1
|
Li J, Hiersche KJ, Saygin ZM. Demystifying visual word form area visual and nonvisual response properties with precision fMRI. iScience 2024; 27:111481. [PMID: 39759006 PMCID: PMC11696768 DOI: 10.1016/j.isci.2024.111481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 06/05/2024] [Accepted: 11/22/2024] [Indexed: 01/07/2025] Open
Abstract
The visual word form area (VWFA) is a region in the left ventrotemporal cortex (VTC) whose specificity remains contentious. Using precision fMRI, we examine the VWFA's responses to numerous visual and nonvisual stimuli, comparing them to adjacent category-selective visual regions and regions involved in language and attentional demand. We find that VWFA responds moderately to non-word visual stimuli, but is unique within VTC in its pronounced selectivity for visual words. Interestingly, the VWFA is also the only category-selective visual region engaged in auditory language, unlike the ubiquitous attentional demand effect throughout the VTC. However, this language selectivity is dwarfed by its visual responses even to nonpreferred categories, indicating the VWFA is not a core (amodal) language region. We also observed two additional auditory language VTC clusters, but these had no specificity for visual words. Our detailed investigation clarifies longstanding controversies about the landscape of visual and auditory language functionality within VTC.
Collapse
Affiliation(s)
- Jin Li
- Department of Psychology, The Ohio State University, Columbus, OH 43210, USA
- Center for Cognitive and Behavioral Brain Imaging, The Ohio State University, Columbus, OH 43210, USA
- School of Psychology, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Kelly J. Hiersche
- Department of Psychology, The Ohio State University, Columbus, OH 43210, USA
- Center for Cognitive and Behavioral Brain Imaging, The Ohio State University, Columbus, OH 43210, USA
| | - Zeynep M. Saygin
- Department of Psychology, The Ohio State University, Columbus, OH 43210, USA
- Center for Cognitive and Behavioral Brain Imaging, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
2
|
Agrawal A, Dehaene S. Cracking the neural code for word recognition in convolutional neural networks. PLoS Comput Biol 2024; 20:e1012430. [PMID: 39241019 PMCID: PMC11410253 DOI: 10.1371/journal.pcbi.1012430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 09/18/2024] [Accepted: 08/19/2024] [Indexed: 09/08/2024] Open
Abstract
Learning to read places a strong challenge on the visual system. Years of expertise lead to a remarkable capacity to separate similar letters and encode their relative positions, thus distinguishing words such as FORM and FROM, invariantly over a large range of positions, sizes and fonts. How neural circuits achieve invariant word recognition remains unknown. Here, we address this issue by recycling deep neural network models initially trained for image recognition. We retrain them to recognize written words and then analyze how reading-specialized units emerge and operate across the successive layers. With literacy, a small subset of units becomes specialized for word recognition in the learned script, similar to the visual word form area (VWFA) in the human brain. We show that these units are sensitive to specific letter identities and their ordinal position from the left or the right of a word. The transition from retinotopic to ordinal position coding is achieved by a hierarchy of "space bigram" unit that detect the position of a letter relative to a blank space and that pool across low- and high-frequency-sensitive units from early layers of the network. The proposed scheme provides a plausible neural code for written words in the VWFA, and leads to predictions for reading behavior, error patterns, and the neurophysiology of reading.
Collapse
Affiliation(s)
- Aakash Agrawal
- Cognitive Neuroimaging Unit, CEA, INSERM U 992, Université Paris-Saclay, NeuroSpin center, Gif/Yvette, France
| | - Stanislas Dehaene
- Cognitive Neuroimaging Unit, CEA, INSERM U 992, Université Paris-Saclay, NeuroSpin center, Gif/Yvette, France
- Collège de France, Université Paris Sciences Lettres (PSL), Paris, France
| |
Collapse
|
3
|
Dalski A, Kular H, Jorgensen JG, Grill-Spector K, Grotheer M. Both mOTS-words and pOTS-words prefer emoji stimuli over text stimuli during a lexical judgment task. Cereb Cortex 2024; 34:bhae339. [PMID: 39191663 PMCID: PMC11349430 DOI: 10.1093/cercor/bhae339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/12/2024] [Accepted: 07/13/2024] [Indexed: 08/29/2024] Open
Abstract
The visual word form area in the occipitotemporal sulcus (here OTS-words) is crucial for reading and shows a preference for text stimuli. We hypothesized that this text preference may be driven by lexical processing. Hence, we performed three fMRI experiments (n = 15), systematically varying participants' task and stimulus, and separately evaluated middle mOTS-words and posterior pOTS-words. Experiment 1 contrasted text with other visual stimuli to identify both OTS-words subregions. Experiment 2 utilized an fMRI adaptation paradigm, presenting compound words as texts or emojis. In experiment 3, participants performed a lexical or color judgment task on compound words in text or emoji format. In experiment 2, pOTS-words, but not mOTS-words, showed fMRI adaptation for compound words in both formats. In experiment 3, both subregions showed higher responses to compound words in emoji format. Moreover, mOTS-words showed higher responses during the lexical judgment task and a task-stimulus interaction. Multivariate analyses revealed that distributed responses in pOTS-words encode stimulus and distributed responses in mOTS-words encode stimulus and task. Together, our findings suggest that the function of the OTS-words subregions goes beyond the specific visual processing of text and that these regions are flexibly recruited whenever semantic meaning needs to be assigned to visual input.
Collapse
Affiliation(s)
- Alexia Dalski
- Department of Psychology, Philipps-Universität Marburg, Gutenbergstraße 18, Marburg 35032, Germany
- Center for Mind, Brain and Behavior—CMBB, Philipps-Universität Marburg, Justus-Liebig-Universität Giessen and Technische Universität Darmstadt Hans-Meerwein-Straße 6, Marburg 35032, Germany
| | - Holly Kular
- Department of Psychology, Stanford University, 450 Jane Stanford Way, Stanford, CA 94305, United States
| | - Julia G Jorgensen
- Department of Psychology, Stanford University, 450 Jane Stanford Way, Stanford, CA 94305, United States
| | - Kalanit Grill-Spector
- Department of Psychology, Stanford University, 450 Jane Stanford Way, Stanford, CA 94305, United States
- Wu Tsai Neurosciences Institute, Stanford University, 288 Stanford Drive, Stanford, CA 94305, United States
| | - Mareike Grotheer
- Department of Psychology, Philipps-Universität Marburg, Gutenbergstraße 18, Marburg 35032, Germany
- Center for Mind, Brain and Behavior—CMBB, Philipps-Universität Marburg, Justus-Liebig-Universität Giessen and Technische Universität Darmstadt Hans-Meerwein-Straße 6, Marburg 35032, Germany
| |
Collapse
|
4
|
Hiersche KJ, Schettini E, Li J, Saygin ZM. Functional dissociation of the language network and other cognition in early childhood. Hum Brain Mapp 2024; 45:e26757. [PMID: 38888027 PMCID: PMC11184366 DOI: 10.1002/hbm.26757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/20/2024] Open
Abstract
Is language distinct from other cognition during development? Does neural machinery for language emerge from general-purpose neural mechanisms, becoming tuned for language after years of experience and maturation? Answering these questions will shed light on the origins of domain-specificity in the brain. We address these questions using precision fMRI, scanning young children (35 months to 9 years of age) on an auditory language localizer, spatial working memory localizer (engaging the domain-general multiple demand [MD] network), and a resting-state scan. We create subject-specific functional regions of interest for each network and examine their selectivity, specificity, and functional connectivity. We find young children show domain-specific, left-lateralized language activation, and that the language network is not responsive to domain-general cognitive load. Additionally, the cortically adjacent MD network is selective to cognitive load, but not to language. These networks show higher within versus between-network functional connectivity. This connectivity is stable across ages (examined cross-sectionally and longitudinally), whereas language responses increase with age and across time within subject, reflecting a domain-specific developmental change. Overall, we provide evidence for a double dissociation of the language and MD network throughout development, in both their function and connectivity. These findings suggest that domain-specificity, even for uniquely human cognition like language, develops early and distinctly from mechanisms that presumably support other human cognition.
Collapse
Affiliation(s)
- K. J. Hiersche
- Department of PsychologyThe Ohio State UniversityColumbusOhioUSA
- Center for Cognitive and Behavioral Brain Imaging, The Ohio State UniversityColumbusOhioUSA
| | - E. Schettini
- Department of PsychologyThe Ohio State UniversityColumbusOhioUSA
- Center for Cognitive and Behavioral Brain Imaging, The Ohio State UniversityColumbusOhioUSA
| | - J. Li
- Department of PsychologyThe Ohio State UniversityColumbusOhioUSA
- Center for Cognitive and Behavioral Brain Imaging, The Ohio State UniversityColumbusOhioUSA
| | - Z. M. Saygin
- Department of PsychologyThe Ohio State UniversityColumbusOhioUSA
- Center for Cognitive and Behavioral Brain Imaging, The Ohio State UniversityColumbusOhioUSA
| |
Collapse
|
5
|
Saccone EJ, Tian M, Bedny M. Developing cortex is functionally pluripotent: Evidence from blindness. Dev Cogn Neurosci 2024; 66:101360. [PMID: 38394708 PMCID: PMC10899073 DOI: 10.1016/j.dcn.2024.101360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/25/2024] [Accepted: 02/19/2024] [Indexed: 02/25/2024] Open
Abstract
How rigidly does innate architecture constrain function of developing cortex? What is the contribution of early experience? We review insights into these questions from visual cortex function in people born blind. In blindness, occipital cortices are active during auditory and tactile tasks. What 'cross-modal' plasticity tells us about cortical flexibility is debated. On the one hand, visual networks of blind people respond to higher cognitive information, such as sentence grammar, suggesting drastic repurposing. On the other, in line with 'metamodal' accounts, sighted and blind populations show shared domain preferences in ventral occipito-temporal cortex (vOTC), suggesting visual areas switch input modality but perform the same or similar perceptual functions (e.g., face recognition) in blindness. Here we bring these disparate literatures together, reviewing and synthesizing evidence that speaks to whether visual cortices have similar or different functions in blind and sighted people. Together, the evidence suggests that in blindness, visual cortices are incorporated into higher-cognitive (e.g., fronto-parietal) networks, which are a major source long-range input to the visual system. We propose the connectivity-constrained experience-dependent account. Functional development is constrained by innate anatomical connectivity, experience and behavioral needs. Infant cortex is pluripotent, the same anatomical constraints develop into different functional outcomes.
Collapse
Affiliation(s)
- Elizabeth J Saccone
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, USA.
| | - Mengyu Tian
- Center for Educational Science and Technology, Beijing Normal University at Zhuhai, China
| | - Marina Bedny
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
6
|
Namgung E, Kim YH, Lee EJ, Sasaki Y, Watanabe T, Kang DW. Functional connectivity interacts with visual perceptual learning for visual field recovery in chronic stroke. Sci Rep 2024; 14:3247. [PMID: 38332042 PMCID: PMC10853510 DOI: 10.1038/s41598-024-52778-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/23/2024] [Indexed: 02/10/2024] Open
Abstract
A reciprocal relationship between perceptual learning and functional brain changes towards perceptual learning effectiveness has been demonstrated previously; however, the underlying neural correlates remain unclear. Further, visual perceptual learning (VPL) is implicated in visual field defect (VFD) recovery following chronic stroke. We investigated resting-state functional connectivity (RSFC) in the visual cortices associated with mean total deviation (MTD) scores for VPL-induced VFD recovery in chronic stroke. Patients with VFD due to chronic ischemic stroke in the visual cortex received 24 VPL training sessions over 2 months, which is a dual discrimination task of orientation and letters. At baseline and two months later, the RSFC in the ipsilesional, interhemispheric, and contralesional visual cortices and MTD scores in the affected hemi-field were assessed. Interhemispheric visual RSFC at baseline showed the strongest correlation with MTD scores post-2-month VPL training. Notably, only the subgroup with high baseline interhemispheric visual RSFC showed significant VFD improvement following the VPL training. The interactions between the interhemispheric visual RSFC at baseline and VPL led to improvement in MTD scores and largely influenced the degree of VFD recovery. The interhemispheric visual RSFC at baseline could be a promising brain biomarker for the effectiveness of VPL-induced VFD recovery.
