1
|
Hornsey RL, Hibbard PB. Distance mis-estimations can be reduced with specific shadow locations. Sci Rep 2024; 14:9566. [PMID: 38670990 PMCID: PMC11053062 DOI: 10.1038/s41598-024-58786-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
Shadows in physical space are copious, yet the impact of specific shadow placement and their abundance is yet to be determined in virtual environments. This experiment aimed to identify whether a target's shadow was used as a distance indicator in the presence of binocular distance cues. Six lighting conditions were created and presented in virtual reality for participants to perform a perceptual matching task. The task was repeated in a cluttered and sparse environment, where the number of cast shadows (and their placement) varied. Performance in this task was measured by the directional bias of distance estimates and variability of responses. No significant difference was found between the sparse and cluttered environments, however due to the large amount of variance, one explanation is that some participants utilised the clutter objects as anchors to aid them, while others found them distracting. Under-setting of distances was found in all conditions and environments, as predicted. Having an ambient light source produced the most variable and inaccurate estimates of distance, whereas lighting positioned above the target reduced the mis-estimation of distances perceived.
Collapse
Affiliation(s)
| | - Paul B Hibbard
- Department of Psychology, University of Essex, Colchester, UK
| |
Collapse
|
2
|
Gurariy G, Mruczek REB, Snow JC, Caplovitz GP. Using High-Density Electroencephalography to Explore Spatiotemporal Representations of Object Categories in Visual Cortex. J Cogn Neurosci 2022; 34:967-987. [PMID: 35286384 PMCID: PMC9169880 DOI: 10.1162/jocn_a_01845] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Visual object perception involves neural processes that unfold over time and recruit multiple regions of the brain. Here, we use high-density EEG to investigate the spatiotemporal representations of object categories across the dorsal and ventral pathways. In , human participants were presented with images from two animate object categories (birds and insects) and two inanimate categories (tools and graspable objects). In , participants viewed images of tools and graspable objects from a different stimulus set, one in which a shape confound that often exists between these categories (elongation) was controlled for. To explore the temporal dynamics of object representations, we employed time-resolved multivariate pattern analysis on the EEG time series data. This was performed at the electrode level as well as in source space of two regions of interest: one encompassing the ventral pathway and another encompassing the dorsal pathway. Our results demonstrate shape, exemplar, and category information can be decoded from the EEG signal. Multivariate pattern analysis within source space revealed that both dorsal and ventral pathways contain information pertaining to shape, inanimate object categories, and animate object categories. Of particular interest, we note striking similarities obtained in both ventral stream and dorsal stream regions of interest. These findings provide insight into the spatio-temporal dynamics of object representation and contribute to a growing literature that has begun to redefine the traditional role of the dorsal pathway.
Collapse
|
3
|
Needham A, Wisher I, Langley A, Amy M, Little A. Art by firelight? Using experimental and digital techniques to explore Magdalenian engraved plaquette use at Montastruc (France). PLoS One 2022; 17:e0266146. [PMID: 35442964 PMCID: PMC9020732 DOI: 10.1371/journal.pone.0266146] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/15/2022] [Indexed: 11/29/2022] Open
Abstract
Palaeolithic stone plaquettes are a type of mobiliary art featuring engravings and recovered primarily from Magdalenian sites, where they can number from single finds to several thousand examples. Where context is available, they demonstrate complex traces of use, including surface refreshing, heating, and fragmentation. However, for plaquettes with limited or no archaeological context, research tends to gravitate toward their engraved surfaces. This paper focuses on 50 limestone plaquettes excavated by Peccadeau de l'Isle from Montastruc, a Magdalenian rockshelter site in southern France with limited archaeological context; a feature common to many art bearing sites excavated across the 19th and early 20th Centuries. Plaquette use at Montastruc was explored via a programme of microscopy, 3D modelling, colour enhancement using DStretch©, virtual reality (VR) modelling, and experimental archaeology, the latter focusing on limestone heating related to different functional and non-functional uses. While the limited archaeological context available ensures the results remain only indicative, the data generated suggests plaquettes from Montastruc were likely positioned in proximity to hearths during low ambient light conditions. The interaction of engraved stone and roving fire light made engraved forms appear dynamic and alive, suggesting this may have been important in their use. Human neurology is particularly attuned to interpreting shifting light and shadow as movement and identifying visually familiar forms in such varying light conditions through mechanisms such as pareidolic experience. This interpretation encourages a consideration of the possible conceptual connections between art made and experienced in similar circumstances, such as parietal art in dark cave environments. The toolset used to investigate the Montastruc assemblage may have application to other collections of plaquettes, particularly those with limited associated context.
