1
|
Monaghan AS, Ofori E, Fling BW, Peterson DS. Associating white matter microstructural integrity and improvements in reactive stepping in people with Parkinson's Disease. Brain Imaging Behav 2024; 18:852-862. [PMID: 38530517 DOI: 10.1007/s11682-024-00867-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2024] [Indexed: 03/28/2024]
Abstract
Reactive steps are rapid responses after balance challenges. People with Parkinson's Disease (PwPD) demonstrate impaired reactive stepping, increasing fall-risk. Although PwPD can improve steps through practice, the neural mechanisms contributing to improved reactive stepping are poorly understood. This study investigated white-matter correlates of responsiveness to reactive step training in PwPD. In an eighteen-week multiple-baseline study, participants (n = 22) underwent baseline assessments (B1 and B2 two-weeks apart), a two-week training protocol, and post-training assessments immediately (P1) and two-months (P2) post-training. Assessments involved three backward reactive step trials, measuring anterior-posterior margin of stability (AP MOS), step length, and step latency. Tract-Based Spatial Statistics correlated white-matter integrity (fractional anisotropy (FA) and radial diffusivity (RD)) with retained (P2-B2) and immediate improvements (P1-B2) in stepping. Significant and sustained improvements in step length and AP MOS were observed. Greater retention of step length improvement correlated with increased FA in the left anterior thalamic radiation (ATR), left posterior thalamic radiation (PTR), left superior longitudinal fasciculus (SLF), and right inferior longitudinal fasciculus (ILF). Step latency retention was associated with lower RD in the left posterior corona radiata and left PTR. Immediate improvements in AP MOS correlated with increased FA of the right ILF, right SLF, and right corticospinal tract. Immediate step length improvements were associated with increased FA in right and left ATR and right SLF. These findings highlight the importance of white-matter microstructural integrity in motor learning and retention processes in PD and could aid in identifying individuals with PD who would benefit most from balance rehabilitation.
Collapse
Affiliation(s)
- Andrew S Monaghan
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
| | - Edward Ofori
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA
| | - Brett W Fling
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
- Molecular, Cellular and Integrative Neurosciences Program, Colorado State University, Fort Collins, USA
| | - Daniel S Peterson
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA.
- Phoenix VA Health Care Center, Phoenix, AZ, USA.
| |
Collapse
|
2
|
Monaghan AS, Hooyman A, Dibble LE, Mehta SH, Peterson DS. Cognitive Predictors of Responsiveness to Reactive Step Training in People with Parkinson's Disease at Fall-Risk. Neurosci Lett 2023; 817:137517. [PMID: 37832815 DOI: 10.1016/j.neulet.2023.137517] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/03/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023]
Abstract
Reactive stepping can be improved in people with Parkinson's Disease (PwPD). However, there is variability in the responsiveness to such training. This study examined if cognition could predict the responsiveness of PwPD to a two-week reactive step training intervention. 25 PwPD (70.52 years ± 7.15; Hoehn & Yahr range 1-3) at risk for falls completed a multiple baseline, open-label, uncontrolled pre-post intervention study. Reactive stepping was trained through a two-week (six-session) intervention with repeated support surface translations. Stepping performance was measured at two baseline assessments (B1 and B2), immediately after the intervention (P1), and two months after training (P2). Primary stepping outcomes were anterior-posterior margin of stability (MOS), step length, and step latency during backward steps. The primary aim assessed whether global cognition (Scales for Outcomes in Parkinson's Disease-Cognition - SCOPA-COG, & Montreal Cognitive Assessment - MoCA) was related to two-month retention of improvements in reactive stepping after practice. The secondary aim explored whether specific cognitive domains predicted retained stepping improvements, including attention/working memory, executive function, language, memory, and visuospatial function. Greater baseline global cognition was related to better two-month retention of step length improvements (SCOPA-COG: p = 0.002, f2 = 0.31; MoCA: p = 0.002, f2 = 0.38). However, only SCOPA-COG retained statistical significance after p-value adjustment for multiple comparisons (p = 0.04). Optimal cut-point analysis revealed that a SCOPA-COG threshold of 31 or higher was optimal for identifying individuals likely to retain improvement. Specific cognitive domains did not predict changes in reactive stepping outcomes. Participants with greater baseline global cognition, particularly as measured by SCOPA-COG, demonstrated greater retention of improvements in reactive stepping. In this cohort, a SCOPA-COG threshold of 31 could predict individuals likely to benefit from the intervention. These findings highlight the potential of cognitive screening to identify people more or less likely to benefit from reactive balance training.
Collapse
Affiliation(s)
- Andrew S Monaghan
- College of Health Solutions, Arizona State University, 550 N 3(rd) St, Phoenix, AZ 85004, USA
| | - Andrew Hooyman
- School of Biological and Health Systems Engineering, Arizona State University, 501 E Tyler Mall Wing, Tempe, AZ 85281, USA
| | - Leland E Dibble
- Department of Physical Therapy and Athletic Training, University of Utah, 520 Wakara Way, Salt Lake City, UT 84108, USA
| | | | - Daniel S Peterson
- College of Health Solutions, Arizona State University, 550 N 3(rd) St, Phoenix, AZ 85004, USA; Phoenix VA Health Care Center, 1500 E Thomas Rd, Phoenix, AZ 85014, USA.
| |
Collapse
|
3
|
Aslan DH, Hernandez ME, Frechette ML, Gephart AT, Soloveychik IM, Sosnoff JJ. The neural underpinnings of motor learning in people with neurodegenerative diseases: A scoping review. Neurosci Biobehav Rev 2021; 131:882-898. [PMID: 34624367 DOI: 10.1016/j.neubiorev.2021.10.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 09/02/2021] [Accepted: 10/02/2021] [Indexed: 11/25/2022]
Abstract
Chronic progressive neurodegenerative diseases (NDD) cause mobility and cognitive impairments that disrupt quality of life. The learning of new motor skills, motor learning, is a critical component of rehabilitation efforts to counteract these chronic progressive impairments. In people with NDD, there are impairments in motor learning which appear to scale with the severity of impairment. Compensatory cortical activity plays a role in counteracting motor learning impairments in NDD. Yet, the functional and structural brain alterations associated with motor learning have not been synthesized in people with NDD. The purpose of this scoping review is to explore the neural alterations of motor learning in NDD. Thirty-five peer-reviewed original articles met the inclusion criteria. Participant demographics, motor learning results, and brain imaging results were extracted. Distinct motor learning associated compensatory processes were identified across NDD populations. Evidence from this review suggests the success of motor learning in NDD populations depends on the neural alterations and their interaction with motor learning networks, as well as the progression of disease.