Collapse
Affiliation(s)
- Eun Namgung
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, South Korea
| | | | - Eun-Jae Lee
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Yuka Sasaki
- Department of Cognitive, Linguistic and Psychological Sciences, Brown University, Providence, USA
| | - Takeo Watanabe
- Department of Cognitive, Linguistic and Psychological Sciences, Brown University, Providence, USA
| | - Dong-Wha Kang
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.
| |
Collapse
|
7
|
Dalski A, Kular H, Jorgensen JG, Grill-Spector K, Grotheer M. Both mOTS-words and pOTS-words prefer emoji stimuli over text stimuli during a reading task. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.07.565794. [PMID: 37986766 PMCID: PMC10659328 DOI: 10.1101/2023.11.07.565794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
The visual word form area in the occipitotemporal sulcus (OTS), here referred to as OTS-words, responds more strongly to text than other visual stimuli and is crucial for reading. We hypothesized, that this text preference may be driven by a preference for reading tasks, as in most prior fMRI studies only the text stimuli were readable. Hence, we performed three fMRI experiments (N=15) and systematically varied the participant's task and the stimulus, investigating mOTS-words and pOTS-words subregions. In experiment 1, we contrasted text stimuli with non-readable visual stimuli (faces, limbs, houses, objects). Experiment 2 utilized an fMRI adaptation paradigm, presenting compound words in text or emoji formats. In experiment 3, participants performed a reading or a color task on compound words in text or emoji format. Using experiment 1 data, we identified mOTS-words and pOTS-words by contrasting texts with non-readable stimuli. In experiment 2, pOTS-words, but not mOTS-words, showed fMRI adaptation for compound words in both text and emoji formats. In experiment 3, surprisingly, both subregions showed higher responses to compound words in emoji than text format. Moreover, mOTS-words showed higher responses during the reading than the color task and a task-stimulus interaction. Multivariate analyses revealed that distributed responses in pOTS-words encode the visual stimulus, while responses in mOTS-words encode both stimulus and task. Together, our findings suggest that the function of the OTS-words subregions goes beyond the specific visual processing of text and that these regions are flexibly recruited whenever semantic meaning needs to be assigned to visual input.
Collapse
Affiliation(s)
- Alexia Dalski
- Department of Psychology, Philipps-Universität Marburg, Marburg 35039, Germany
- Center for Mind, Brain and Behavior – CMBB, Philipps-Universität Marburg and Justus-Liebig-Universität Giessen, Marburg 35032, Germany
| | - Holly Kular
- Department of Psychology, Stanford University, Stanford, CA 94305, USA
| | | | - Kalanit Grill-Spector
- Department of Psychology, Stanford University, Stanford, CA 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, CA 94305, USA
| | - Mareike Grotheer
- Department of Psychology, Philipps-Universität Marburg, Marburg 35039, Germany
- Center for Mind, Brain and Behavior – CMBB, Philipps-Universität Marburg and Justus-Liebig-Universität Giessen, Marburg 35032, Germany
| |
Collapse
|
8
|
Dȩbska A, Wójcik M, Chyl K, Dziȩgiel-Fivet G, Jednoróg K. Beyond the Visual Word Form Area - a cognitive characterization of the left ventral occipitotemporal cortex. Front Hum Neurosci 2023; 17:1199366. [PMID: 37576470 PMCID: PMC10416454 DOI: 10.3389/fnhum.2023.1199366] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/10/2023] [Indexed: 08/15/2023] Open
Abstract
The left ventral occipitotemporal cortex has been traditionally viewed as a pathway for visual object recognition including written letters and words. Its crucial role in reading was strengthened by the studies on the functionally localized "Visual Word Form Area" responsible for processing word-like information. However, in the past 20 years, empirical studies have challenged the assumptions of this brain region as processing exclusively visual or even orthographic stimuli. In this review, we aimed to present the development of understanding of the left ventral occipitotemporal cortex from the visually based letter area to the modality-independent symbolic language related region. We discuss theoretical and empirical research that includes orthographic, phonological, and semantic properties of language. Existing results showed that involvement of the left ventral occipitotemporal cortex is not limited to unimodal activity but also includes multimodal processes. The idea of the integrative nature of this region is supported by the broad functional and structural connectivity with language-related and attentional brain networks. We conclude that although the function of the area is not yet fully understood in human cognition, its role goes beyond visual word form processing. The left ventral occipitotemporal cortex seems to be crucial for combining higher-level language information with abstract forms that convey meaning independently of modality.
Collapse
Affiliation(s)
- Agnieszka Dȩbska
- Laboratory of Language Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Marta Wójcik
- Laboratory of Language Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Katarzyna Chyl
- Laboratory of Language Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
- The Educational Research Institute, Warsaw, Poland
| | - Gabriela Dziȩgiel-Fivet
- Laboratory of Language Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Katarzyna Jednoróg
- Laboratory of Language Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
9
|
Wang F, Nguyen QTH, Kaneshiro B, Hasak L, Wang AM, Toomarian EY, Norcia AM, McCandliss BD. Lexical and sublexical cortical tuning for print revealed by Steady-State Visual Evoked Potentials (SSVEPs) in early readers. Dev Sci 2023; 26:e13352. [PMID: 36413170 PMCID: PMC10881121 DOI: 10.1111/desc.13352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 10/27/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022]
Abstract
There are multiple levels of processing relevant to reading that vary in their visual, sublexical, and lexical orthographic processing demands. Segregating distinct cortical sources for each of these levels has been challenging in EEG studies of early readers. To address this challenge, we applied recent advances in analyzing high-density EEG using Steady-State Visual Evoked Potentials (SSVEPs) via data-driven Reliable Components Analysis (RCA) in a group of early readers spanning from kindergarten to second grade. Three controlled stimulus contrasts-familiar words versus unfamiliar pseudofonts, familiar words versus pseudowords, and pseudowords versus nonwords-were used to isolate coarse print tuning, lexical processing, and sublexical orthography-related processing, respectively. First, three overlapping yet distinct neural sources-left vOT, dorsal parietal, and primary visual cortex were revealed underlying coarse print tuning. Second, we segregated distinct cortical sources for the other two levels of processing: lexical fine tuning over occipito-temporal/parietal regions; sublexical orthographic fine tuning over left occipital regions. Finally, exploratory group analyses based on children's reading fluency suggested that coarse print tuning emerges early even in children with limited reading knowledge, while sublexical and higher-level lexical processing emerge only in children with sufficient reading knowledge. RESEARCH HIGHLIGHTS: Cognitive processes underlying coarse print tuning, sublexical, and lexical fine tuning were examined in beginning readers. Three overlapping yet distinct neural sources-left ventral occipito-temporal (vOT), left temporo-parietal, and primary visual cortex-were revealed underlying coarse print tuning. Responses to sublexical orthographic fine tuning were found over left occipital regions, while responses to higher-level linguistic fine tuning were found over occipito-temporal/parietal regions. Exploratory group analyses suggested that coarse print tuning emerges in children with limited reading knowledge, while sublexical and higher-level linguistic fine tuning effects emerge in children with sufficient reading knowledge.
Collapse
Affiliation(s)
- Fang Wang
- Graduate School of Education, Stanford University, Stanford, California, USA
| | | | - Blair Kaneshiro
- Graduate School of Education, Stanford University, Stanford, California, USA
| | - Lindsey Hasak
- Graduate School of Education, Stanford University, Stanford, California, USA
| | - Angie M. Wang
- Graduate School of Education, Stanford University, Stanford, California, USA
| | - Elizabeth Y. Toomarian
- Graduate School of Education, Stanford University, Stanford, California, USA
- Synapse School, Menlo Park, California, USA
| | - Anthony M. Norcia
- Department of Psychology, Stanford University, Stanford, California, USA
- Wu Tsai Neurosciences Institute, Stanford, California, USA
| | - Bruce D. McCandliss
- Graduate School of Education, Stanford University, Stanford, California, USA
| |
Collapse
|
10
|
White AL, Kay KN, Tang KA, Yeatman JD. Engaging in word recognition elicits highly specific modulations in visual cortex. Curr Biol 2023; 33:1308-1320.e5. [PMID: 36889316 PMCID: PMC10089978 DOI: 10.1016/j.cub.2023.02.042] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/26/2023] [Accepted: 02/13/2023] [Indexed: 03/09/2023]
Abstract
A person's cognitive state determines how their brain responds to visual stimuli. The most common such effect is a response enhancement when stimuli are task relevant and attended rather than ignored. In this fMRI study, we report a surprising twist on such attention effects in the visual word form area (VWFA), a region that plays a key role in reading. We presented participants with strings of letters and visually similar shapes, which were either relevant for a specific task (lexical decision or gap localization) or ignored (during a fixation dot color task). In the VWFA, the enhancement of responses to attended stimuli occurred only for letter strings, whereas non-letter shapes evoked smaller responses when attended than when ignored. The enhancement of VWFA activity was accompanied by strengthened functional connectivity with higher-level language regions. These task-dependent modulations of response magnitude and functional connectivity were specific to the VWFA and absent in the rest of visual cortex. We suggest that language regions send targeted excitatory feedback into the VWFA only when the observer is trying to read. This feedback enables the discrimination of familiar and nonsense words and is distinct from generic effects of visual attention.
