results indicate that the sensory strategy for planning movements is highly flexible among individuals and also for a given sensory context. Most importantly, they provide neural bases for the suggestion that optimization of movement planning requires the target and the reaching hand to both be represented in the same sensory modality.
Collapse
Affiliation(s)
- Jean Blouin
- Laboratory of Cognitive Neuroscience, CNRS, Aix-Marseille University, FR 3C 3512, Marseille, France
| | - Anahid H. Saradjian
- Laboratory of Cognitive Neuroscience, CNRS, Aix-Marseille University, FR 3C 3512, Marseille, France
| | - Nicolas Lebar
- Laboratory of Cognitive Neuroscience, CNRS, Aix-Marseille University, FR 3C 3512, Marseille, France
| | - Alain Guillaume
- Laboratory of Cognitive Neuroscience, CNRS, Aix-Marseille University, FR 3C 3512, Marseille, France
| | - Laurence Mouchnino
- Laboratory of Cognitive Neuroscience, CNRS, Aix-Marseille University, FR 3C 3512, Marseille, France
| |
Collapse
|
11
|
Dipietro L, Poizner H, Krebs HI. Spatiotemporal dynamics of online motor correction processing revealed by high-density electroencephalography. J Cogn Neurosci 2014; 26:1966-80. [PMID: 24564462 PMCID: PMC4692805 DOI: 10.1162/jocn_a_00593] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The ability to control online motor corrections is key to dealing with unexpected changes arising in the environment with which we interact. How the CNS controls online motor corrections is poorly understood, but evidence has accumulated in favor of a submovement-based model in which apparently continuous movement is segmented into distinct submovements. Although most studies have focused on submovements' kinematic features, direct links with the underlying neural dynamics have not been extensively explored. This study sought to identify an electroencephalographic signature of submovements. We elicited kinematic submovements using a double-step displacement paradigm. Participants moved their wrist toward a target whose direction could shift mid-movement with a 50% probability. Movement kinematics and cortical activity were concurrently recorded with a low-friction robotic device and high-density electroencephalography. Analysis of spatiotemporal dynamics of brain activation and its correlation with movement kinematics showed that the production of each kinematic submovement was accompanied by (1) stereotyped topographic scalp maps and (2) frontoparietal ERPs time-locked to submovements. Positive ERP peaks from frontocentral areas contralateral to the moving wrist preceded kinematic submovement peaks by 220-250 msec and were followed by positive ERP peaks from contralateral parietal areas (140-250 msec latency, 0-80 msec before submovement peaks). Moreover, individual subject variability in the latency of frontoparietal ERP components following the target shift significantly predicted variability in the latency of the corrective submovement. Our results are in concordance with evidence for the intermittent nature of continuous movement and elucidate the timing and role of frontoparietal activations in the generation and control of corrective submovements.
Collapse
|
12
|
Mossbridge JA, Grabowecky M, Suzuki S. Seeing the song: left auditory structures may track auditory-visual dynamic alignment. PLoS One 2013; 8:e77201. [PMID: 24194873 PMCID: PMC3806747 DOI: 10.1371/journal.pone.0077201] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 09/08/2013] [Indexed: 11/18/2022] Open
Abstract
Auditory and visual signals generated by a single source tend to be temporally correlated, such as the synchronous sounds of footsteps and the limb movements of a walker. Continuous tracking and comparison of the dynamics of auditory-visual streams is thus useful for the perceptual binding of information arising from a common source. Although language-related mechanisms have been implicated in the tracking of speech-related auditory-visual signals (e.g., speech sounds and lip movements), it is not well known what sensory mechanisms generally track ongoing auditory-visual synchrony for non-speech signals in a complex auditory-visual environment. To begin to address this question, we used music and visual displays that varied in the dynamics of multiple features (e.g., auditory loudness and pitch; visual luminance, color, size, motion, and organization) across multiple time scales. Auditory activity (monitored using auditory steady-state responses, ASSR) was selectively reduced in the left hemisphere when the music and dynamic visual displays were temporally misaligned. Importantly, ASSR was not affected when attentional engagement with the music was reduced, or when visual displays presented dynamics clearly dissimilar to the music. These results appear to suggest that left-lateralized auditory mechanisms are sensitive to auditory-visual temporal alignment, but perhaps only when the dynamics of auditory and visual streams are similar. These mechanisms may contribute to correct auditory-visual binding in a busy sensory environment.