Collapse
Affiliation(s)
- Daniel H Aslan
- Department of Kinesiology and Community Health, United States.
| | | | - Mikaela L Frechette
- Department of Molecular and Cellular Biology, University of Illinois, Urbana Champaign, United States
| | - Aaron T Gephart
- Department of Molecular and Cellular Biology, University of Illinois, Urbana Champaign, United States
| | - Isaac M Soloveychik
- Department of Molecular and Cellular Biology, University of Illinois, Urbana Champaign, United States
| | - Jacob J Sosnoff
- Department of Molecular and Cellular Biology, University of Illinois, Urbana Champaign, United States
| |
Collapse
|
4
|
Veldkamp R, Moumdjian L, van Dun K, Six J, Vanbeylen A, Kos D, Feys P. Motor sequence learning in a goal-directed stepping task in persons with multiple sclerosis: a pilot study. Ann N Y Acad Sci 2021; 1508:155-171. [PMID: 34689347 DOI: 10.1111/nyas.14702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/07/2021] [Accepted: 09/26/2021] [Indexed: 11/24/2022]
Abstract
Motor sequence learning in persons with multiple sclerosis (pwMS) and healthy controls (HC) under implicit or explicit learning conditions has not yet been investigated in a stepping task. Given the prevalent cognitive and mobility impairments in pwMS, this is important in order to understand motor learning processes and optimize rehabilitation strategies. Nineteen pwMS (the Expanded Disability Status Scale = 3.4 ± 1.2) and 18 HC performed a modified serial reaction time task by stepping as fast as possible on a stepping tile when it lit up, either with (explicit) or without (implicit) knowledge of the presence of a sequence beforehand. Motor sequence learning was studied by examining response time changes and differences between sequence and random blocks during the learning session (acquisition), 24 h later (retention), and in three dual-task (DT) conditions at baseline and retention (automaticity) using subtracting sevens, verbal fluency, and vigilance as concurrent cognitive DTs. Response times improved and were lower for the sequenced compared with the random blocks at the post- and retention tests (P's < 0.001). Response times during DT conditions improved after learning, but DT cost improved only for the subtracting sevens DT condition. No differences in learning were observed between learning conditions or groups. This study showed motor sequence learning, by acquisition and retention, in a stepping task in pwMS with motor impairments, to a similar degree as HC and regardless of learning conditions. Whether automaticity increased remains unclear.
Collapse
Affiliation(s)
- Renee Veldkamp
- UMSC Hasselt, Pelt, Belgium.,REVAL Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, Hasselt, Belgium
| | - Lousin Moumdjian
- UMSC Hasselt, Pelt, Belgium.,REVAL Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, Hasselt, Belgium.,IPEM Institute of Psychoacoustics and Electronic Music, Faculty of Arts and Philosophy, Ghent University, Ghent, Belgium
| | - Kim van Dun
- REVAL Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, Hasselt, Belgium
| | - Joren Six
- IPEM Institute of Psychoacoustics and Electronic Music, Faculty of Arts and Philosophy, Ghent University, Ghent, Belgium
| | | | - Daphne Kos
- National MS Center Melsbroek, Melsbroek, Belgium.,KU Leuven, Department of Rehabilitation Sciences, Leuven, Belgium
| | - Peter Feys
- UMSC Hasselt, Pelt, Belgium.,REVAL Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, Hasselt, Belgium
| |
Collapse
|
5
|
Papadaki E, Mastorodemos V, Panou T, Pouli S, Spyridaki E, Kavroulakis E, Kalaitzakis G, Maris TG, Simos P. T2 Relaxometry Evidence of Microstructural Changes in Diffusely Abnormal White Matter in Relapsing-Remitting Multiple Sclerosis and Clinically Isolated Syndrome: Impact on Visuomotor Performance. J Magn Reson Imaging 2021; 54:1077-1087. [PMID: 33960066 DOI: 10.1002/jmri.27661] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/08/2021] [Accepted: 04/08/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Although diffusely abnormal white matter (DAWM) is commonly seen in multiple sclerosis (MS), it is rarely considered in clinical/imaging studies. PURPOSE To evaluate quantitative markers of microstructural changes in DAWM of patients with clinically isolated syndrome (CIS) and relapsing-remitting MS (RR-MS) in relation to MS lesions and degree of neurocognitive impairment, by using a multi-echo spin echo (MESE) Proton Density PD-to-T2 sequence. STUDY TYPE Prospective, cross-sectional. POPULATION Thirty-seven RR-MS patients, 33 CIS patients, and 52 healthy controls. FIELD STRENGTH/SEQUENCE 1.5 T/T1-, T2-weighted, fluid-attenuated inversion recovery, and MESE sequences. ASSESSMENT Long T2, short T2, and myelin water fraction (MWF) values were estimated as indices of intra/extracellular water content and myelin content, respectively, in DAWM, posterior periventricular normal appearing white matter (NAWM), and focal MS lesions, classified according to their signal intensity on T1 sequences. Patients were, also, administered a battery of neuropsychological tests. STATISTICAL TESTS Comparisons of T2 and MWF values in DAWM, NAWM, and MS lesions were examined, using two-way mixed analyses of variance. Associations of Grooved Pegboard performance with T2 and MWF values in DAWM and NAWM were assessed using Pearson correlation coefficients. RESULTS T2 and MWF values of DAWM were intermediate between the respective values of NAWM and T1 hypointense focal lesions, while there was no difference between the respective values of DAWM and T1-isointense lesions. T2 values in DAWM were strongly associated with visuomotor performance in CIS patients. DATA CONCLUSION Intra/extracellular water and myelin water content of DAWM are similar to those of T1-isointense lesions and predict visuomotor performance in CIS patients. LEVEL OF EVIDENCE 2 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Efrosini Papadaki
- Department of Radiology, School of Medicine, University of Crete, University Hospital of Heraklion, Crete, Greece
- Institute of Computer Science, Foundation of Research and Technology-Hellas, Heraklion, Greece
| | - Vasileios Mastorodemos
- Department of Neurology, School of Medicine, University of Crete, University Hospital of Heraklion, Crete, Greece
| | - Theodora Panou
- Department of Psychiatry, School of Medicine, University of Crete, University Hospital of Heraklion, Crete, Greece
| | - Styliani Pouli
- Department of Radiology, School of Medicine, University of Crete, University Hospital of Heraklion, Crete, Greece
| | - Eirini Spyridaki
- Department of Psychiatry, School of Medicine, University of Crete, University Hospital of Heraklion, Crete, Greece
| | - Eleftherios Kavroulakis
- Department of Radiology, School of Medicine, University of Crete, University Hospital of Heraklion, Crete, Greece
| | - Georgios Kalaitzakis
- Department of Medical Physics, School of Medicine, University of Crete, University Hospital of Heraklion, Crete, Greece
| | - Thomas G Maris
- Institute of Computer Science, Foundation of Research and Technology-Hellas, Heraklion, Greece
- Department of Medical Physics, School of Medicine, University of Crete, University Hospital of Heraklion, Crete, Greece
| | - Panagiotis Simos
- Institute of Computer Science, Foundation of Research and Technology-Hellas, Heraklion, Greece
- Department of Psychiatry, School of Medicine, University of Crete, University Hospital of Heraklion, Crete, Greece
| |
Collapse
|
6
|
On the Reliability of Examining Dual-Tasking Abilities Using a Novel E-Health Device—A Proof of Concept Study in Multiple Sclerosis. J Clin Med 2020; 9:jcm9113423. [PMID: 33113872 PMCID: PMC7692140 DOI: 10.3390/jcm9113423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 10/19/2020] [Accepted: 10/22/2020] [Indexed: 12/27/2022] Open
Abstract
The assessment of neuropsychological functions and especially dual-tasking abilities is considered to be increasingly relevant in the assessment of neurological disease, and Multiple Sclerosis (MS) in particular. However, the assessment of dual-tasking abilities is hindered by specific software requirements and extensive testing times. We designed a novel e-health (progressive web application-based) device for the assessment of dual-tasking abilities usable in “bedside” and outpatient clinic settings and examined its reliability in a sample of N = 184 MS patients in an outpatient setting. Moreover, we examined the relevance of dual-tasking assessment using this device with respect to clinically relevant parameters in MS. We show that a meaningful assessment of dual-tasking is possible within 6 min and that the behavioral readouts overall show good reliability depending on dual-tasking difficulty. We show that dual-tasking readouts were correlated with clinically relevant parameters (e.g., EDSS, disease duration, processing speed) and were not affected by fatigue levels. We consider the tested dual-tasking assessment device suitable for routine clinical neuropsychological assessments of dual-tasking abilities. Future studies may further evaluate this test regarding its suitability in the long-term follow up assessments and to assess dual-tasking abilities in other neurological and psychiatric disorders.