Collapse
Affiliation(s)
- Alex L White
- Department of Neuroscience & Behavior, Barnard College, Columbia University, 76 Claremont Ave, New York, NY 10027, USA.
| | - Kendrick N Kay
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, 2021 6th Street SE, Minneapolis, MN 55455, USA
| | - Kenny A Tang
- Graduate School of Education and Department of Psychology, Stanford University, Division of Developmental-Behavioral Pediatrics, Stanford University School of Medicine, 520 Galvez Mall, Stanford, CA 94305, USA
| | - Jason D Yeatman
- Graduate School of Education and Department of Psychology, Stanford University, Division of Developmental-Behavioral Pediatrics, Stanford University School of Medicine, 520 Galvez Mall, Stanford, CA 94305, USA
| |
Collapse
|
11
|
Schettini E, Hiersche KJ, Saygin ZM. Individual Variability in Performance Reflects Selectivity of the Multiple Demand Network among Children and Adults. J Neurosci 2023; 43:1940-1951. [PMID: 36750368 PMCID: PMC10027032 DOI: 10.1523/jneurosci.1460-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 12/19/2022] [Accepted: 01/25/2023] [Indexed: 02/09/2023] Open
Abstract
Executive function (EF) is essential for humans to effectively engage in cognitively demanding tasks. In adults, EF is subserved by frontoparietal regions in the multiple demand (MD) network, which respond to various cognitively demanding tasks. However, children initially show poor EF and prolonged development. Do children recruit the same network as adults? Is it functionally and connectionally distinct from adjacent language cortex, as in adults? And is this activation or connectivity dependent on age or ability? We examine task-dependent (spatial working memory and passive language tasks) and resting state functional data in 44 adults (18-38 years, 68% female) and 37 children (4-12 years, 35% female). Subject-specific functional ROIs (ss-fROIs) show bilateral MD network activation in children. In both children and adults, these MD ss-fROIs are not recruited for linguistic processing and are connectionally distinct from language ss-fROIs. While MD activation was lower in children than in adults (even in motion- and performance-matched groups), both showed increasing MD activation with better performance, especially in right hemisphere ss-fROIs. We observe this relationship even when controlling for age, cross-sectionally and in a small longitudinal sample of children. These data suggest that the MD network is selective to cognitive demand in children, is distinct from adjacent language cortex, and increases in selectivity as performance improves. These findings show that neural structures subserving domain-general EF emerge early and are sensitive to ability even in children. This research advances understanding of how high-level human cognition emerges and could inform interventions targeting cognitive control.SIGNIFICANCE STATEMENT This study provides evidence that young children already show differentiated brain network organization between regions that process cognitive demand and language. These data support the hypothesis that children recruit a similar network as adults to process cognitive demand; and despite immature characteristics, children's selectivity looks more adult-like as their executive function ability increases. Mapping early stages of network organization furthers our understanding of the functional architecture underlying domain-general executive function. Determining typical variability underlying cognitive processing across developmental periods helps establish a threshold for executive dysfunction. Early markers of dysfunction are necessary for effective early identification, prevention, and intervention efforts for individuals struggling with deficits in processing cognitive demand.
Collapse
Affiliation(s)
- Elana Schettini
- Department of Psychology, Ohio State University, Columbus, Ohio 43212
- Center for Cognitive and Behavioral Brain Imaging, Ohio State University, Columbus, Ohio 43212
| | - Kelly J Hiersche
- Department of Psychology, Ohio State University, Columbus, Ohio 43212
- Center for Cognitive and Behavioral Brain Imaging, Ohio State University, Columbus, Ohio 43212
| | - Zeynep M Saygin
- Department of Psychology, Ohio State University, Columbus, Ohio 43212
- Center for Cognitive and Behavioral Brain Imaging, Ohio State University, Columbus, Ohio 43212
| |
Collapse
|
12
|
Cho FTH, Tan CY, Wong YK. Role of line junctions in expert object recognition: The case of musical notation. Psychophysiology 2023; 60:e14236. [PMID: 36653897 DOI: 10.1111/psyp.14236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 11/07/2022] [Accepted: 11/10/2022] [Indexed: 01/20/2023]
Abstract
Line junctions are well-known to be important for real-world object recognition, and sensitivity to line junctions is enhanced with perceptual experience with an object category. However, it remains unclear whether these very simple visual features are involved in expert object representations at the neural level, and if yes, at what level(s) they are involved. In this EEG study, 31 music reading experts and 31 novices performed a one-back task with intact musical notation, musical notation with line junctions removed and pseudo-letters. We observed more separable neural representations of musical notation from pseudo-letter for experts than for novices when line junctions were present and during 180-280 ms after stimulus onset. Also, the presence of line junctions was better decoded in experts than in novices during 320-580 ms, and the decoding accuracy in this time window predicted the behavioral recognition advantage of musical notation when line junctions were present. These suggest that, with perceptual expertise, line junctions are more involved in category selective representation of objects, and are more explicitly represented in later stages of processing to support expert recognition performance.
Collapse
Affiliation(s)
- Felix Tze-Hei Cho
- Department of Educational Psychology, Faculty of Education, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Cheng Yong Tan
- Faculty of Education, University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Yetta Kwailing Wong
- Department of Educational Psychology, Faculty of Education, The Chinese University of Hong Kong, Shatin, Hong Kong.,School of Psychology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| |
Collapse
|
13
|
Li J, Kean H, Fedorenko E, Saygin Z. Intact reading ability despite lacking a canonical visual word form area in an individual born without the left superior temporal lobe. Cogn Neuropsychol 2023; 39:249-275. [PMID: 36653302 DOI: 10.1080/02643294.2023.2164923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The visual word form area (VWFA), a region canonically located within left ventral temporal cortex (VTC), is specialized for orthography in literate adults presumbly due to its connectivity with frontotemporal language regions. But is a typical, left-lateralized language network critical for the VWFA's emergence? We investigated this question in an individual (EG) born without the left superior temporal lobe but who has normal reading ability. EG showed canonical typical face-selectivity bilateraly but no wordselectivity either in right VWFA or in the spared left VWFA. Moreover, in contrast with the idea that the VWFA is simply part of the language network, no part of EG's VTC showed selectivity to higher-level linguistic processing. Interestingly, EG's VWFA showed reliable multivariate patterns that distinguished words from other categories. These results suggest that a typical left-hemisphere language network is necessary for acanonical VWFA, and that orthographic processing can otherwise be supported by a distributed neural code.
Collapse
Affiliation(s)
- Jin Li
- Department of Psychology, The Ohio State University, Columbus, OH, USA
| | - Hope Kean
- Department of Brain and Cognitive Sciences / McGovern Institute for Brain Research, MIT, Cambridge, MA, USA
| | - Evelina Fedorenko
- Department of Brain and Cognitive Sciences / McGovern Institute for Brain Research, MIT, Cambridge, MA, USA
| | - Zeynep Saygin
- Department of Psychology, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
14
|
Janini D, Hamblin C, Deza A, Konkle T. General object-based features account for letter perception. PLoS Comput Biol 2022; 18:e1010522. [PMID: 36155642 PMCID: PMC9536565 DOI: 10.1371/journal.pcbi.1010522] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 10/06/2022] [Accepted: 08/29/2022] [Indexed: 11/30/2022] Open
Abstract
After years of experience, humans become experts at perceiving letters. Is this visual capacity attained by learning specialized letter features, or by reusing general visual features previously learned in service of object categorization? To explore this question, we first measured the perceptual similarity of letters in two behavioral tasks, visual search and letter categorization. Then, we trained deep convolutional neural networks on either 26-way letter categorization or 1000-way object categorization, as a way to operationalize possible specialized letter features and general object-based features, respectively. We found that the general object-based features more robustly correlated with the perceptual similarity of letters. We then operationalized additional forms of experience-dependent letter specialization by altering object-trained networks with varied forms of letter training; however, none of these forms of letter specialization improved the match to human behavior. Thus, our findings reveal that it is not necessary to appeal to specialized letter representations to account for perceptual similarity of letters. Instead, we argue that it is more likely that the perception of letters depends on domain-general visual features. For over a century, scientists have conducted behavioral experiments to investigate how the visual system recognizes letters, but it has proven difficult to propose a model of the feature space underlying this capacity. Here we leveraged recent advances in machine learning to model a wide variety of features ranging from specialized letter features to general object-based features. Across two large-scale behavioral experiments we find that general object-based features account well for letter perception, and that adding letter specialization did not improve the correspondence to human behavior. It is plausible that the ability to recognize letters largely relies on general visual features unaltered by letter learning.
Collapse
Affiliation(s)
- Daniel Janini
- Department of Psychology, Harvard University, Cambridge, Massachusetts, United States of America
- * E-mail:
| | - Chris Hamblin
- Department of Psychology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Arturo Deza
- Department of Psychology, Harvard University, Cambridge, Massachusetts, United States of America
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Talia Konkle
- Department of Psychology, Harvard University, Cambridge, Massachusetts, United States of America
| |
Collapse
|
15
|
Ma X, Modersitzki N, Maurer U, Sommer W. Neural sensitivity to faces is increased by immersion into a novel ethnic environment: Evidence from ERPs. Psychophysiology 2022; 60:e14147. [PMID: 35819753 DOI: 10.1111/psyp.14147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 06/09/2022] [Accepted: 06/22/2022] [Indexed: 12/01/2022]
Abstract
Previous reports suggest that East-Asians may show larger face-elicited N170 components in the ERP as compared to Caucasian participants. Since the N170 can be modulated by perceptual expertise, such group differences may be accounted for by differential experience, for example, with logographic versus alphabetic scripts (script system hypothesis) or by exposure to abundant novel faces during the immersion into a new social and/or ethnic environment (social immersion hypothesis). We conducted experiments in Hong Kong and Berlin, recording ERPs in a series of one-back tasks, using same- and other-ethnicity face stimuli in upright and inverted orientation and doodle stimuli. In Hong Kong we tested local Chinese residents and foreign guest students who could not read the logographic script; in Berlin we tested German residents who could not read the logographic script and foreign Chinese visitors. In both experiments, we found significantly larger N170 amplitudes to faces, regardless of ethnicity, in the foreign than in the local groups. Moreover, this effect did not depend on stimulus orientation, suggesting that the N170 group differences do not reflect differences in configural visual processing. A group of short-term German residents in Berlin did not differ in N170 amplitude from long-term residents. Together, these findings indicate that the extensive confrontation with novel other-ethnicity faces during immersion in a foreign culture may enhance the neural response to faces, reflecting the short-term plasticity of the underlying neural system.
Collapse
Affiliation(s)
- Xiaoli Ma
- Institut für Psychologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Nick Modersitzki
- Abteilung Psychologie, Universität Bielefeld, Bielefeld, Germany
| | - Urs Maurer
- Department of Psychology, The Chinese University of Hong Kong, Hong Kong, China.,Brain and Mind Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Werner Sommer
- Institut für Psychologie, Humboldt-Universität zu Berlin, Berlin, Germany.,Department of Psychology, Zhejiang Normal University, Jin Hua, China
| |
Collapse
|
16
|
Feng X, Monzalvo K, Dehaene S, Dehaene-Lambertz G. Evolution of reading and face circuits during the first three years of reading acquisition. Neuroimage 2022; 259:119394. [PMID: 35718022 DOI: 10.1016/j.neuroimage.2022.119394] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/19/2022] [Accepted: 06/14/2022] [Indexed: 11/25/2022] Open
Abstract
Although words and faces activate neighboring regions in the fusiform gyrus, we lack an understanding of how such category selectivity emerges during development. To investigate the organization of reading and face circuits at the earliest stage of reading acquisition, we measured the fMRI responses to words, faces, houses, and checkerboards in three groups of 60 French children: 6-year-old pre-readers, 6-year-old beginning readers and 9-year-old advanced readers. The results showed that specific responses to written words were absent prior to reading, but emerged in beginning readers, irrespective of age. Likewise, specific responses to faces were barely visible in pre-readers and continued to evolve in the 9-year-olds, yet primarily driven by age rather than by schooling. Crucially, the sectors of ventral visual cortex that become specialized for words and faces harbored their own functional connectivity prior to reading acquisition: the VWFA with left-hemispheric spoken language areas, and the FFA with the contralateral region and the amygdalae. The results support the view that reading acquisition occurs through the recycling of a pre-existing but plastic circuit which, in pre-readers, already connects the VWFA site to other distant language areas. We argue that reading acquisition does not compete with the face system directly, through a pruning of preexisting face responses, but indirectly, by hindering the slow growth of face responses in the left hemisphere, thus increasing a pre-existing right hemispheric bias.