Collapse
Affiliation(s)
- Julia A. Mossbridge
- Department of Psychology, Northwestern University, Evanston, Illinois, United States of America
- * E-mail:
| | - Marcia Grabowecky
- Department of Psychology, Northwestern University, Evanston, Illinois, United States of America
- Interdepartmental Neuroscience Program, Northwestern University, Evanston, Illinois, United States of America
| | - Satoru Suzuki
- Department of Psychology, Northwestern University, Evanston, Illinois, United States of America
- Interdepartmental Neuroscience Program, Northwestern University, Evanston, Illinois, United States of America
| |
Collapse
|
13
|
Reichenbach A, Thielscher A, Peer A, Bülthoff HH, Bresciani JP. A key region in the human parietal cortex for processing proprioceptive hand feedback during reaching movements. Neuroimage 2013; 84:615-25. [PMID: 24060316 DOI: 10.1016/j.neuroimage.2013.09.024] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 08/09/2013] [Accepted: 09/16/2013] [Indexed: 12/20/2022] Open
Abstract
Seemingly effortless, we adjust our movements to continuously changing environments. After initiation of a goal-directed movement, the motor command is under constant control of sensory feedback loops. The main sensory signals contributing to movement control are vision and proprioception. Recent neuroimaging studies have focused mainly on identifying the parts of the posterior parietal cortex (PPC) that contribute to visually guided movements. We used event-related TMS and force perturbations of the reaching hand to test whether the same sub-regions of the left PPC contribute to the processing of proprioceptive-only and of multi-sensory information about hand position when reaching for a visual target. TMS over two distinct stimulation sites elicited differential effects: TMS applied over the posterior part of the medial intraparietal sulcus (mIPS) compromised reaching accuracy when proprioception was the only sensory information available for correcting the reaching error. When visual feedback of the hand was available, TMS over the anterior intraparietal sulcus (aIPS) prolonged reaching time. Our results show for the first time the causal involvement of the posterior mIPS in processing proprioceptive feedback for online reaching control, and demonstrate that distinct cortical areas process proprioceptive-only and multi-sensory information for fast feedback corrections.
Collapse
Affiliation(s)
- Alexandra Reichenbach
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany; Institute of Cognitive Neuroscience, University College London, UK.
| | | | | | | | | |
Collapse
|
14
|
Abstract
Recent blood oxygenation level-dependent (BOLD) imaging work has suggested flexible coding frames for reach targets in human posterior parietal cortex, with a gaze-centered reference frame for visually guided reaches and a body-centered frame for proprioceptive reaches. However, BOLD activity, which reflects overall population activity, is insensitive to heterogeneous responses at the neuronal level and temporal dynamics between neurons. Neurons could synchronize in different frequency bands to form assemblies operating in different reference frames. Here we assessed the reference frames of oscillatory activity in parietal cortex during reach planning to nonvisible tactile stimuli. Under continuous recording of magneto-encephalographic data, subjects fixated either to the left or right of the body midline, while a tactile stimulus was presented to a nonvisible fingertip, located either to the left or right of gaze. After a delay, they had to reach toward the remembered stimulus location with the other hand. Our results show body-centered and gaze-centered reference frames underlying the power modulations in specific frequency bands. Whereas beta-band activity (18-30 Hz) in parietal regions showed body-centered spatial selectivity, the high gamma band (>60 Hz) demonstrated a transient remapping into gaze-centered coordinates in parietal and extrastriate visual areas. This gaze-centered coding was sustained in the low gamma (<60 Hz) and alpha (∼10 Hz) bands. Our results show that oscillating subpopulations encode remembered tactile targets for reaches relative to gaze, even though neither the sensory nor the motor output processes operate in this frame. We discuss these findings in the light of flexible control mechanisms across modalities and effectors.