Collapse
|
7
|
Magnin E, Sagawa Y, Moulin T, Decavel P. What Are the Minimal Detectable Changes in SDMT and Verbal Fluency Tests for Assessing Changes in Cognitive Performance in Persons with Multiple Sclerosis and Non-Multiple Sclerosis Controls? Eur Neurol 2020; 83:263-270. [PMID: 32634812 DOI: 10.1159/000508607] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 05/08/2020] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Cognitive impairment is frequent in persons with multiple sclerosis (PwMS) and can impact on activities of daily living. The capacity to differentiate real changes from background statistical noise induced by human, instrumentational, and environmental variations inherent to the evaluation would improve cognitive assessments. OBJECTIVE To assess the short-term reproducibility of cognitive tests in non-multiple sclerosis (non-MS) persons and PwMS. METHODS Sixty-two PwMS and 19 non-MS persons performed 2 measurements, 1 week apart, of the Symbol Digit Modalities Test (SDMT) and phonological and semantic verbal fluency. Test-retest reliability was evaluated by the intraclass correlation coefficients (ICC) and agreement by standard error of measurement (SEM) and minimum detectable change (MDC). RESULTS The reliability of the cognitive variables studied had moderate to high ICC values (ICC > 0.8) in both populations. The threshold to consider a significant cognitive modification evaluated by SEM and MDC was lower in PwMS compared with non-MS persons. CONCLUSIONS SDMT and verbal fluency have good short-term reproducibility in PwMS. Specific SEM and MDC cutoffs based on the same design of evaluation (especially retest timing) and to the targeted pathological population (MS vs. healthy) should systematically be used to consider cognitive modification as significant in research protocol as well as in clinical practice.
Collapse
Affiliation(s)
- Eloi Magnin
- Integrative and Clinical Neurosciences EA481, Bourgogne Franche-Comte University, Besançon, France.,Regional Memory Centre, Department of Neurology, University Hospital of Besançon, Besançon, France.,Department of Neurology, University Hospital of Besançon, Besançon, France
| | - Yoshimasa Sagawa
- Integrative and Clinical Neurosciences EA481, Bourgogne Franche-Comte University, Besançon, France, .,Laboratory of Clinical Functional Exploration of Movement, University Hospital of Besançon, Besançon, France,
| | - Thierry Moulin
- Integrative and Clinical Neurosciences EA481, Bourgogne Franche-Comte University, Besançon, France.,Department of Neurology, University Hospital of Besançon, Besançon, France
| | - Pierre Decavel
- Integrative and Clinical Neurosciences EA481, Bourgogne Franche-Comte University, Besançon, France.,Laboratory of Clinical Functional Exploration of Movement, University Hospital of Besançon, Besançon, France
| |
Collapse
|
8
|
Foster C, Steventon JJ, Helme D, Tomassini V, Wise RG. Cerebral Metabolic Changes During Visuomotor Adaptation Assessed Using Quantitative fMRI. Front Physiol 2020; 11:428. [PMID: 32457648 PMCID: PMC7227432 DOI: 10.3389/fphys.2020.00428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 04/08/2020] [Indexed: 11/13/2022] Open
Abstract
The brain retains a lifelong ability to adapt through learning and in response to injury or disease-related damage, a process known as functional neuroplasticity. The neural energetics underlying functional brain plasticity have not been thoroughly investigated experimentally in the healthy human brain. A better understanding of the blood flow and metabolic changes that accompany motor skill acquisition, and which facilitate plasticity, is needed before subsequent translation to treatment interventions for recovery of function in disease. The aim of the current study was to characterize cerebral blood flow (CBF) and oxygen consumption (relative CMRO2) responses, using calibrated fMRI conducted in 20 healthy participants, during performance of a serial reaction time task which induces rapid motor adaptation. Regions of interest (ROIs) were defined from areas showing task-induced BOLD and CBF responses that decreased over time. BOLD, CBF and relative CMRO2 responses were calculated for each block of the task. Motor and somatosensory cortices and the cerebellum showed statistically significant positive responses to the task compared to baseline, but with decreasing amplitudes of BOLD, CBF, and CMRO2 response as the task progressed. In the cerebellum, there was a sustained positive BOLD response in the absence of a significant CMRO2 increase from baseline, for all but the first task blocks. This suggests that the brain may continue to elevate the supply energy even after CMRO2 has returned to near baseline levels. Relying on BOLD fMRI data alone in studies of plasticity may not reveal the nature of underlying metabolic responses and their changes over time. Calibrated fMRI approaches may offer a more complete picture of the energetic changes supporting plasticity and learning.
Collapse
Affiliation(s)
- Catherine Foster
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Jessica J. Steventon
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Physics and Astronomy, Cardiff University, Cardiff, United Kingdom
- Neuroscience and Mental Health Research Institute (NMHRI), School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Daniel Helme
- Department of Anaesthetics and Intensive Care Medicine, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Valentina Tomassini
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, United Kingdom
- Department of Neuroscience, Imaging and Clinical Sciences, “G. D’Annunzio University” of Chieti-Pescara, Chieti, Italy
- Institute for Advanced Biomedical Technologies (ITAB), “G. D’Annunzio University” of Chieti-Pescara, Chieti, Italy
| | - Richard G. Wise
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom
- Department of Neuroscience, Imaging and Clinical Sciences, “G. D’Annunzio University” of Chieti-Pescara, Chieti, Italy
- Institute for Advanced Biomedical Technologies (ITAB), “G. D’Annunzio University” of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
9
|
Tablerion JM, Wood TA, Hsieh KL, Bishnoi A, Sun R, Hernandez M, An R, Sosnoff JJ. Motor Learning in People with Multiple Sclerosis: A Systematic Review and Meta-analysis. Arch Phys Med Rehabil 2020; 101:512-523. [DOI: 10.1016/j.apmr.2019.09.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/05/2019] [Accepted: 09/16/2019] [Indexed: 10/25/2022]
|
10
|
Effects of aging on finger movements in multiple sclerosis. Mult Scler Relat Disord 2019; 37:101449. [PMID: 32173006 DOI: 10.1016/j.msard.2019.101449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 09/30/2019] [Accepted: 10/13/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND People with multiple sclerosis (PwMS) report impaired hand movements and coordination. With an engineered glove we demonstrated altered finger movements in PwMS; increasing age resulted in decreased performance in healthy subjects (normative data). This study aims at investigating aging effects on finger motor performance in PwMS, in relation to disease duration and Expanded Disability Status Scale (EDSS). METHODS Ninety-six PwMS performed repetitive finger opposition movements with the dominant hand and both hands at maximal velocity or metronome-paced. Performance was compared with the norms, and correlation coefficients between finger motor parameters, age, disease duration and EDSS were calculated. RESULTS The majority of subjects was outside of the normal range according to age and probability increased with level of disability. Age significantly correlated with the glove parameters (r ranged in absolute value between 0.22-0.31; p-value in the range 0.002-0.049). Older subjects with lower disability showed worse performance than younger (p = 0.044 and 0.02), whilst younger subjects with higher disability performed similarly to older (p = 0.72 and 0.49). CONCLUSION Finger motor performance assessment provides important hints about upper limb disability, which should be evaluated in relation to age, disease duration and EDSS.