Collapse
Affiliation(s)
- Xiaoxia Feng
- Cognitive Neuroimaging Unit, CNRS ERL 9003, INSERM U992, CEA, Université Paris-Saclay, NeuroSpin center, 91191 Gif/Yvette, France
| | - Karla Monzalvo
- Cognitive Neuroimaging Unit, CNRS ERL 9003, INSERM U992, CEA, Université Paris-Saclay, NeuroSpin center, 91191 Gif/Yvette, France
| | - Stanislas Dehaene
- Cognitive Neuroimaging Unit, CNRS ERL 9003, INSERM U992, CEA, Université Paris-Saclay, NeuroSpin center, 91191 Gif/Yvette, France; Collège de France, Université PSL Paris Sciences Lettres, Paris, France
| | - Ghislaine Dehaene-Lambertz
- Cognitive Neuroimaging Unit, CNRS ERL 9003, INSERM U992, CEA, Université Paris-Saclay, NeuroSpin center, 91191 Gif/Yvette, France.
| |
Collapse
|
17
|
Planton S, Wang S, Bolger D, Bonnard M, Pattamadilok C. Effective connectivity of the left-ventral occipito-temporal cortex during visual word processing: Direct causal evidence from TMS-EEG co-registration. Cortex 2022; 154:167-183. [DOI: 10.1016/j.cortex.2022.06.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 12/19/2021] [Accepted: 06/02/2022] [Indexed: 11/29/2022]
|
18
|
Qu J, Pang Y, Liu X, Cao Y, Huang C, Mei L. Task modulates the orthographic and phonological representations in the bilateral ventral Occipitotemporal cortex. Brain Imaging Behav 2022; 16:1695-1707. [PMID: 35247162 DOI: 10.1007/s11682-022-00641-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2022] [Indexed: 11/25/2022]
Abstract
As a key area in word reading, the left ventral occipitotemporal cortex is proposed for abstract orthographic processing, and its middle part has even been labeled as the visual word form area. Because the definition of the VWFA largely varies and the reading task differs across studies, the function of the left ventral occipitotemporal cortex in word reading is continuingly debated on whether this region is specific for orthographic processing or be involved in an interactive framework. By using representational similarity analysis (RSA), this study examined information representation in the VWFA at the individual level and the modulatory effect of reading task. Twenty-four subjects were scanned while performing the explicit (i.e., the naming task) and implicit (i.e., the perceptual task) reading tasks. Activation analysis showed that the naming task elicited greater activation in regions related to phonological processing (e.g., the bilateral prefrontal cortex and temporoparietal cortex), while the perceptual task recruited greater activation in visual cortex and default mode network (e.g., the bilateral middle frontal gyrus, angular gyrus, and the right middle temporal gyrus). More importantly, RSA also showed that task modulated information representation in the bilateral anterior occipitotemporal cortex and VWFA. Specifically, ROI-based RSA revealed enhanced orthographic and phonological representations in the bilateral anterior fusiform cortex and VWFA in the naming task relative to the perceptual task. These results suggest that lexical representation in the VWFA is influenced by the demand of phonological processing, which supports the interactive account of the VWFA.
Collapse
Affiliation(s)
- Jing Qu
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, China
- School of Psychology, South China Normal University, Guangzhou, 510631, China
- Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, China
| | - Yingdan Pang
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, China
- School of Psychology, South China Normal University, Guangzhou, 510631, China
- Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, China
| | - Xiaoyu Liu
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, China
- School of Psychology, South China Normal University, Guangzhou, 510631, China
- Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, China
| | - Ying Cao
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, China
- School of Psychology, South China Normal University, Guangzhou, 510631, China
- Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, China
| | - Chengmei Huang
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, China
- School of Psychology, South China Normal University, Guangzhou, 510631, China
- Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, China
| | - Leilei Mei
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, China.
| |
Collapse
|
19
|
Li R, Mukadam N, Kiran S. Functional MRI evidence for reorganization of language networks after stroke. HANDBOOK OF CLINICAL NEUROLOGY 2022; 185:131-150. [PMID: 35078595 DOI: 10.1016/b978-0-12-823384-9.00007-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
In this chapter, we review fMRI evidence for language reorganization in individuals with poststroke aphasia. Several studies in the current literature have utilized fMRI as a tool to understand patterns of functional reorganization in poststroke aphasia. Consistent with previous models that have been proposed to explain the trajectory of language recovery, differential patterns of language processing and language recovery have been identified across individuals with poststroke aphasia in different stages of recovery. Overall, a global network breakdown typically occurs in the early stages of aphasia recovery, followed by normalization in "traditional" left hemisphere language networks. Depending on individual characteristics, right hemisphere regions and bilateral domain-general regions may be further recruited. The main takeaway of this chapter is that poststroke aphasia recovery does not depend on individual neural regions, but rather involves a complex interaction among regions in larger networks. Many of the unresolved issues and contrastive findings in the literature warrant further research with larger groups of participants and standard protocols of fMRI implementation.
Collapse
Affiliation(s)
- Ran Li
- Department of Speech, Language and Hearing Sciences, Boston University, Boston, MA, United States
| | - Nishaat Mukadam
- Department of Speech, Language and Hearing Sciences, Boston University, Boston, MA, United States
| | - Swathi Kiran
- Department of Speech, Language and Hearing Sciences, Boston University, Boston, MA, United States.
| |
Collapse
|
20
|
Neudorf J, Gould L, Mickleborough MJS, Ekstrand C, Borowsky R. Unique, Shared, and Dominant Brain Activation in Visual Word Form Area and Lateral Occipital Complex during Reading and Picture Naming. Neuroscience 2022; 481:178-196. [PMID: 34800577 DOI: 10.1016/j.neuroscience.2021.11.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 11/17/2022]
Abstract
Identifying printed words and pictures concurrently is ubiquitous in daily tasks, and so it is important to consider the extent to which reading words and naming pictures may share a cognitive-neurophysiological functional architecture. Two functional magnetic resonance imaging (fMRI) experiments examined whether reading along the left ventral occipitotemporal region (vOT; often referred to as a visual word form area, VWFA) has activation that is overlapping with referent pictures (i.e., both conditions significant and shared, or with one significantly more dominant) or unique (i.e., one condition significant, the other not), and whether picture naming along the right lateral occipital complex (LOC) has overlapping or unique activation relative to referent words. Experiment 1 used familiar regular and exception words (to force lexical reading) and their corresponding pictures in separate naming blocks, and showed dominant activation for pictures in the LOC, and shared activation in the VWFA for exception words and their corresponding pictures (regular words did not elicit significant VWFA activation). Experiment 2 controlled for visual complexity by superimposing the words and pictures and instructing participants to either name the word or the picture, and showed primarily shared activation in the VWFA and LOC regions for both word reading and picture naming, with some dominant activation for pictures in the LOC. Overall, these results highlight the importance of including exception words to force lexical reading when comparing to picture naming, and the significant shared activation in VWFA and LOC serves to challenge specialized models of reading or picture naming.
Collapse
Affiliation(s)
- Josh Neudorf
- Cognitive Neuroscience Lab, Department of Psychology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Layla Gould
- Division of Neurosurgery, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Marla J S Mickleborough
- Cognitive Neuroscience Lab, Department of Psychology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Chelsea Ekstrand
- Cognitive Neuroscience Lab, Department of Psychology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Ron Borowsky
- Cognitive Neuroscience Lab, Department of Psychology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; Division of Neurosurgery, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| |
Collapse
|
21
|
Branzi FM, Martin CD, Paz-Alonso PM. Task-Relevant Representations and Cognitive Control Demands Modulate Functional Connectivity from Ventral Occipito-Temporal Cortex During Object Recognition Tasks. Cereb Cortex 2021; 32:3068-3080. [PMID: 34918042 PMCID: PMC9290561 DOI: 10.1093/cercor/bhab401] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 12/02/2022] Open
Abstract
The left ventral occipito-temporal cortex (vOTC) supports extraction and processing of visual features. However, it has remained unclear whether left vOTC-based functional connectivity (FC) differs according to task-relevant representations (e.g., lexical, visual) and control demands imposed by the task, even when similar visual-semantic processing is required for object identification. Here, neural responses to the same set of pictures of meaningful objects were measured, while the type of task that participants had to perform (picture naming versus size-judgment task), and the level of cognitive control required by the picture naming task (high versus low interference contexts) were manipulated. Explicit retrieval of lexical representations in the picture naming task facilitated activation of lexical/phonological representations, modulating FC between left vOTC and dorsal anterior-cingulate-cortex/pre-supplementary-motor-area. This effect was not observed in the size-judgment task, which did not require explicit word-retrieval of object names. Furthermore, retrieving the very same lexical/phonological representation in the high versus low interference contexts during picture naming increased FC between left vOTC and left caudate. These findings support the proposal that vOTC functional specialization emerges from interactions with task-relevant brain regions.
Collapse
Affiliation(s)
- Francesca M Branzi
- Department of Psychological Sciences, Institute of Population Health, University of Liverpool, Liverpool L69 7ZA, UK.,MRC Cognition & Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, UK
| | - Clara D Martin
- BCBL. Basque Center on Cognition, Brain and Language, San Sebastian 20009, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao 48013, Spain
| | - Pedro M Paz-Alonso
- BCBL. Basque Center on Cognition, Brain and Language, San Sebastian 20009, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao 48013, Spain
| |
Collapse
|
22
|
Is human face recognition lateralized to the right hemisphere due to neural competition with left-lateralized visual word recognition? A critical review. Brain Struct Funct 2021; 227:599-629. [PMID: 34731327 DOI: 10.1007/s00429-021-02370-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 08/23/2021] [Indexed: 02/07/2023]
Abstract
The right hemispheric lateralization of face recognition, which is well documented and appears to be specific to the human species, remains a scientific mystery. According to a long-standing view, the evolution of language, which is typically substantiated in the left hemisphere, competes with the cortical space in that hemisphere available for visuospatial processes, including face recognition. Over the last decade, a specific hypothesis derived from this view according to which neural competition in the left ventral occipito-temporal cortex with selective representations of letter strings causes right hemispheric lateralization of face recognition, has generated considerable interest and research in the scientific community. Here, a systematic review of studies performed in various populations (infants, children, literate and illiterate adults, left-handed adults) and methodologies (behavior, lesion studies, (intra)electroencephalography, neuroimaging) offers little if any support for this reading lateralized neural competition hypothesis. Specifically, right-lateralized face-selective neural activity already emerges at a few months of age, well before reading acquisition. Moreover, consistent evidence of face recognition performance and its right hemispheric lateralization being modulated by literacy level during development or at adulthood is lacking. Given the absence of solid alternative hypotheses and the key role of neural competition in the sensory-motor cortices for selectivity of representations, learning, and plasticity, a revised language-related neural competition hypothesis for the right hemispheric lateralization of face recognition should be further explored in future research, albeit with substantial conceptual clarification and advances in methodological rigor.
Collapse
|
23
|
Distinct neural sources underlying visual word form processing as revealed by steady state visual evoked potentials (SSVEP). Sci Rep 2021; 11:18229. [PMID: 34521874 PMCID: PMC8440525 DOI: 10.1038/s41598-021-95627-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/21/2021] [Indexed: 11/29/2022] Open
Abstract
EEG has been central to investigations of the time course of various neural functions underpinning visual word recognition. Recently the steady-state visual evoked potential (SSVEP) paradigm has been increasingly adopted for word recognition studies due to its high signal-to-noise ratio. Such studies, however, have been typically framed around a single source in the left ventral occipitotemporal cortex (vOT). Here, we combine SSVEP recorded from 16 adult native English speakers with a data-driven spatial filtering approach—Reliable Components Analysis (RCA)—to elucidate distinct functional sources with overlapping yet separable time courses and topographies that emerge when contrasting words with pseudofont visual controls. The first component topography was maximal over left vOT regions with a shorter latency (approximately 180 ms). A second component was maximal over more dorsal parietal regions with a longer latency (approximately 260 ms). Both components consistently emerged across a range of parameter manipulations including changes in the spatial overlap between successive stimuli, and changes in both base and deviation frequency. We then contrasted word-in-nonword and word-in-pseudoword to test the hierarchical processing mechanisms underlying visual word recognition. Results suggest that these hierarchical contrasts fail to evoke a unitary component that might be reasonably associated with lexical access.