Collapse
|
15
|
Kirsch W, Hennighausen E. Electrophysiological indicators of visuomotor planning: delay-dependent changes. Percept Mot Skills 2012; 115:69-89. [PMID: 23033746 DOI: 10.2466/22.24.27.pms.115.4.69-89] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A visuomotor task was used to investigate the influence of a varying response delay on the evoked activity measured during motor planning. Participants performed one-dimensional hand movements to visual targets after 200-, 1,000-, and 5,000- msec. delays with respect to the target offset. In response to an imperative go signal, similar deflections were observed over motor areas in all delay conditions. In contrast, activity at posterior electrodes was strongly delay-dependent. During the shortest delay condition, evoked alpha oscillations were pronounced at occipitoparietal recording sites and were accompanied by P300-like positive waves. In contrast, when the delay was either 1,000 or 5,000 msec., lateral occipitotemporal deflections (N1) were observed. Also, during the longest delay condition another P300-like component was measured, which was entirely absent when the delay was 1,000 msec. These results suggest that neurophysiological processes underlie motor planning, change depending on the time of response.
Collapse
|
16
|
Barchiesi G, Cattaneo L. Early and late motor responses to action observation. Soc Cogn Affect Neurosci 2012; 8:711-9. [PMID: 22563004 DOI: 10.1093/scan/nss049] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Is a short visuomotor associative training sufficient to reverse the visuomotor tuning of mirror neurons in adult humans? We tested the effects of associative training on corticospinal modulation during action observation in the 100-320 ms interval after action onset. In two separate experiments, the acceleration of transcranial magnetic stimulation (TMS)-induced movements was recorded before and after training participants to respond to observed acts with an opposite or similar behavior. Before training, TMS-induced accelerations mirrored the observed action at 250 and 320 ms. After training, responses at 250 ms were unchanged and still mirrored the stimuli, without any effect of training direction. Only at 320 ms, we observed training-dependent changes in evoked responses. A control experiment with non-biological rotational movements as visual stimuli indicated that spatial stimulus-response compatibility is not sufficient to account for the results of the two main experiments. We show that the effects of a short visuomotor associative training are not pervasive on the automatic mirror responses. 'Early' (250 ms) responses were not influenced by training. Conversely only 'late' (320 ms) responses changed according to the training direction. This biphasic time course indicates that two distinct mechanisms produce the automatic mirror responses and the newly learned visuomotor associations.
Collapse
Affiliation(s)
- Guido Barchiesi
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Via delle Regole, 101, I-38123 Mattarello (TN), Italy
| | | |
Collapse
|
17
|
Perfetti B, Moisello C, Landsness EC, Kvint S, Pruski A, Onofrj M, Tononi G, Ghilardi MF. Temporal evolution of oscillatory activity predicts performance in a choice-reaction time reaching task. J Neurophysiol 2010; 105:18-27. [PMID: 21047934 DOI: 10.1152/jn.00778.2010] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In this study, we characterized the patterns and timing of cortical activation of visually guided movements in a task with critical temporal demands. In particular, we investigated the neural correlates of motor planning and on-line adjustments of reaching movements in a choice-reaction time task. High-density electroencephalography (EEG, 256 electrodes) was recorded in 13 subjects performing reaching movements. The topography of the movement-related spectral perturbation was established across five 250-ms temporal windows (from prestimulus to postmovement) and five frequency bands (from theta to beta). Nine regions of interest were then identified on the scalp, and their activity was correlated with specific behavioral outcomes reflecting motor planning and on-line adjustments. Phase coherence analysis was performed between selected sites. We found that motor planning and on-line adjustments share similar topography in a fronto-parietal network, involving mostly low frequency bands. In addition, activities in the high and low frequency ranges have differential function in the modulation of attention with the former reflecting the prestimulus, top-down processes needed to promote timely responses, and the latter the planning and control of sensory-motor processes.