Collapse
|
11
|
Compromised tDCS-induced facilitation of motor consolidation in patients with multiple sclerosis. J Neurol 2018; 265:2302-2311. [DOI: 10.1007/s00415-018-8993-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 07/30/2018] [Accepted: 07/31/2018] [Indexed: 01/08/2023]
|
12
|
Budisavljevic S, Dell'Acqua F, Zanatto D, Begliomini C, Miotto D, Motta R, Castiello U. Asymmetry and Structure of the Fronto-Parietal Networks Underlie Visuomotor Processing in Humans. Cereb Cortex 2018; 27:1532-1544. [PMID: 26759477 DOI: 10.1093/cercor/bhv348] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Research in both humans and monkeys has shown that even simple hand movements require cortical control beyond primary sensorimotor areas. An extensive functional neuroimaging literature demonstrates the key role that cortical fronto-parietal regions play for movements such as reaching and reach-to-grasp. However, no study so far has examined the specific white matter connections linking the fronto-parietal regions, namely the 3 parallel pathways of the superior longitudinal fasciculus (SLF). The aim of the current study was to explore how selective fronto-parietal connections are for different kinds of hand movement in 30 right-handed subjects by correlating diffusion imaging tractography and kinematic data. We showed that a common network, consisting of bilateral SLF II and SLF III, was involved in both reaching and reach-to-grasp movements. Larger SLF II and SLF III in the right hemisphere were associated with faster speed of visuomotor processing, while the left SLF II and SLF III played a role in the initial movement trajectory control. Furthermore, the right SLF II was involved in the closing grip phase necessary for efficient grasping of the object. We demonstrated for the first time that individual differences in asymmetry and structure of the fronto-parietal networks were associated with visuomotor processing in humans.
Collapse
Affiliation(s)
| | - Flavio Dell'Acqua
- Natbrainlab, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Debora Zanatto
- Department of General Psychology.,Cognitive Neuroscience Center
| | | | - Diego Miotto
- Department of Medicine, University of Padova, Padova, Italy
| | | | - Umberto Castiello
- Department of General Psychology.,Cognitive Neuroscience Center.,Centro Linceo Interdisciplinare, Accademia dei Lincei, Roma, Italy
| |
Collapse
|
13
|
Beste C, Mückschel M, Paucke M, Ziemssen T. Dual-Tasking in Multiple Sclerosis - Implications for a Cognitive Screening Instrument. Front Hum Neurosci 2018; 12:24. [PMID: 29445335 PMCID: PMC5797790 DOI: 10.3389/fnhum.2018.00024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 01/16/2018] [Indexed: 01/22/2023] Open
Abstract
The monitoring of cognitive functions is central to the assessment and consecutive management of multiple sclerosis (MS). Though, especially cognitive processes that are central to everyday behavior like dual-tasking are often neglected. We examined dual-task performance using a psychological-refractory period (PRP) task in N = 21 patients and healthy controls and conducted standard neuropsychological tests. In dual-tasking, MS patients committed more erroneous responses when dual-tasking was difficult. In easier conditions, performance of MS patients did not differ to controls. Interestingly, the response times were generally not affected by the difficulty of the dual task, showing that the deficits observed do not reflect simple motor deficits or deficits in information processing speed but point out deficits in executive control functions and response selection in particular. Effect sizes were considerably large with d∼0.80 in mild affected patients and the achieved power was above 99%. There are cognitive control and dual tasking deficits in MS that are not attributable to simple motor speed deficits. Scaling of the difficulty of dual-tasking makes the test applied suitable for a wide variety of MS-patients and may complement neuropsychological assessments in clinical care and research setting.
Collapse
Affiliation(s)
- Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Moritz Mückschel
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.,Multiple Sclerosis Center, Center of Clinical Neuroscience, Department of Neurology, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Madlen Paucke
- Multiple Sclerosis Center, Center of Clinical Neuroscience, Department of Neurology, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Tjalf Ziemssen
- Multiple Sclerosis Center, Center of Clinical Neuroscience, Department of Neurology, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
14
|
The kinematics of handwriting movements as expression of cognitive and sensorimotor impairments in people with multiple sclerosis. Sci Rep 2017; 7:17730. [PMID: 29255220 PMCID: PMC5735165 DOI: 10.1038/s41598-017-18066-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 12/02/2017] [Indexed: 11/23/2022] Open
Abstract
Handwriting is an important activity of daily living, which requires sensorimotor and cognitive skills that could deteriorate in presence of neurological diseases. Handwriting impairments are common in people with multiple sclerosis (PwMS). Aims of the present study were to characterize handwriting movement features of PwMS in comparison with those of healthy adults, and to evaluate the relationship between kinematic parameters of handwriting movements and the results of the assessment of cognitive and motor domains. A new handwriting evaluation methodology was applied to quantify handwriting features of 19 PwMS and 22 age-matched healthy controls who were required to write a sentence on a digitizing tablet. Kinematic parameters of the sentence and of the strokes were used to evaluate handwriting performance. PwMS showed an altered handwriting kinematics with respect to healthy controls: higher movement duration, fragmented velocity profile and higher jerk. Furthermore, motor abilities and cognitive status of PwMS were related to handwriting parameters in accordance with the evidence that MS is a multifactorial disease affecting different domains. These results suggested that the proposed methodology might be a valuable tool to quantitatively assess handwriting impairments and the efficacy of handwriting treatments in PwMS.
Collapse
|
15
|
Signori A, Sormani MP, Schiavetti I, Bisio A, Bove M, Bonzano L. Quantitative assessment of finger motor performance: Normative data. PLoS One 2017; 12:e0186524. [PMID: 29045480 PMCID: PMC5646860 DOI: 10.1371/journal.pone.0186524] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 10/03/2017] [Indexed: 11/19/2022] Open
Abstract
Background Finger opposition movements are the basis of many daily living activities and are essential in general for manipulating objects; an engineered glove quantitatively assessing motor performance during sequences of finger opposition movements has been shown to be useful to provide reliable measures of finger motor impairment, even subtle, in subjects affected by neurological diseases. However, the obtained behavioral parameters lack published reference values. Objective To determine mean values for different motor behavioral parameters describing the strategy adopted by healthy people in performing repeated sequences of finger opposition movements, examining associations with gender and age. Methods Normative values for finger motor performance parameters were obtained on a sample of 255 healthy volunteers executing sequences of finger-to-thumb opposition movements, stratified by gender and over a wide range of ages. Touch duration, inter-tapping interval, movement rate, correct sequences (%), movements in advance compared with a metronome (%) and inter-hand interval were assessed. Results Increasing age resulted in decreased movement speed, advance movements with respect to a cue, correctness of sequences, and bimanual coordination. No significant performance differences were found between male and female subjects except for the duration of the finger touch, the interval between two successive touches and their ratio. Conclusions We report age- and gender-specific normal mean values and ranges for different parameters objectively describing the performance of finger opposition movement sequences, which may serve as useful references for clinicians to identify possible deficits in subjects affected by diseases altering fine hand motor skills.