Collapse
|
24
|
Wang Q, Siok WT. Intracranial recording in patients with aphasia using nanomaterial-based flexible electronics: promises and challenges. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2021; 12:330-342. [PMID: 33889479 PMCID: PMC8042484 DOI: 10.3762/bjnano.12.27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
In recent years, researchers have studied how nanotechnology could enhance neuroimaging techniques. The application of nanomaterial-based flexible electronics has the potential to advance conventional intracranial electroencephalography (iEEG) by utilising brain-compatible soft nanomaterials. The resultant technique has significantly high spatial and temporal resolution, both of which enhance the localisation of brain functions and the mapping of dynamic language processing. This review presents findings on aphasia, an impairment in language and communication, and discusses how different brain imaging techniques, including positron emission tomography, magnetic resonance imaging, and iEEG, have advanced our understanding of the neural networks underlying language and reading processing. We then outline the strengths and weaknesses of iEEG in studying human cognition and the development of intracranial recordings that use brain-compatible flexible electrodes. We close by discussing the potential advantages and challenges of future investigations adopting nanomaterial-based flexible electronics for intracranial recording in patients with aphasia.
Collapse
Affiliation(s)
- Qingchun Wang
- Department of Linguistics, The University of Hong Kong, Hong Kong, China
| | - Wai Ting Siok
- Department of Linguistics, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
25
|
Zhang G, Yuan B, Hua H, Lou Y, Lin N, Li X. Individual differences in first-pass fixation duration in reading are related to resting-state functional connectivity. BRAIN AND LANGUAGE 2021; 213:104893. [PMID: 33360162 DOI: 10.1016/j.bandl.2020.104893] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 12/04/2020] [Accepted: 12/06/2020] [Indexed: 06/12/2023]
Abstract
Although there are considerable individual differences in eye movements during text reading, their neural correlates remain unclear. In this study, we investigated the relationship between the first-pass fixation duration (FPFD) in natural reading and resting-state functional connectivity (RSFC) in the brain. We defined the brain regions associated with early visual processing, word identification, attention shifts, and oculomotor control as seed regions. The results showed that individual FPFDs were positively correlated with individual RSFCs between the early visual network, visual word form area, and eye movement control/dorsal attention network. Our findings provide new evidence on the neural correlates of eye movements in text reading and indicate that individual differences in fixation time may shape the RSFC differences in the brain through the time-on-task effect and the mechanism of Hebbian learning.
Collapse
Affiliation(s)
- Guangyao Zhang
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Binke Yuan
- Center for Language and Brain, Shenzhen Institute of Neuroscience, Shenzhen, China
| | - Huimin Hua
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Ya Lou
- Beijing Institute of Education, Beijing, China
| | - Nan Lin
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.
| | - Xingshan Li
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
26
|
Li H, Liang Y, Yue Q, Zhang L, Ying K, Mei L. The contributions of the left fusiform subregions to successful encoding of novel words. Brain Cogn 2021; 148:105690. [PMID: 33494036 DOI: 10.1016/j.bandc.2021.105690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 10/19/2020] [Accepted: 01/07/2021] [Indexed: 11/26/2022]
Abstract
The left fusiform cortex has been identified as a crucial structure in visual word learning and memory. Nevertheless, the specific roles of the fusiform subregions in word memory and their consistency across different writings have not been elaborated. To address these questions, the present study performed two experiments, in which study-test paradigm was used. Participants' brain activity was measured with fMRI while memorizing novel logographic words in Experiment 1 and novel alphabetic words in Experiment 2. A post-scan recognition memory test was then administered to acquire the memory performance. Results showed that, neural responses in the left anterior and middle fusiform subregions during encoding were positively correlated with recognition memory of novel words. Moreover, the positive brain-behavior correlations in the left anterior and middle fusiform cortex were evident for both logographic and alphabetic writings. The present findings clarify the relationship between the left fusiform subregions and novel word memory.
Collapse
Affiliation(s)
- Huiling Li
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, China; School of Psychology, South China Normal University, 510631 Guangzhou, China; Center for Studies of Psychological Application, South China Normal University, 510631 Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, 510631 Guangzhou, China
| | - Yumin Liang
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, China; School of Psychology, South China Normal University, 510631 Guangzhou, China; Center for Studies of Psychological Application, South China Normal University, 510631 Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, 510631 Guangzhou, China
| | - Qingxin Yue
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, China; School of Psychology, South China Normal University, 510631 Guangzhou, China; Center for Studies of Psychological Application, South China Normal University, 510631 Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, 510631 Guangzhou, China
| | - Lei Zhang
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, China; School of Psychology, South China Normal University, 510631 Guangzhou, China; Center for Studies of Psychological Application, South China Normal University, 510631 Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, 510631 Guangzhou, China
| | - Kangli Ying
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, China; School of Psychology, South China Normal University, 510631 Guangzhou, China; Center for Studies of Psychological Application, South China Normal University, 510631 Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, 510631 Guangzhou, China
| | - Leilei Mei
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, China; School of Psychology, South China Normal University, 510631 Guangzhou, China; Center for Studies of Psychological Application, South China Normal University, 510631 Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, 510631 Guangzhou, China.
| |
Collapse
|
27
|
Neural Representation in Visual Word Form Area during Word Reading. Neuroscience 2020; 452:49-62. [PMID: 33212220 DOI: 10.1016/j.neuroscience.2020.10.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/26/2020] [Accepted: 10/30/2020] [Indexed: 11/23/2022]
Abstract
The visual word form area (VWFA) has been consistently identified as a crucial structure in visual word processing. Nevertheless, it is controversial whether the VWFA represents external visual information (e.g., case information) of visual words. To address that question, we functionally localized VWFA at the group level (gVWFA) and at the individual level (iVWFA), and used multivariate pattern analysis (MVPA) to explore the information representation in the VWFA during an implicit reading task (i.e., a passive viewing task). Univariate activation analysis revealed that participants showed stronger activations for uppercase English words compared to lowercase ones in the VWFA. MVPA further revealed that the classifier trained based on lowercase words versus letter strings significantly distinguished uppercase words versus letter strings in the iVWFA, while that trained based on lowercase words versus uppercase words distinguished lowercase letter strings versus uppercase letter strings neither in the gVWFA nor in the iVWFA. These results suggest that the VWFA does not represent case information, but represents case-independent linguistic information. Our findings elaborate the function in the VWFA and support the VWFA hypothesis.
Collapse
|
28
|
Canário N, Jorge L, Castelo-Branco M. Distinct mechanisms drive hemispheric lateralization of object recognition in the visual word form and fusiform face areas. BRAIN AND LANGUAGE 2020; 210:104860. [PMID: 32947074 DOI: 10.1016/j.bandl.2020.104860] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 07/22/2020] [Accepted: 08/27/2020] [Indexed: 06/11/2023]
Abstract
The Visual Word Form Area (VWFA) and the Fusiform Face Area (FFA) represent classical examples of functional lateralization. The known hypothesis that lateralization of the VWFA and FFA are related remains controversial. We hypothesized that lateralization is independent and might be associated with lateralized high-level top-down mechanisms. For the VWFA this could emerge from left-lateralized language regions. This driving force might modulate local reorganization/recycling of function. Using an fMRI recognition paradigm, we quantified lateralization and investigated effective connectivity to examine mechanisms associated with lateralization in these regions (n = 58). Laterality patterns were more pronounced for VWFA than for FFA. Granger Causality Analysis found top-down effects only for the VWFA (left-lateralized, stemming from Broca's area). FFA exerted top-down effects on low-level visual areas. These findings suggest that distinct mechanisms are associated with hemispheric lateralization in object recognition: left lateralized top-down for VWFA and only early visual top-down effects concerning the FFA.
Collapse
Affiliation(s)
- Nádia Canário
- CIBIT- Center for Biomedical Imaging and Translational Research, ICNAS, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Lília Jorge
- CIBIT- Center for Biomedical Imaging and Translational Research, ICNAS, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Miguel Castelo-Branco
- CIBIT- Center for Biomedical Imaging and Translational Research, ICNAS, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
29
|
Furubacke A, Albonico A, Barton JJS. Alternating dual-task interference between visual words and faces. Brain Res 2020; 1746:147004. [PMID: 32615082 DOI: 10.1016/j.brainres.2020.147004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 02/12/2020] [Accepted: 06/24/2020] [Indexed: 11/24/2022]
Abstract
The many-to-many hypothesis proposes that face and visual word recognition share and even compete for high-level perceptual resources in both hemispheres. However, it is still not clear whether the processing performed by the two hemispheres on faces and visual words is equivalent or complementary. We performed an alternating dual-task experiment to determine if the processing of visual words and faces interfered with each other, and if such interference depended upon the stimulus attribute being processed. Subjects saw a series of alternating stimuli and made same-different judgments comparing the current stimulus with the one two trials before. In some blocks faces or visual words alternated with colored gratings, in other blocks they alternated between different sets of words or different sets of faces. In the key experimental blocks they alternated between visual words and faces. Subjects were also asked to focus on different properties of the stimuli (identity or speech sounds for faces, handwriting or word content for visual words, color or orientation for gratings). There was no evidence of specific interference when subjects alternated between face and word attributes thought to be processed by opposite hemispheres (e.g. face identity and word identity, facial speech and handwriting). Rather interference occurred when subjects alternated between attributes that may be processed by the same hemisphere. The results support a modified version of the many-to-many hypothesis which takes into account complementary functions of the left and the right hemispheres in the processing of faces and visual words.
Collapse
Affiliation(s)
- Amanda Furubacke
- Human Vision and Eye Movement Laboratory, Departments of Medicine (Neurology), Ophthalmology and Visual Sciences, Psychology, University of British Columbia, Vancouver, Canada; Faculty of Medicine, Linköping University, Linköping, Sweden
| | - Andrea Albonico
- Human Vision and Eye Movement Laboratory, Departments of Medicine (Neurology), Ophthalmology and Visual Sciences, Psychology, University of British Columbia, Vancouver, Canada
| | - Jason J S Barton
- Human Vision and Eye Movement Laboratory, Departments of Medicine (Neurology), Ophthalmology and Visual Sciences, Psychology, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
30
|
Barzegaran E, Norcia AM. Neural sources of letter and Vernier acuity. Sci Rep 2020; 10:15449. [PMID: 32963270 PMCID: PMC7509830 DOI: 10.1038/s41598-020-72370-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 09/01/2020] [Indexed: 01/23/2023] Open
Abstract
Visual acuity can be measured in many different ways, including with letters and Vernier offsets. Prior psychophysical work has suggested that the two acuities are strongly linked given that they both depend strongly on retinal eccentricity and both are similarly affected in amblyopia. Here we used high-density EEG recordings to ask whether the underlying neural sources are common as suggested by the psychophysics or distinct. To measure visual acuity for letters, we recorded evoked potentials to 3 Hz alternations between intact and scrambled text comprised of letters of varying size. To measure visual acuity for Vernier offsets, we recorded evoked potentials to 3 Hz alternations between bar gratings with and without a set of Vernier offsets. Both alternation types elicited robust activity at the 3 Hz stimulus frequency that scaled in amplitude with both letter and offset size, starting near threshold. Letter and Vernier offset responses differed in both their scalp topography and temporal dynamics. The earliest evoked responses to letters occurred on lateral occipital visual areas, predominantly over the left hemisphere. Later responses were measured at electrodes over early visual cortex, suggesting that letter structure is first extracted in second-tier extra-striate areas and that responses over early visual areas are due to feedback. Responses to Vernier offsets, by contrast, occurred first at medial occipital electrodes, with responses at later time-points being more broadly distributed—consistent with feedforward pathway mediation. The previously observed commonalities between letter and Vernier acuity may be due to common bottlenecks in early visual cortex but not because the two tasks are subserved by a common network of visual areas.