Collapse
Affiliation(s)
- Andy Needham
- YEAR Centre, Department of Archaeology, University of York, York, United Kingdom
| | - Izzy Wisher
- Department of Archaeology, Durham University, Durham, United Kingdom
| | - Andrew Langley
- YEAR Centre, Department of Archaeology, University of York, York, United Kingdom
| | - Matthew Amy
- YEAR Centre, Department of Archaeology, University of York, York, United Kingdom
| | - Aimée Little
- YEAR Centre, Department of Archaeology, University of York, York, United Kingdom
| |
Collapse
|
4
|
Li Z. Unique Neural Activity Patterns Among Lower Order Cortices and Shared Patterns Among Higher Order Cortices During Processing of Similar Shapes With Different Stimulus Types. Iperception 2021; 12:20416695211018222. [PMID: 34104383 PMCID: PMC8161881 DOI: 10.1177/20416695211018222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 04/28/2021] [Indexed: 11/16/2022] Open
Abstract
We investigated the neural mechanism of the processing of three-dimensional (3D) shapes defined by disparity and perspective. We measured blood oxygenation level-dependent signals as participants viewed and classified 3D images of convex-concave shapes. According to the cue (disparity or perspective) and element type (random dots or black and white dotted lines), three types of stimuli were used: random dot stereogram, black and white dotted lines with perspective, and black and white dotted lines with binocular disparity. The blood oxygenation level-dependent images were then classified by multivoxel pattern analysis. To identify areas selective to shape, we assessed convex-concave classification accuracy with classifiers trained and tested using signals evoked by the same stimulus type (same cue and element type). To identify cortical regions with similar neural activity patterns regardless of stimulus type, we assessed the convex-concave classification accuracy of transfer classification in which classifiers were trained and tested using different stimulus types (different cues or element types). Classification accuracy using the same stimulus type was high in the early visual areas and subregions of the intraparietal sulcus (IPS), whereas transfer classification accuracy was high in the dorsal subregions of the IPS. These results indicate that the early visual areas process the specific features of stimuli, whereas the IPS regions perform more generalized processing of 3D shapes, independent of a specific stimulus type.
Collapse
Affiliation(s)
- Zhen Li
- Department of Psychology, The University of Hong Kong, Hong Kong, China; Graduate School of Engineering, Kochi University of Technology, Kochi, Japan
| |
Collapse
|
5
|
Erlikhman G, Caplovitz GP, Gurariy G, Medina J, Snow JC. Towards a unified perspective of object shape and motion processing in human dorsal cortex. Conscious Cogn 2018; 64:106-120. [PMID: 29779844 DOI: 10.1016/j.concog.2018.04.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/20/2018] [Accepted: 04/26/2018] [Indexed: 01/06/2023]
Abstract
Although object-related areas were discovered in human parietal cortex a decade ago, surprisingly little is known about the nature and purpose of these representations, and how they differ from those in the ventral processing stream. In this article, we review evidence for the unique contribution of object areas of dorsal cortex to three-dimensional (3-D) shape representation, the localization of objects in space, and in guiding reaching and grasping actions. We also highlight the role of dorsal cortex in form-motion interaction and spatiotemporal integration, possible functional relationships between 3-D shape and motion processing, and how these processes operate together in the service of supporting goal-directed actions with objects. Fundamental differences between the nature of object representations in the dorsal versus ventral processing streams are considered, with an emphasis on how and why dorsal cortex supports veridical (rather than invariant) representations of objects to guide goal-directed hand actions in dynamic visual environments.