Collapse
Affiliation(s)
- Alessio Signori
- Department of Health Sciences, Biostatistics Unit, University of Genoa, Via Pastore,1, Genoa, Italy
- * E-mail: (AS); (LB)
| | - Maria Pia Sormani
- Department of Health Sciences, Biostatistics Unit, University of Genoa, Via Pastore,1, Genoa, Italy
| | - Irene Schiavetti
- Department of Health Sciences, Biostatistics Unit, University of Genoa, Via Pastore,1, Genoa, Italy
| | - Ambra Bisio
- Department of Experimental Medicine, Section of Human Physiology, University of Genoa, Viale Benedetto XV, Genoa, Italy
| | - Marco Bove
- Department of Experimental Medicine, Section of Human Physiology, University of Genoa, Viale Benedetto XV, Genoa, Italy
| | - Laura Bonzano
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Largo Daneo 3, Genoa, Italy
- * E-mail: (AS); (LB)
| |
Collapse
|
16
|
Peterson DS, Fling BW. How changes in brain activity and connectivity are associated with motor performance in people with MS. Neuroimage Clin 2017; 17:153-162. [PMID: 29071209 PMCID: PMC5651557 DOI: 10.1016/j.nicl.2017.09.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 09/22/2017] [Accepted: 09/25/2017] [Indexed: 01/18/2023]
Abstract
People with multiple sclerosis (MS) exhibit pronounced changes in brain structure, activity, and connectivity. While considerable work has begun to elucidate how these neural changes contribute to behavior, the heterogeneity of symptoms and diagnoses makes interpretation of findings and application to clinical practice challenging. In particular, whether MS related changes in brain activity or brain connectivity protect against or contribute to worsening motor symptoms is unclear. With the recent emergence of neuromodulatory techniques that can alter neural activity in specific brain regions, it is critical to establish whether localized brain activation patterns are contributing to (i.e. maladaptive) or protecting against (i.e. adaptive) progression of motor symptoms. In this manuscript, we consolidate recent findings regarding changes in supraspinal structure and activity in people with MS and how these changes may contribute to motor performance. Furthermore, we discuss a hypothesis suggesting that increased neural activity during movement may be either adaptive or maladaptive depending on where in the brain this increase is observed. Specifically, we outline preliminary evidence suggesting sensorimotor cortex activity in the ipsilateral cortices may be maladaptive in people with MS. We also discuss future work that could supply data to support or refute this hypothesis, thus improving our understanding of this important topic.
Collapse
Affiliation(s)
- Daniel S Peterson
- Arizona State University, Tempe, AZ, USA; Veterans Affairs Phoenix Medical Center Phoenix, AZ, USA.
| | | |
Collapse
|
17
|
Sarabandi M. A Comparison of Implicit and Explicit Motor Sequence Learning in Patients with Relapsing-Remitting Multiple Sclerosis. Sports (Basel) 2017; 5:E34. [PMID: 29910394 PMCID: PMC5968985 DOI: 10.3390/sports5020034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/17/2017] [Accepted: 05/23/2017] [Indexed: 12/16/2022] Open
Abstract
This study tends to assess implicit and explicit types of motor learning in patients with Multiple Sclerosis (MS) and normal peers by means of a serial reaction time. Sample size was 15 for each group and Samples included 30 patients with MS and 30 normal peers and were assigned to implicit and explicit learning groups. A repeated measures ANOVA was used for measuring reaction time and response error, and a paired samples t-test was used to compare regular and irregular sequence data in each group. Comparison of these two types of learning in speed (response time) and accuracy (number of errors) showed the number of errors (P = 0.012) and response time (P = 0.012) in the implicit motor learning group of MS patients and the number of errors (P = 0.096) and response time (P = 0.954) in the explicit motor learning group of MS patients. Moreover, comparison showed the number of errors (P = 0.008) and response time (P = 0.05) in the implicit group of normal peers and the number of errors (P = 0.011) and response time (P = 0.442) in the explicit group of normal peers. The results showed that explaining and describing the task is less effective at training the motor sequence of MS patients and that these patients benefit more from implicit learning.
Collapse
Affiliation(s)
- Maliheh Sarabandi
- Department of Physical Training, Faculty of Human Sciences, University of Zabol, Zabol 009854, Iran.
| |
Collapse
|
18
|
Zahiri N, Abollahi I, Nabavi SM, Ehsani F, Arab AM, Shaw I, Shariat A, Shaw BS, Dastoorpoor M, Danaee M, Sangelaji B. Interference Effect of Prior Explicit Information on Motor Sequence Learning in Relapsing-Remitting Multiple Sclerosis Patients. Malays J Med Sci 2017; 24:69-80. [PMID: 28381930 DOI: 10.21315/mjms2017.24.1.8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 11/07/2016] [Indexed: 10/20/2022] Open
Abstract
BACKGROUND Multiple sclerosis (MS) is the most widespread disabling neurological condition in young adults around the world. The purpose of this study was to investigate the impact of explicit information (EI) on motor-sequence learning in MS patients. METHODS Thirty patients with relapsing-remitting MS (RRMS), age: 29.5 (SD = 5.6) years and 30 healthy gender-, age-, and education-matched control group participants, age: 28.8 (SD = 6.0) years, were recruited for this study. The participants in the healthy group were then randomly assigned into an EI (n = 15) group and a no-EI (n = 15) group. Similarly, the participants in the control group were then randomly assigned into EI (n = 15) and no-EI (n = 15) groups. The participants performed a serial reaction time (SRT) task and reaction times. A retention test was performed after 48 hours. RESULTS All participants reduced their reaction times across acquisition (MS group: 46.4 (SD = 3.3) minutes, P < 0.001, and healthy group: 39.4 (SD = 3.3) minutes, P < 0.001). The findings for the within-participants effect of repeated measures of time were significant (F(5.06, 283.7) = 71.33. P < 0.001). These results indicate that the interaction between group and time was significant (F(5.06, 283.7) = 6.44. P < 0.001), which indicated that the reaction time in both groups was significantly changed between the MS and healthy groups across times (B1 to B10). The main effect of the group (MS and healthy) (F(1, 56) = 22.78. P < 0.001) and also the main effect of no-EI vs EI (F(1, 56) = 4.71. P < 0.001) were significant. CONCLUSION This study demonstrated that that RRMS patients are capable of learning new skills, but the provision of EI prior to physical practice is deleterious to implicit learning. It is sufficient to educate MS patients on the aim and general content of the training and only to provide feedback at the end of the rehabilitative session.
Collapse
Affiliation(s)
- Nahid Zahiri
- Department of Physiotherapy, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Iraj Abollahi
- Department of Physiotherapy, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | | | - Fatemeh Ehsani
- Neuromuscular Rehabilitation Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Amir Masoud Arab
- Department of Physiotherapy, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Ina Shaw
- Department of Sport and Movement Studies, University of Johannesburg, Doornfontein, Johannesburg, Republic of South Africa
| | - Ardalan Shariat
- Department of Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Malaysia
| | - Brandon S Shaw
- Department of Sport and Movement Studies, University of Johannesburg, Doornfontein, Johannesburg, Republic of South Africa
| | - Maryam Dastoorpoor
- Department of Epidemiology and Biostatistics, Faculty of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahmoud Danaee
- University of Malaya Centre of Addiction Sciences (UMCAS), Malaysia
| | | |
Collapse
|
19
|
Peterson DS, Gera G, Horak FB, Fling BW. Corpus Callosum Structural Integrity Is Associated With Postural Control Improvement in Persons With Multiple Sclerosis Who Have Minimal Disability. Neurorehabil Neural Repair 2016; 31:343-353. [PMID: 27932696 DOI: 10.1177/1545968316680487] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Improvement of postural control in persons with multiple sclerosis (PwMS) is an important target for neurorehabilitation. Although PwMS are able to improve postural performance with training, the neural underpinnings of these improvements are poorly understood. OBJECTIVE To understand the neural underpinnings of postural motor learning in PwMS. METHODS Supraspinal white matter structural connectivity in PwMS was correlated with improvements in postural performance (balancing on an oscillating surface over 25 trials) and retention of improvements (24 hours later). RESULTS Improvement in postural performance was directly correlated to microstructural integrity of white matter tracts, measured as radial diffusivity, in the corpus callosum, posterior parieto-sensorimotor fibers and the brainstem in PwMS. Within the corpus callosum, the genu and midbody (fibers connecting the prefrontal and primary motor cortices, respectively) were most strongly correlated to improvements in postural control. Twenty-four-hour retention was not correlated to radial diffusivity. CONCLUSION PwMS who exhibited poorer white matter tract integrity connecting the cortical hemispheres via the corpus callosum showed the most difficulty learning to control balance on an unstable surface. Prediction of improvements in postural control through training (ie, motor learning) via structural imaging of the brain may allow for identification of individuals who are particularly well suited for postural rehabilitation interventions.