Collapse
Affiliation(s)
- Elham Barzegaran
- Wu Tsai Neurosciences Institute, 290 Jane Stanford Way, Stanford, CA, 94305, USA.
| | - Anthony M Norcia
- Wu Tsai Neurosciences Institute, 290 Jane Stanford Way, Stanford, CA, 94305, USA.
| |
Collapse
|
31
|
Bouhali F, Mongelli V, Thiebaut de Schotten M, Cohen L. Reading music and words: The anatomical connectivity of musicians' visual cortex. Neuroimage 2020; 212:116666. [PMID: 32087374 DOI: 10.1016/j.neuroimage.2020.116666] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/10/2020] [Accepted: 02/17/2020] [Indexed: 10/25/2022] Open
Abstract
Musical score reading and word reading have much in common, from their historical origins to their cognitive foundations and neural correlates. In the ventral occipitotemporal cortex (VOT), the specialization of the so-called Visual Word Form Area for word reading has been linked to its privileged structural connectivity to distant language regions. Here we investigated how anatomical connectivity relates to the segregation of regions specialized for musical notation or words in the VOT. In a cohort of professional musicians and non-musicians, we used probabilistic tractography combined with task-related functional MRI to identify the connections of individually defined word- and music-selective left VOT regions. Despite their close proximity, these regions differed significantly in their structural connectivity, irrespective of musical expertise. The music-selective region was significantly more connected to posterior lateral temporal regions than the word-selective region, which, conversely, was significantly more connected to anterior ventral temporal cortex. Furthermore, musical expertise had a double impact on the connectivity of the music region. First, music tracts were significantly larger in musicians than in non-musicians, associated with marginally higher connectivity to perisylvian music-related areas. Second, the spatial similarity between music and word tracts was significantly increased in musicians, consistently with the increased overlap of language and music functional activations in musicians, as compared to non-musicians. These results support the view that, for music as for words, very specific anatomical connections influence the specialization of distinct VOT areas, and that reciprocally those connections are selectively enhanced by the expertise for word or music reading.
Collapse
Affiliation(s)
- Florence Bouhali
- Sorbonne Université, Inserm U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, ICM, Hôpital de la Pitié-Salpêtrière, 75013, Paris, France; Department of Psychiatry & Weill Institute for Neurosciences, University of California, San Francisco, CA, 94143, USA.
| | - Valeria Mongelli
- Neurobiology of Language Department, Max Planck Institute for Psycholinguistics, Nijmegen, Netherlands; Department of Psychology, University of Amsterdam, Amsterdam, Netherlands; Amsterdam Brain and Cognition (ABC), University of Amsterdam, Amsterdam, Netherlands
| | - Michel Thiebaut de Schotten
- Brain Connectivity and Behaviour Laboratory, Sorbonne Universities, Paris, France; Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives-UMR 5293, CNRS, CEA University of Bordeaux, Bordeaux, France
| | - Laurent Cohen
- Sorbonne Université, Inserm U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, ICM, Hôpital de la Pitié-Salpêtrière, 75013, Paris, France; Assistance Publique - Hôpitaux de Paris, Hôpital de la Pitié Salpêtrière, Fédération de Neurologie, F-75013, Paris, France
| |
Collapse
|
32
|
Li M, Xu Y, Luo X, Zeng J, Han Z. Linguistic experience acquisition for novel stimuli selectively activates the neural network of the visual word form area. Neuroimage 2020; 215:116838. [PMID: 32298792 DOI: 10.1016/j.neuroimage.2020.116838] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/24/2020] [Accepted: 04/06/2020] [Indexed: 10/24/2022] Open
Abstract
The human ventral visual cortex is functionally organized into different domains that sensitively respond to different categories, such as words and objects. There is heated debate over what principle constrains the locations of those domains. Taking the visual word form area (VWFA) as an example, we tested whether the word preference in this area originates from the bottom-up processes related to word shape (the shape hypothesis) or top-down connectivity of higher-order language regions (the connectivity hypothesis). We trained subjects to associate identical, meaningless, non-word-like figures with high-level features of either words or objects. We found that the word-feature learning for the figures elicited the neural activation change in the VWFA, and learning performance effectively predicted the activation strength of this area after learning. Word-learning effects were also observed in other language areas (i.e., the left posterior superior temporal gyrus, postcentral gyrus, and supplementary motor area), with increased functional connectivity between the VWFA and the language regions. In contrast, object-feature learning was not associated with obvious activation changes in the language regions. These results indicate that high-level language features of stimuli can modulate the activation of the VWFA, providing supportive evidence for the connectivity hypothesis of words processing in the ventral occipitotemporal cortex.
Collapse
Affiliation(s)
- Mingyang Li
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Yangwen Xu
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Trento, 38123, Italy; International School for Advanced Studies (SISSA), Trieste, 34136, Italy
| | - Xiangqi Luo
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Jiahong Zeng
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Zaizhu Han
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
33
|
Repetition enhancement to voice identities in the dog brain. Sci Rep 2020; 10:3989. [PMID: 32132562 PMCID: PMC7055288 DOI: 10.1038/s41598-020-60395-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 02/06/2020] [Indexed: 01/19/2023] Open
Abstract
In the human speech signal, cues of speech sounds and voice identities are conflated, but they are processed separately in the human brain. The processing of speech sounds and voice identities is typically performed by non-primary auditory regions in humans and non-human primates. Additionally, these processes exhibit functional asymmetry in humans, indicating the involvement of distinct mechanisms. Behavioural studies indicate analogue side biases in dogs, but neural evidence for this functional dissociation is missing. In two experiments, using an fMRI adaptation paradigm, we presented awake dogs with natural human speech that either varied in segmental (change in speech sound) or suprasegmental (change in voice identity) content. In auditory regions, we found a repetition enhancement effect for voice identity processing in a secondary auditory region - the caudal ectosylvian gyrus. The same region did not show repetition effects for speech sounds, nor did the primary auditory cortex exhibit sensitivity to changes either in the segmental or in the suprasegmental content. Furthermore, we did not find evidence for functional asymmetry neither in the processing of speech sounds or voice identities. Our results in dogs corroborate former human and non-human primate evidence on the role of secondary auditory regions in the processing of suprasegmental cues, suggesting similar neural sensitivity to the identity of the vocalizer across the mammalian order.
Collapse
|
34
|
Zhou W, Pang W, Zhang L, Xu H, Li P, Shu H. Altered connectivity of the visual word form area in the low-vision population: A resting-state fMRI study. Neuropsychologia 2020; 137:107302. [DOI: 10.1016/j.neuropsychologia.2019.107302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 08/22/2019] [Accepted: 12/06/2019] [Indexed: 01/26/2023]
|
35
|
Wang K, Li X, Huang R, Ding J, Song L, Han Z. The left inferior longitudinal fasciculus supports orthographic processing: Evidence from a lesion-behavior mapping analysis. BRAIN AND LANGUAGE 2020; 201:104721. [PMID: 31865263 DOI: 10.1016/j.bandl.2019.104721] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/05/2019] [Accepted: 11/10/2019] [Indexed: 06/10/2023]
Abstract
Orthographic processing is a critical stage in visual word recognition. However, the white-matter pathways that support this processing are unclear, as prior findings might have been confounded by impure behavioral measures, potential structural reorganization of the brain, and limited sample sizes. To address this issue, we investigated the correlations between the integrity of 20 major tracts in the whole brain and the pure orthographic index across 67 patients with short-term brain damage. The integrity of the tracts was measured by the lesion volume percentage and the mean fractional anisotropy value. The orthographic index was calculated as the residual of the orthographic tasks after regressing out corresponding nonorthographic tasks and the orthographic factor from the principal component analysis (PCA) on the basis of four orthographic tasks. We found significant correlations associated with the left inferior longitudinal fasciculus (ILF), even after controlling for the influence of potential confounding variables. These observations strengthen evidence for the vital role of the left ILF in orthographic processing.
Collapse
Affiliation(s)
- Ke Wang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Xiaonan Li
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China; CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ruiwang Huang
- School of Psychology, South China Normal University, Guangzhou 510631, China
| | - Junhua Ding
- Department of Neurosurgery, Baylor College of Medicine, Houston 77030, USA
| | - Luping Song
- Shenzhen University General Hospital, Department of Rehabilitation Medicine, Shenzhen 518055, China.
| | - Zaizhu Han
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
36
|
Barra J, Pallier C, New B. The black superiority effect: Black is taller than gray. Acta Psychol (Amst) 2020; 202:102958. [PMID: 31864215 DOI: 10.1016/j.actpsy.2019.102958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 11/08/2019] [Accepted: 11/12/2019] [Indexed: 10/25/2022] Open
Abstract
A novel illusion entitled "the letter height superiority effect" has been demonstrated. This shows that letters are perceived as being taller than pseudoletters, while in reality their objective sizes are identical. An explanation of this illusion has been proposed in the framework of the Interactive Activation Model. Indeed, we postulated that the more a feature is activated, the taller a stimulus is perceived as being. The objective of the current study was to test this postulate by manipulating feature activation through signal-to-noise ratio. We presented gray stimuli (low signal-to-noise ratio) or black ones (high signal-to-noise ratio). In a first experiment, participants judged the size of pairs of either letters or pseudoletters presented as black or gray. In a second experiment we presented pairs consisting of a letter and a pseudoletter, of identical or different colors. In a third experiment, we presented pairs of letters or pseudoletters of identical or different colors by block to test the possible effect of previous exposure on perceptual judgments. The results showed that for identical objective size, participants perceive black stimuli to be taller than gray ones and that the effects of the nature of the stimuli and their color are cumulative. The results also indicated that the effects were not due to previous exposure to color or sizes. These results confirm the Interactive Activation Model as a credible explanation for the letter height superiority effect.