Collapse
Affiliation(s)
| | | | - Gennadiy Gurariy
- Department of Psychology, University of Nevada, Reno, USA; Department of Psychology, University of Wisconsin, Milwaukee, USA
| | - Jared Medina
- Department of Psychological and Brain Sciences, University of Delaware, USA
| | | |
Collapse
|
6
|
Mizutani S, Usui N, Yokota T, Mizusawa H, Taira M, Katsuyama N. Depth perception from moving cast shadow in macaque monkey. Behav Brain Res 2015; 288:63-70. [PMID: 25882723 DOI: 10.1016/j.bbr.2015.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 04/02/2015] [Accepted: 04/04/2015] [Indexed: 11/26/2022]
Abstract
In the present study, we investigate whether the macaque monkey can perceive motion in depth using a moving cast shadow. To accomplish this, we conducted two experiments. In the first experiment, an adult Japanese monkey was trained in a motion discrimination task in depth by binocular disparity. A square was presented on the display so that it appeared with a binocular disparity of 0.12 degrees (initial position), and moved toward (approaching) or away from (receding) the monkey for 1s. The monkey was trained to discriminate the approaching and receding motion of the square by GO/delayed GO-type responses. The monkey showed a significantly high accuracy rate in the task, and the performance was maintained when the position, color, and shape of the moving object were changed. In the next experiment, the change in the disparity was gradually decreased in the motion discrimination task. The results showed that the performance of the monkey declined as the distance of the approaching and receding motion of the square decreased from the initial position. However, when a moving cast shadow was added to the stimulus, the monkey responded to the motion in depth induced by the cast shadow in the same way as by binocular disparity; the reward was delivered randomly or given in all trials to prevent the learning of the 2D motion of the shadow in the frontal plane. These results suggest that the macaque monkey can perceive motion in depth using a moving cast shadow as well as using binocular disparity.
Collapse
Affiliation(s)
- Saneyuki Mizutani
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Department of Cognitive Neurobiology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan
| | - Nobuo Usui
- Department of Cognitive Neurobiology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takanori Yokota
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan
| | | | - Masato Taira
- Department of Cognitive Neurobiology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan
| | - Narumi Katsuyama
- Department of Cognitive Neurobiology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan.
| |
Collapse
|
7
|
Song WH, Han DH, Shim HJ. Comparison of brain activation in response to two dimensional and three dimensional on-line games. Psychiatry Investig 2013; 10:115-20. [PMID: 23798958 PMCID: PMC3687044 DOI: 10.4306/pi.2013.10.2.115] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 11/07/2012] [Accepted: 11/20/2012] [Indexed: 01/12/2023] Open
Abstract
OBJECTIVE The present study assessed the difference in the brain activity of professional gamers (excessive players, but not addicts) in response to playing a 3-dimensional online game with an improved interface. METHODS Twenty-three StarCraft I pro gamers and 16 StarCraft II pro gamers were recruited at Chung Ang University Medical Center. Brain activity in response to StarCraft I or II cues was assessed with a 1.5 Tesla Espree MRI scanner. RESULTS StarCraft I pro gamers showed significantly greater activity in 4 clusters in response to the video game cues compared to StarCraft II pro gamers: right superior frontal gyrus, right medial frontal gyrus, right occipital lobe, and left medial frontal gyrus. StarCraft II pro gamers showed significantly greater activity in 3 clusters in response to the video game cues compared to StarCraft I pro gamers: left middle frontal gyrus, left temporal fusiform gyrus and left cerebellum. DISCUSSION This is the first study to show the difference in brain activity between gamers playing either a 2-dimensional or 3-dimensional online game. Current brain imaging studies may confirm the pro gamers' experience when playing StarCraft II, a 3-dimensional game with an improved interface, relative to playing StarCraft I.
Collapse
Affiliation(s)
- Woo Hyun Song
- Department of Psychiatry, Chung-Ang University Hospital, Seoul, Republic of Korea
| | - Doug Hyun Han
- Department of Psychiatry, Chung-Ang University Hospital, Seoul, Republic of Korea
| | - Hyung Jin Shim
- Department of Radiology, Chung-Ang University Hospital, Seoul, Republic of Korea
| |
Collapse
|