Collapse
Affiliation(s)
- Daniel S Peterson
- 1 Arizona State University, Phoenix, AZ, USA.,2 Veterans Affairs Salt Lake City Health Care System (VASLCHCS), Salt Lake City, UT, USA
| | | | - Fay B Horak
- 3 Oregon Health & Science University, Portland, OR, USA.,4 Veterans Affairs Portland Health Care System (VAPORHCS), Portland, OR, USA
| | | |
Collapse
|
20
|
Gera G, Fling BW, Van Ooteghem K, Cameron M, Frank JS, Horak FB. Postural Motor Learning Deficits in People With MS in Spatial but Not Temporal Control of Center of Mass. Neurorehabil Neural Repair 2016; 30:722-30. [DOI: 10.1177/1545968315619700] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: Multiple sclerosis (MS) is associated with balance deficits resulting in falls and impaired mobility. Although rehabilitation has been recommended to address these balance deficits, the extent to which people with MS can learn and retain improvements in postural responses is unknown. Aim: To determine the ability of people with MS to improve postural control with surface perturbation training. Methods: A total of 24 patients with mild MS and 14 age-matched controls underwent postural control training with a set pattern of continuous, forward-backward, sinusoidal, and surface translations provided by a force platform. Postural control was then tested the following day for retention. The primary outcome measures were the relative phase and center-of-mass (CoM) gain between the body CoM and the platform motion. Results: People with MS demonstrated similar improvements in acquiring and retaining changes in the temporal control of the CoM despite significant deficits in postural motor performance at the baseline. Both MS and control groups learned to anticipate the pattern of forward-backward perturbations, so body CoM shifted from a phase-lag (age-matched controls [CS] = −7.1 ± 1.3; MS = −12.9 ± 1.0) toward a phase-lead (CS = −0.7 ± 1.8; MS = −6.1 ± 1.4) relationship with the surface oscillations. However, MS patients were not able to retain the changes in the spatial control of the CoM acquired during training. Conclusions: People with MS have the capacity to improve use of a feed-forward postural strategy with practice and retain the learned behavior for temporal not spatial control of CoM, despite their significant postural response impairments.
Collapse
Affiliation(s)
| | - Brett W. Fling
- Oregon Health and Science University Portland, OR, USA
- Portland VA Medical System, Portland, OR, USA
| | | | - Michelle Cameron
- Oregon Health and Science University Portland, OR, USA
- Portland VA Medical System, Portland, OR, USA
| | | | - Fay B. Horak
- Oregon Health and Science University Portland, OR, USA
- Portland VA Medical System, Portland, OR, USA
| |
Collapse
|
21
|
Bonzano L, Tacchino A, Roccatagliata L, Inglese M, Mancardi GL, Novellino A, Bove M. An engineered glove for investigating the neural correlates of finger movements using functional magnetic resonance imaging. Front Hum Neurosci 2015; 9:503. [PMID: 26441600 PMCID: PMC4568337 DOI: 10.3389/fnhum.2015.00503] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 08/28/2015] [Indexed: 12/11/2022] Open
Abstract
Objective measurement of concomitant finger motor performance is recommended for functional magnetic resonance imaging (fMRI) studies investigating brain activity during finger tapping tasks, because performance modality and ability can influence the selection of different neural networks. In this study, we present a novel glove system for quantitative evaluation of finger opposition movements during fMRI (called Glove Analyzer for fMRI, GAF). Several tests for magnetic resonance (MR) compatibility were performed concerning magnet forces, image artifacts and right functioning of the system. Then, pilot fMRI of finger opposition tasks were conducted at 1.5T and 3T to investigate the neural correlates of sequences of finger opposition movements with the right hand, with simultaneous behavioral recording by means of GAF. All the MR compatibility tests succeeded, and the fMRI analysis revealed mainly the activation of the left sensorimotor areas and right cerebellum, regions that are known to be involved in finger movements. No artifactual clusters were detected in the activation maps. At the same time, through the parameters calculated by GAF it was possible to describe the sensorimotor strategy adopted by the subjects during the required task. Thus, the proposed device resulted to be MR compatible and can be useful for future fMRI studies investigating the neural correlates of finger opposition movements, allowing follow-up studies and comparisons among different groups of patients.
Collapse
Affiliation(s)
- Laura Bonzano
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa Genoa, Italy ; Magnetic Resonance Research Centre on Nervous System Diseases, University of Genoa Genoa, Italy
| | - Andrea Tacchino
- Department of Experimental Medicine, Section of Human Physiology, University of Genoa Genoa, Italy
| | - Luca Roccatagliata
- Magnetic Resonance Research Centre on Nervous System Diseases, University of Genoa Genoa, Italy ; Department of Health Sciences, University of Genoa Genoa, Italy
| | - Matilde Inglese
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa Genoa, Italy ; Magnetic Resonance Research Centre on Nervous System Diseases, University of Genoa Genoa, Italy ; Department of Neurology, Radiology, Neuroscience, Icahn School of Medicine at Mount Sinai New York, NY, USA
| | - Giovanni Luigi Mancardi
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa Genoa, Italy ; Magnetic Resonance Research Centre on Nervous System Diseases, University of Genoa Genoa, Italy
| | | | - Marco Bove
- Department of Experimental Medicine, Section of Human Physiology, University of Genoa Genoa, Italy
| |
Collapse
|
22
|
Selective impairments of motor sequence learning in multiple sclerosis patients with minimal disability. Brain Res 2014; 1585:91-8. [DOI: 10.1016/j.brainres.2014.08.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 07/23/2014] [Accepted: 08/13/2014] [Indexed: 11/19/2022]
|
23
|
Bonzano L, Tacchino A, Brichetto G, Roccatagliata L, Dessypris A, Feraco P, Lopes De Carvalho ML, Battaglia MA, Mancardi GL, Bove M. Upper limb motor rehabilitation impacts white matter microstructure in multiple sclerosis. Neuroimage 2013; 90:107-16. [PMID: 24370819 DOI: 10.1016/j.neuroimage.2013.12.025] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 11/09/2013] [Accepted: 12/14/2013] [Indexed: 10/25/2022] Open
Abstract
Upper limb impairments can occur in patients with multiple sclerosis, affecting daily living activities; however there is at present no definite agreement on the best rehabilitation treatment strategy to pursue. Moreover, motor training has been shown to induce changes in white matter architecture in healthy subjects. This study aimed at evaluating the motor behavioral and white matter microstructural changes following a 2-month upper limb motor rehabilitation treatment based on task-oriented exercises in patients with multiple sclerosis. Thirty patients (18 females and 12 males; age=43.3 ± 8.7 years) in a stable phase of the disease presenting with mild or moderate upper limb sensorimotor deficits were randomized into two groups of 15 patients each. Both groups underwent twenty 1-hour treatment sessions, three times a week. The "treatment group" received an active motor rehabilitation treatment, based on voluntary exercises including task-oriented exercises, while the "control group" underwent passive mobilization of the shoulder, elbow, wrist and fingers. Before and after the rehabilitation protocols, motor performance was evaluated in all patients with standard tests. Additionally, finger motor performance accuracy was assessed by an engineered glove. In the same sessions, every patient underwent diffusion tensor imaging to obtain parametric maps of fractional anisotropy, mean diffusivity, axial diffusivity, and radial diffusivity. The mean value of each parameter was separately calculated within regions of interest including the fiber bundles connecting brain areas involved in voluntary movement control: the corpus callosum, the corticospinal tracts and the superior longitudinal fasciculi. The two rehabilitation protocols induced similar effects on unimanual motor performance, but the bimanual coordination task revealed that the residual coordination abilities were maintained in the treated patients while they significantly worsened in the control group (p=0.002). Further, in the treatment group white matter integrity in the corpus callosum and corticospinal tracts was preserved while a microstructural integrity worsening was found in the control group (fractional anisotropy of the corpus callosum and corticospinal tracts: p=0.033 and p=0.022; radial diffusivity of the corpus callosum and corticospinal tracts: p=0.004 and p=0.008). Conversely, a significant increase of radial diffusivity was observed in the superior longitudinal fasciculi in both groups (p=0.02), indicating lack of treatment effects on this structure, showing damage progression likely due to a demyelination process. All these findings indicate the importance of administering, when possible, a rehabilitation treatment consisting of voluntary movements. We also demonstrated that the beneficial effects of a rehabilitation treatment are task-dependent and selective in their target; this becomes crucial towards the implementation of tailored rehabilitative approaches.