Collapse
|
37
|
Purcell JJ, Wiley RW, Rapp B. Re-learning to be different: Increased neural differentiation supports post-stroke language recovery. Neuroimage 2019; 202:116145. [PMID: 31479754 DOI: 10.1016/j.neuroimage.2019.116145] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 07/31/2019] [Accepted: 08/29/2019] [Indexed: 10/26/2022] Open
Abstract
Identifying the neural changes that support recovery of cognitive functions after a brain lesion is important to advance our understanding of human neuroplasticity, which, in turn, forms the basis for the development of effective treatments. To date, the preponderance of neuroimaging studies has focused on localizing changes in average brain activity associated with functional recovery. Here, we took a novel approach by evaluating whether cognitive recovery in chronic stroke is related to increases in the differentiation of local neural response patterns. This approach is supported by research indicating that, in the intact brain, local neural representations become more differentiated (dissimilar) with learning (Glezer et al., 2015). We acquired fMRI data before and after 21 individuals received approximately 12 weeks of behavioral treatment for written language impairment due to a left-hemisphere stroke. We used Local-Heterogeneity Regression Analysis (Purcell and Rapp, 2018) to measure local neural response differentiation associated with written language processing, assuming that greater heterogeneity in the pattern of activity across adjacent neural areas indicates more well-differentiated neural representations. First, we observed pre to post-treatment increases in local neural differentiation (Local-Hreg) in the ventral occipital-temporal cortex of the left hemisphere. Second, we found that, in this region, higher local neural response differentiation prior to treatment was associated with less severe written language impairment, and that it also predicted greater future responsiveness to treatment. Third, we observed that changes in neural differentiation were systematically related to performance changes for trained and untrained items. Fourth, we did not observe these brain-behavior relationships for mean BOLD responses, only for Local-Hreg. Thus, this is the first investigation to quantify changes in local neural differentiation in the recovery of a cognitive function and the first to demonstrate the clear behavioral relevance of these changes. We conclude that the findings provide strong support for the novel hypothesis that the local re-differentiation of neural representations can play a significant role in functional recovery after brain lesion.
Collapse
Affiliation(s)
- Jeremy J Purcell
- Department of Cognitive Science, Johns Hopkins University, Baltimore, MD, USA; Maryland Neuroimaging Center, University of Maryland, College Park, MD, USA.
| | - Robert W Wiley
- Department of Cognitive Science, Johns Hopkins University, Baltimore, MD, USA; Department of Psychology, University of North Carolina, Greensboro, NC, USA
| | - Brenda Rapp
- Department of Cognitive Science, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
38
|
Abstract
Reading causes widespread changes in the brain, but its effect on visual word representations is unknown. Learning to read may facilitate visual processing by forming specialized detectors for longer strings or by making word responses more predictable from single letters—that is, by increasing compositionality. We provided evidence for the latter hypothesis using experiments that compared nonoverlapping groups of readers of two Indian languages (Telugu and Malayalam). Readers showed increased single-letter discrimination and decreased letter interactions for bigrams during visual search. Importantly, these interactions predicted subjects’ overall reading fluency. In a separate brain-imaging experiment, we observed increased compositionality in readers, whereby responses to bigrams were more predictable from single letters. This effect was specific to the anterior lateral occipital region, where activations best matched behavior. Thus, learning to read facilitates visual processing by increasing the compositionality of visual word representations.
Collapse
Affiliation(s)
- Aakash Agrawal
- Centre for BioSystems Science and Engineering, Indian Institute of Science
| | - K V S Hari
- Department of Electrical Communication Engineering, Indian Institute of Science
| | - S P Arun
- Centre for Neuroscience, Indian Institute of Science
| |
Collapse
|
39
|
Ventura P, Fernandes T, Leite I, Pereira A, Wong ACN. Is holistic processing of written words modulated by phonology? Acta Psychol (Amst) 2019; 201:102944. [PMID: 31704548 DOI: 10.1016/j.actpsy.2019.102944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 09/28/2019] [Accepted: 09/29/2019] [Indexed: 10/25/2022] Open
Abstract
Holistic processing, a hallmark of face processing, has been shown for written words, signaled by the word composite effect. Fluent readers find it harder to focus on one half of a written word (e.g., the first syllable of a CV.CV word) while ignoring the other half (e.g., the second syllable), especially when the two halves are aligned rather than misaligned. Given the linguistic nature of written words, in the present study, we examined whether the word composite effect is modulated by phonology. In Experiment 1, participants saw two sequentially presented CV.CV words and had to decide if the left half (first syllable) was the same or not, regardless of the right half. The word pairs were either phonologically consistent (univocal orthography to phonology mapping; e.g., TI is always /ti/ in Portuguese) or inconsistent (orthography can map into different phonological representations; e.g., CA can correspond to /ka/ or /kɐ/). The word composite effect was found for phonologically consistent words but not for phonologically inconsistent words. In Experiment 2, timing of trial events was reduced to test whether the influence of phonology was fast and automatic. Similar to what was found in Experiment 1, the word composite effect was found only for phonologically consistent words. The faster trial events in Experiment 2 rendered it less likely that the influence of phonology in word composite effect is merely a result of strategic processing. These findings suggest that holistic processing of visual words is modulated by fast and automatic activation of lexical phonological representations.
Collapse
|
40
|
Holistic word context does not influence holistic processing of artificial objects in an interleaved composite task. Atten Percept Psychophys 2019; 81:1767-1780. [PMID: 31290132 DOI: 10.3758/s13414-019-01812-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Holistic processing, a hallmark of expert processing, has been shown for written words, signaled by the word composite effect, similar to the face composite effect: fluent readers find it difficult to focus on just one half of a written word while ignoring the other half, especially when the two word halves are aligned rather than misaligned. This effect is signaled by a significant interaction between alignment and congruency of the two word parts. Face and visual word recognition, however, involve different neural mechanisms with an opposite hemispheric lateralization. It is then possible that faces and words can both involve holistic processing in their own separate face and word processing systems, but by using different mechanisms. In the present study, we replicated with words a previous study done with faces (Richler, Bukach, & Gauthier, 2009, Experiment 3). In a first experiment we showed that in a composite task with aligned artificial objects, no congruency effects are found. In a second experiment, using an interleaved task, a congruency effect for Ziggerins was induced in trials in which a word was first encoded, but more strongly when it was aligned. However, in a stricter test, we found no differences between the congruency effect for Ziggerins induced by aligned words versus pseudowords. Our results demonstrate that different mechanisms can underlie holistic processing in different expertise domains.
Collapse
|
41
|
Wong ACN, Ng TYK, Lui KFH, Yip KHM, Wong YK. Visual training with musical notes changes late but not early electrophysiological responses in the visual cortex. J Vis 2019; 19:8. [PMID: 31318402 DOI: 10.1167/19.7.8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Visual expertise with musical notation is unique. Fluent music readers show selectively higher activity to musical notes than to other visually similar patterns in both the retinotopic and higher-level visual areas and both very early (e.g., C1) and later (e.g., N170) visual event-related potential (ERP) components. This is different from domains such as face and letter perception, of which the neural expertise marker is typically found in the higher-level ventral visual areas and later (e.g., N170) ERP components. An intriguing question concerns whether the visual skills and neural selectivity observed in music-reading experts are a result of the effects of extensive visual experience with musical notation. The current study aimed to investigate the causal relationship between visual experience and its neural changes with musical notation. Novices with no formal musical training experience were trained to visually discriminate between note patterns in the laboratory for 10-26 hr such that their performance was comparable with fluent music readers. The N170 component became more selective for musical notes after training. Training was not, however, followed by changes in the earlier C1 component. The findings show that visual training is enough for causing changes in the responses of the higher-level visual areas to musical notation while the engagement of the early visual areas may involve additional nonvisual factors.
Collapse
Affiliation(s)
- Alan C-N Wong
- Department of Psychology, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - Terri Y K Ng
- Department of Psychology, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - Kelvin F H Lui
- Department of Psychology, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - Ken H M Yip
- Department of Psychology, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - Yetta Kwailing Wong
- Department of Educational Psychology, Faculty of Education, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| |
Collapse
|
42
|
Rączy K, Urbańczyk A, Korczyk M, Szewczyk JM, Sumera E, Szwed M. Orthographic Priming in Braille Reading as Evidence for Task-specific Reorganization in the Ventral Visual Cortex of the Congenitally Blind. J Cogn Neurosci 2019; 31:1065-1078. [PMID: 30938589 DOI: 10.1162/jocn_a_01407] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The task-specific principle asserts that, following deafness or blindness, the deprived cortex is reorganized in a manner such that the task of a given area is preserved even though its input modality has been switched. Accordingly, tactile reading engages the ventral occipitotemporal cortex (vOT) in the blind in a similar way to regular reading in the sighted. Others, however, show that the vOT of the blind processes spoken sentence structure, which suggests that the task-specific principle might not apply to vOT. The strongest evidence for the vOT's engagement in sighted reading comes from orthographic repetition-suppression studies. Here, congenitally blind adults were tested in an fMRI repetition-suppression paradigm. Results reveal a double dissociation, with tactile orthographic priming in the vOT and auditory priming in general language areas. Reconciling our finding with other evidence, we propose that the vOT in the blind serves multiple functions, one of which, orthographic processing, overlaps with its function in the sighted.
Collapse
Affiliation(s)
| | | | | | | | - Ewa Sumera
- Institute for the Blind and Partially Sighted Children, Krakow, Poland
| | | |
Collapse
|
43
|
Laterality for recognizing written words and faces in the fusiform gyrus covaries with language dominance. Cortex 2019; 117:196-204. [PMID: 30986634 DOI: 10.1016/j.cortex.2019.03.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/19/2018] [Accepted: 03/13/2019] [Indexed: 02/08/2023]
Abstract
Recognizing words and faces engages highly specialized sites within the middle fusiform gyrus, known as the visual word form area (VWFA) and fusiform face area (FFA) respectively. The VWFA and FFA have clear but opposite population-level asymmetries, with the VWFA typically being lateralized to the left and the FFA to the right hemisphere. The present study investigates how language dominance may relate to these asymmetries. We hypothesize that individuals with left hemisphere dominance for word production (i.e., left language dominance, LLD) will have typical lateralization for word and face recognition in the fusiform gyrus, whereas participants with right language dominance (RLD) will demonstrate 'atypical' rightward laterality for words and leftward dominance for faces. To test this hypothesis, we recruited twenty-seven left-handers who had previously been identified as being LLD or RLD based on a visual half field task. Using fMRI, hemisphere dominance was determined for language (Broca's region) as well as for word and face recognition in the middle fusiform gyrus for each participant. The direction of asymmetry correlated significantly between language and recognizing words (ρ = .648, p < .001) as well as between language and face recognition (ρ = -.620, p = .001). Moreover, most LLD-participants were typically lateralized for faces and written words, while both functions tended to be reversed in individuals with RLD. However, segregation between language and face recognition was less clear in participants with RLD, as many of them lacked an obvious asymmetry for faces. Although our results thus suggest there is no one-on-one relationship between asymmetries for language, written word and face recognition, they also argue against a complete independence of their lateralization.
Collapse
|
44
|
Reading by extracting invariant line junctions in typical and atypical young readers. J Exp Child Psychol 2019; 183:75-99. [PMID: 30856419 DOI: 10.1016/j.jecp.2019.01.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 12/13/2018] [Accepted: 01/28/2019] [Indexed: 11/20/2022]
Abstract
We aimed at investigating whether typical and atypical young readers extract vertices (viewpoint-invariant line junctions) in reading, as has been shown for fluent adult readers. In an identification task, we presented partly deleted printed letters, words, and pseudowords, preserving either the vertices or the midsegments of the letters. This allowed assessing the occurrence of a vertex effect, that is, more errors when vertices are partly removed, keeping the midsegments intact, than in the reverse situation. In Experiment 1, the vertex effect was observed on words and pseudowords in three groups of typical readers: 48 adults, 56 beginning readers (Grades 2 and 3), and 42 more advanced readers (Grades 4 and 5). Yet, the effect was smaller in the beginning readers, in relation to their irregular word reading skills. In Experiment 2, we compared 40 children with dyslexia with children selected from Experiment 1 to match them on either chronological age (30 CA controls) or reading level (42 RL controls). Although all groups displayed a vertex effect on words and pseudowords, dyslexic children presented a smaller effect than CA controls without differing from RL controls. The whole result pattern suggests that vertices play an important role in the recognition of written strings not only in skilled adult readers but also in young readers, in relation to their actual reading skills rather than to a specific reading deficit.