Collapse
Affiliation(s)
- Bernardo Perfetti
- Department of Physiology and Pharmacology, City University of New York Medical School, 138th St. and Convent Ave., New York, NY 10031, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Specificity of human parietal saccade and reach regions during transcranial magnetic stimulation. J Neurosci 2010; 30:13053-65. [PMID: 20881123 DOI: 10.1523/jneurosci.1644-10.2010] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Single-unit recordings in macaque monkeys have identified effector-specific regions in posterior parietal cortex (PPC), but functional neuroimaging in the human has yielded controversial results. Here we used on-line repetitive transcranial magnetic stimulation (rTMS) to determine saccade and reach specificity in human PPC. A short train of three TMS pulses (separated by an interval of 100 ms) was delivered to superior parieto-occipital cortex (SPOC), a region over the midposterior intraparietal sulcus (mIPS), and a site close to caudal IPS situated over the angular gyrus (AG) during a brief memory interval while subjects planned either a saccade or reach with the left or right hand. Behavioral measures then were compared to controls without rTMS. Stimulation of mIPS and AG produced similar patterns: increased end-point variability for reaches and decreased saccade accuracy for contralateral targets. In contrast, stimulation of SPOC deviated reach end points toward visual fixation and had no effect on saccades. Contralateral-limb specificity was highest for AG and lowest for SPOC. Visual feedback of the hand negated rTMS-induced disruptions of the reach plan for mIPS and AG, but not SPOC. These results suggest that human SPOC is specialized for encoding retinally peripheral reach goals, whereas more anterior-lateral regions (mIPS and AG) along the IPS possess overlapping maps for saccade and reach planning and are more closely involved in motor details (i.e., planning the reach vector for a specific hand). This work provides the first causal evidence for functional specificity of these parietal regions in healthy humans.
Collapse
|
19
|
Selective increase in motor excitability with intraactive (self) versus interactive touch. Neuroreport 2010; 21:206-9. [DOI: 10.1097/wnr.0b013e328335b530] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Insights into the control of arm movement during body motion as revealed by EMG analyses. Brain Res 2009; 1309:40-52. [PMID: 19883633 DOI: 10.1016/j.brainres.2009.10.063] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Revised: 10/21/2009] [Accepted: 10/26/2009] [Indexed: 11/21/2022]
Abstract
Recent studies have revealed that vestibulomotor transformations contribute to maintain the hand stationary in space during trunk rotation. Here we tested whether these vestibulomotor transformations have the same latencies and whether they are subject to similar cognitive control than the visuomotor transformations during manual tracking of a visual target. We recorded hand displacement and shoulder-muscle activity in two tasks: a stabilization task in which subjects stabilized their hand during passive 30 degrees body rotations, and a tracking task in which subjects tracked with their finger a visual target as it moved 30 degrees around them. The EMG response times recorded in the stabilization task (approximately 165 ms) were twice as short as those observed for the tracking task (approximately 350 ms). Tested with the same paradigm, a deafferented subject showed EMG response times that closely matched those recorded in healthy subjects, thus, suggesting a vestibular origin of the arm movements. Providing advance information about the direction of the required arm movement reduced the response times in the tracking task (by approximately 115 ms) but had no significant effect in the stabilization task. Generally, when providing false information about movement direction in the tracking task, an EMG burst first appeared in the muscle moving the arm in the direction opposite to the actual target motion (i.e., in accord with the precueing). This behavior was rarely observed in the stabilization task. These results show that the sensorimotor transformations that move the arm relative to the trunk have shorter latencies when they originate from vestibular inputs than from visual information and that vestibulomotor transformations are more resistant to cognitive processes than visuomotor transformations.
Collapse
|