Collapse
Affiliation(s)
- Laura Bonzano
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy; Magnetic Resonance Research Centre on Nervous System Diseases, University of Genoa, Genoa, Italy.
| | - Andrea Tacchino
- Scientific Research Area, Italian Multiple Sclerosis Foundation (FISM), Genoa, Italy
| | - Giampaolo Brichetto
- Scientific Research Area, Italian Multiple Sclerosis Foundation (FISM), Genoa, Italy
| | - Luca Roccatagliata
- Magnetic Resonance Research Centre on Nervous System Diseases, University of Genoa, Genoa, Italy; Department of Health Sciences, Biostatistics Unit, University of Genoa, Genoa, Italy
| | - Adriano Dessypris
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy; Department of Experimental Medicine, Section of Human Physiology and Centro Polifunzionale di Scienze Motorie, University of Genoa, Genoa, Italy
| | - Paola Feraco
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | | | - Mario A Battaglia
- Department of Physiopathology, Experimental Medicine and Public Health, University of Siena, Siena, Italy
| | - Giovanni L Mancardi
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy; Magnetic Resonance Research Centre on Nervous System Diseases, University of Genoa, Genoa, Italy
| | - Marco Bove
- Department of Experimental Medicine, Section of Human Physiology and Centro Polifunzionale di Scienze Motorie, University of Genoa, Genoa, Italy.
| |
Collapse
|
24
|
Janssen AL, Boster A, Patterson BA, Abduljalil A, Prakash RS. Resting-state functional connectivity in multiple sclerosis: an examination of group differences and individual differences. Neuropsychologia 2013; 51:2918-29. [PMID: 23973635 DOI: 10.1016/j.neuropsychologia.2013.08.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 08/06/2013] [Accepted: 08/07/2013] [Indexed: 01/12/2023]
Abstract
Multiple sclerosis (MS) is a neurodegenerative, inflammatory disease of the central nervous system, resulting in physical and cognitive disturbances. The goal of the current study was to examine the association between network integrity and composite measures of cognition and disease severity in individuals with relapsing-remitting MS (RRMS), relative to healthy controls. All participants underwent a neuropsychological and neuroimaging session, where resting-state data was collected. Independent component analysis and dual regression were employed to examine network integrity in individuals with MS, relative to healthy controls. The MS sample exhibited less connectivity in the motor and visual networks, relative to healthy controls, after controlling for group differences in gray matter volume. However, no alterations were observed in the frontoparietal, executive control, or default-mode networks, despite previous evidence of altered neuronal patterns during tasks of exogenous processing. Whole-brain, voxel-wise regression analyses with disease severity and processing speed composites were also performed to elucidate the brain-behavior relationship with neuronal network integrity. Individuals with higher levels of disease severity demonstrated reduced intra-network connectivity of the motor network, and the executive control network, while higher disease burden was associated with greater inter-network connectivity between the medial visual network and areas involved in visuomotor learning. Our findings underscore the importance of examining resting-state oscillations in this population, both as a biomarker of disease progression and a potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Alisha L Janssen
- Department of Psychology, The Ohio State University, 1835 Neil Avenue, Columbus, OH 43210, United States
| | | | | | | | | |
Collapse
|
25
|
Engel A, Hijmans BS, Cerliani L, Bangert M, Nanetti L, Keller PE, Keysers C. Inter-individual differences in audio-motor learning of piano melodies and white matter fiber tract architecture. Hum Brain Mapp 2013; 35:2483-97. [PMID: 23904213 DOI: 10.1002/hbm.22343] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 04/09/2013] [Accepted: 05/23/2013] [Indexed: 02/02/2023] Open
Abstract
Humans vary substantially in their ability to learn new motor skills. Here, we examined inter-individual differences in learning to play the piano, with the goal of identifying relations to structural properties of white matter fiber tracts relevant to audio-motor learning. Non-musicians (n = 18) learned to perform three short melodies on a piano keyboard in a pure audio-motor training condition (vision of their own fingers was occluded). Initial learning times ranged from 17 to 120 min (mean ± SD: 62 ± 29 min). Diffusion-weighted magnetic resonance imaging was used to derive the fractional anisotropy (FA), an index of white matter microstructural arrangement. A correlation analysis revealed that higher FA values were associated with faster learning of piano melodies. These effects were observed in the bilateral corticospinal tracts, bundles of axons relevant for the execution of voluntary movements, and the right superior longitudinal fasciculus, a tract important for audio-motor transformations. These results suggest that the speed with which novel complex audio-motor skills can be acquired may be determined by variability in structural properties of white matter fiber tracts connecting brain areas functionally relevant for audio-motor learning.