Collapse
|
45
|
Pina Rodrigues A, Rebola J, Pereira M, van Asselen M, Castelo-Branco M. Neural Responses of the Anterior Ventral Occipitotemporal Cortex in Developmental Dyslexia: Beyond the Visual Word Form Area. Invest Ophthalmol Vis Sci 2019; 60:1063-1068. [PMID: 30897621 DOI: 10.1167/iovs.18-26325] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose For the past 2 decades, neuroimaging studies in dyslexia have pointed toward a hypoactivation of the ventral occipitotemporal cortex (VOTC), a region that has been closely associated to reading through the extraction of a representation of words which is invariant to position, size, font or case. However, most of the studies are confined to the visual word form area (VWFA), while recent studies have demonstrated a posterior-to-anterior gradient of print specificity along the VOTC. In our study, the whole VOTC, partitioned into three main patches of cortex, is assessed in dyslexic and control adults. Methods A total of 30 participants were included in this study (14 developmental dyslexics and 16 age- and education-matched controls). The design consisted of alternately viewed blocks of stimuli from a given class (words, consonant strings, phase-scrambled words, phase-scrambled consonant strings, small checkerboards, large checkerboards). The analyzed contrast was print stimuli (words and consonants) versus scrambled stimuli and checkerboards. Results Corroborating previous findings, our results showed underactivation to print stimuli in the VWFA of dyslexics. Additionally, differences between dyslexics and controls were also found, particularly in an area of the anterior partition of the VOTC, suggesting a relevant role of this area in word processing. Conclusions In sum, our study goes beyond the underactivation hypothesis in the VWFA of dyslexics and indicates that a particular area on the anterior fusiform region might be particularly involved in the reading deficits in dyslexia, demonstrating the involvement of multiple areas within VOTC in reading processes.
Collapse
Affiliation(s)
- Ana Pina Rodrigues
- Institute for Biomedical Imaging and Life Sciences (CNC.IBILI), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
| | - José Rebola
- Institute for Biomedical Imaging and Life Sciences (CNC.IBILI), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Marcelino Pereira
- Faculty of Psychology and Education Sciences, University of Coimbra, Coimbra, Portugal
| | - Marieke van Asselen
- Institute for Biomedical Imaging and Life Sciences (CNC.IBILI), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Miguel Castelo-Branco
- Institute for Biomedical Imaging and Life Sciences (CNC.IBILI), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
| |
Collapse
|
46
|
Martin L, Durisko C, Moore MW, Coutanche MN, Chen D, Fiez JA. The VWFA Is the Home of Orthographic Learning When Houses Are Used as Letters. eNeuro 2019; 6:ENEURO.0425-17.2019. [PMID: 30783613 PMCID: PMC6378324 DOI: 10.1523/eneuro.0425-17.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/22/2019] [Accepted: 01/23/2019] [Indexed: 12/01/2022] Open
Abstract
Learning to read specializes a portion of the left mid-fusiform cortex for printed word recognition, the putative visual word form area (VWFA). This study examined whether a VWFA specialized for English is sufficiently malleable to support learning a perceptually atypical second writing system. The study utilized an artificial orthography, HouseFont, in which house images represent English phonemes. House images elicit category-biased activation in a spatially distinct brain region, the so-called parahippocampal place area (PPA). Using house images as letters made it possible to test whether the capacity for learning a second writing system involves neural territory that supports reading in the first writing system, or neural territory tuned for the visual features of the new orthography. Twelve human adults completed two weeks of training to establish basic HouseFont reading proficiency and underwent functional neuroimaging pre and post-training. Analysis of three functionally defined regions of interest (ROIs), the VWFA, and left and right PPA, found significant pre-training versus post-training increases in response to HouseFont words only in the VWFA. Analysis of the relationship between the behavioral and neural data found that activation changes from pre-training to post-training within the VWFA predicted HouseFont reading speed. These results demonstrate that learning a new orthography utilizes neural territory previously specialized by the acquisition of a native writing system. Further, they suggest VWFA engagement is driven by orthographic functionality and not the visual characteristics of graphemes, which informs the broader debate about the nature of category-specialized areas in visual association cortex.
Collapse
Affiliation(s)
- Lea Martin
- Department of Psychology
- Center for the Neural Basis of Cognition
| | - Corrine Durisko
- Department of Psychology
- Learning Research and Development Center, University of Pittsburgh, Pittsburgh, PA 15260
| | - Michelle W. Moore
- Department of Communication Sciences and Disorders, West Virginia University, Morgantown, WV 26506
| | - Marc N. Coutanche
- Department of Psychology
- Center for the Neural Basis of Cognition
- Learning Research and Development Center, University of Pittsburgh, Pittsburgh, PA 15260
| | - Deborah Chen
- Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901
| | - Julie A. Fiez
- Department of Psychology
- Center for the Neural Basis of Cognition
- Learning Research and Development Center, University of Pittsburgh, Pittsburgh, PA 15260
| |
Collapse
|
47
|
De Carolis L, Marsico E, Arnaud V, Coupé C. Assessing sound symbolism: Investigating phonetic forms, visual shapes and letter fonts in an implicit bouba-kiki experimental paradigm. PLoS One 2018; 13:e0208874. [PMID: 30576331 PMCID: PMC6303039 DOI: 10.1371/journal.pone.0208874] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 11/27/2018] [Indexed: 11/19/2022] Open
Abstract
Classically, in the bouba-kiki association task, a subject is asked to find the best association between one of two shapes–a round one and a spiky one–and one of two pseudowords–bouba and kiki. Numerous studies report that spiky shapes are associated with kiki, and round shapes with bouba. This task is likely the most prevalent in the study of non-conventional relationships between linguistic forms and meanings, also known as sound symbolism. However, associative tasks are explicit in the sense that they highlight phonetic and visual contrasts and require subjects to establish a crossmodal link between stimuli of different natures. Additionally, recent studies have raised the question whether visual resemblances between the target shapes and the letters explain the pattern of association, at least in literate subjects. In this paper, we report a more implicit testing paradigm of the bouba-kiki effect with the use of a lexical decision task with character strings presented in round or spiky frames. Pseudowords and words are, furthermore, displayed with either an angular or a curvy font to investigate possible graphemic bias. Innovative analyses of response times are performed with GAMLSS models, which offer a large range of possible distributions of error terms, and a generalized Gama distribution is found to be the most appropriate. No sound symbolic effect appears to be significant, but an interaction effect is in particular observed between spiky shapes and angular letters leading to faster response times. We discuss these results with respect to the visual saliency of angular shapes, priming, brain activation, synaesthesia and ideasthesia.
Collapse
Affiliation(s)
- Léa De Carolis
- Laboratoire Dynamique du Langage, CNRS & Université de Lyon, Lyon, France
| | - Egidio Marsico
- Laboratoire Dynamique du Langage, CNRS & Université de Lyon, Lyon, France
| | - Vincent Arnaud
- Département des arts et lettres, Université du Québec à Chicoutimi, Chicoutimi, Canada
| | - Christophe Coupé
- Laboratoire Dynamique du Langage, CNRS & Université de Lyon, Lyon, France
- Department of Linguistics, The University of Hong Kong, Hong Kong SAR, China
- * E-mail:
| |
Collapse
|
48
|
Word selectivity in high-level visual cortex and reading skill. Dev Cogn Neurosci 2018; 36:100593. [PMID: 30318344 PMCID: PMC6969272 DOI: 10.1016/j.dcn.2018.09.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/27/2018] [Accepted: 09/18/2018] [Indexed: 01/01/2023] Open
Abstract
Word-selective neural responses in human ventral occipito-temporal cortex (VOTC) emerge as children learn to read, creating a visual word form area (VWFA) in the literate brain. It has been suggested that the VWFA arises through competition between pre-existing selectivity for other stimulus categories, changing the topography of VOTC to support rapid word recognition. Here, we hypothesized that competition between words and objects would be resolved as children acquire reading skill. Using functional magnetic resonance imaging (fMRI), we examined the relationship between responses to words and objects in VOTC in two ways. First, we defined the VWFA using a words > objects contrast and found that only skilled readers had a region that responded more to words than objects. Second, we defined the VWFA using a words > faces contrast and examined selectivity for words over objects in this region. We found that word selectivity strongly correlated with reading skill, suggesting reading skill-dependent tuning for words. Furthermore, we found that low word selectivity in struggling readers was not due to a lack of response to words, but to a high response to objects. Our results suggest that the fine-tuning of word-selective responses in VOTC is a critical component of skilled reading.
Collapse
|
49
|
Converging evidence for functional and structural segregation within the left ventral occipitotemporal cortex in reading. Proc Natl Acad Sci U S A 2018; 115:E9981-E9990. [PMID: 30224475 DOI: 10.1073/pnas.1803003115] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The ventral occipitotemporal cortex (vOTC) is crucial for recognizing visual patterns, and previous evidence suggests that there may be different subregions within the vOTC involved in the rapid identification of word forms. Here, we characterize vOTC reading circuitry using a multimodal approach combining functional, structural, and quantitative MRI and behavioral data. Two main word-responsive vOTC areas emerged: a posterior area involved in visual feature extraction, structurally connected to the intraparietal sulcus via the vertical occipital fasciculus; and an anterior area involved in integrating information with other regions of the language network, structurally connected to the angular gyrus via the posterior arcuate fasciculus. Furthermore, functional activation in these vOTC regions predicted reading behavior outside of the scanner. Differences in the microarchitectonic properties of gray-matter cells in these segregated areas were also observed, in line with earlier cytoarchitectonic evidence. These findings advance our understanding of the vOTC circuitry by linking functional responses to anatomical structure, revealing the pathways of distinct reading-related processes.
Collapse
|
50
|
Selective visual representation of letters and words in the left ventral occipito-temporal cortex with intracerebral recordings. Proc Natl Acad Sci U S A 2018; 115:E7595-E7604. [PMID: 30038000 DOI: 10.1073/pnas.1718987115] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We report a comprehensive cartography of selective responses to visual letters and words in the human ventral occipito-temporal cortex (VOTC) with direct neural recordings, clarifying key aspects of the neural basis of reading. Intracerebral recordings were performed in a large group of patients (n = 37) presented with visual words inserted periodically in rapid sequences of pseudofonts, nonwords, or pseudowords, enabling classification of responses at three levels of word processing: letter, prelexical, and lexical. While letter-selective responses are found in much of the VOTC, with a higher proportion in left posterior regions, prelexical/lexical responses are confined to the middle and anterior sections of the left fusiform gyrus. This region overlaps with and extends more anteriorly than the visual word form area typically identified with functional magnetic resonance imaging. In this region, prelexical responses provide evidence for populations of neurons sensitive to the statistical regularity of letter combinations independently of lexical responses to familiar words. Despite extensive sampling in anterior ventral temporal regions, there is no hierarchical organization between prelexical and lexical responses in the left fusiform gyrus. Overall, distinct word processing levels depend on neural populations that are spatially intermingled rather than organized according to a strict postero-anterior hierarchy in the left VOTC.
Collapse
|