Collapse
Affiliation(s)
- Annerose Engel
- Department of Neuroscience, University Medical Center Groningen, University of Groningen, The Netherlands; The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, The Netherlands; Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Cognitive and Behavioral Neuroscience Unit, D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | | | | | | | | | | | | |
Collapse
|
26
|
Ruddy KL, Carson RG. Neural pathways mediating cross education of motor function. Front Hum Neurosci 2013; 7:397. [PMID: 23908616 PMCID: PMC3725409 DOI: 10.3389/fnhum.2013.00397] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 07/07/2013] [Indexed: 12/24/2022] Open
Abstract
Cross education is the process whereby training of one limb gives rise to enhancements in the performance of the opposite, untrained limb. Despite interest in this phenomenon having been sustained for more than a century, a comprehensive explanation of the mediating neural mechanisms remains elusive. With new evidence emerging that cross education may have therapeutic utility, the need to provide a principled evidential basis upon which to design interventions becomes ever more pressing. Generally, mechanistic accounts of cross education align with one of two explanatory frameworks. Models of the “cross activation” variety encapsulate the observation that unilateral execution of a movement task gives rise to bilateral increases in corticospinal excitability. The related conjecture is that such distributed activity, when present during unilateral practice, leads to simultaneous adaptations in neural circuits that project to the muscles of the untrained limb, thus facilitating subsequent performance of the task. Alternatively, “bilateral access” models entail that motor engrams formed during unilateral practice, may subsequently be utilized bilaterally—that is, by the neural circuitry that constitutes the control centers for movements of both limbs. At present there is a paucity of direct evidence that allows the corresponding neural processes to be delineated, or their relative contributions in different task contexts to be ascertained. In the current review we seek to synthesize and assimilate the fragmentary information that is available, including consideration of knowledge that has emerged as a result of technological advances in structural and functional brain imaging. An emphasis upon task dependency is maintained throughout, the conviction being that the neural mechanisms that mediate cross education may only be understood in this context.
Collapse
Affiliation(s)
- Kathy L Ruddy
- School of Psychology, Queen's University Belfast Belfast, UK ; Trinity College Institute of Neuroscience and School of Psychology, Trinity College Dublin Dublin, Ireland
| | | |
Collapse
|
27
|
Bonzano L, Sormani MP, Tacchino A, Abate L, Lapucci C, Mancardi GL, Uccelli A, Bove M. Quantitative assessment of finger motor impairment in multiple sclerosis. PLoS One 2013; 8:e65225. [PMID: 23741485 PMCID: PMC3669283 DOI: 10.1371/journal.pone.0065225] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 04/24/2013] [Indexed: 11/30/2022] Open
Abstract
Objective To address the disability impact on fine hand motor functions in patients with Multiple Sclerosis (MS) by quantitatively measuring finger opposition movements, with the aim of providing a new “score” integrating current methods for disability assessment. Methods 40 MS patients (Expanded Disability Status Scale (EDSS): 0–7) and 80 healthy controls (HC) performed a repetitive finger-to-thumb opposition sequence with their dominant hand at spontaneous and maximal velocity, and uni- and bi-manually metronome-paced. A sensor-engineered glove was used to measure finger motor performance. Twenty-seven HC were tested twice, one month apart, to assess test-retest reliability. Results The motor parameters showed a good reproducibility in HC and demonstrated significantly worse performance in MS patients with respect to HC. A multivariate model revealed that rate of movement in the spontaneous velocity condition and inter-hand interval (IHI), indicating bimanual coordination, contributed independently to differentiate the two groups. A finger motor impairment score based on these two parameters was able to discriminate HC from MS patients with very low EDSS scores (p<0.001): a significant difference was already evident for patients with EDSS = 0. Further, in the MS group, some motor performance parameters correlated with the clinical scores. In particular, significant correlations were found between IHI and EDSS (r = 0.56; p<0.0001), MS Functional Composite (r = −0.40; p = 0.01), Paced Auditory Serial Addition (r = −0.38; p = 0.02). No motor performance parameter correlated with Timed 25-Foot Walk. Conclusions A simple, quantitative, objective method measuring finger motor performance could be used to define a score discriminating healthy controls and MS patients, even with very low disability. This sensitivity might be of crucial importance for monitoring the disease course and the treatment effects in early MS patients, when changes in the EDSS are small or absent.
Collapse
Affiliation(s)
- Laura Bonzano
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Maria Pia Sormani
- Department of Health Sciences, Biostatistics Unit, University of Genoa, Genoa, Italy
| | - Andrea Tacchino
- Department of Experimental Medicine, Section of Human Physiology and Centro Polifunzionale di Scienze Motorie, University of Genoa, Genoa, Italy
| | - Lucia Abate
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Caterina Lapucci
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Giovanni Luigi Mancardi
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Antonio Uccelli
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Marco Bove
- Department of Experimental Medicine, Section of Human Physiology and Centro Polifunzionale di Scienze Motorie, University of Genoa, Genoa, Italy
- * E-mail:
| |
Collapse
|
28
|
Sbardella E, Petsas N, Tona F, Prosperini L, Raz E, Pace G, Pozzilli C, Pantano P. Assessing the correlation between grey and white matter damage with motor and cognitive impairment in multiple sclerosis patients. PLoS One 2013; 8:e63250. [PMID: 23696802 PMCID: PMC3655958 DOI: 10.1371/journal.pone.0063250] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 04/01/2013] [Indexed: 12/13/2022] Open
Abstract
Background Multiple sclerosis (MS) is characterized by demyelinating and degenerative processes within the central nervous system. Unlike conventional MRI,new advanced imaging techniques improve pathological specificity and better highlight the relationship between anatomical damage and clinical impairment. Objective To investigate the relationship between clinical disability and both grey (GM) and white matter (WM) regional damage in MS patients. Methods Thirty-six relapsing remitting-MS patients and 25 sex- and age-matched controls were enrolled. All patients were clinically evaluated by the Expanded Disability Status Scale and the Multiple Sclerosis Functional Composite (MSFC) scale, which includes the 9-hole peg test (9HPT), the timed 25-feet walking test (T25FW) and the paced auditory serial addition test (PASAT). All subjects were imaged by a 3.0 T scanner: dual-echo fast spin-echo, 3DT1-weighted and diffusion-tensor imaging (DTI) sequences were acquired. Voxel-based morphometry (VBM) and tract-based spatial statistics (TBSS) analyses were run for regional GM and WM assessment, respectively. T2 lesion volumes were also calculated, by using a semi-automated technique. Results Brain volumetric assessment of GM and DTI measures revealed significant differences between patients and controls. In patients, different measures of WM damage correlated each-other (p<0.0001), whereas none of them correlated with GM volume. In patients, focal GM atrophy and widespread WM damage significantly correlated with clinical measures. In particular, VBM analysis revealed a significant correlation (p<0.05) between GM volume and 9HPT in cerebellum and between GM volume and PASAT in orbito-frontal cortex. TBSS showed significant correlations between DTI metrics with 9HPT and PASAT scores in many WM bundles (p<0.05), including corpus callosum, internal capsule, posterior thalamic radiations, cerebral peduncles. Conclusions Selective GM atrophy and widespread WM tracts damage are associated with functional impairment of upper-limb motion and cognition. The combined analysis of volumetric and DTI data may help to better understand structural alterations underlying physical and cognitive dysfunction in MS.
Collapse
Affiliation(s)
- Emilia Sbardella
- Department of Neurology and Psychiatry, Sapienza University, Rome, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Parikh PJ, Cole KJ. Transfer of learning between hands to handle a novel object in old age. Exp Brain Res 2013; 227:9-18. [PMID: 23595702 DOI: 10.1007/s00221-013-3451-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 02/12/2013] [Indexed: 10/27/2022]
Abstract
Transferring information about object weight between hands for use in scaling prehension forces likely depends on the integrity of the structures linking the two sides of the brain. It is unknown whether healthy older adults, who demonstrate a modest decline in this connectivity, transfer fingertip force scaling for object weight between hands. In the present study, healthy older and young adults performed two tasks: gripping and lifting an object, and a ballistic finger abduction movement. For the grip and lift task, participants practiced lifting a novel object using a precision pinch grip with the right hand (RH) and then did so again with the left hand (LH). For the ballistic task, participants were trained to maximally accelerate the right index finger by abducting it. On the grip and lift task, all participants appeared to overestimate the object weight during the 1st RH lift, followed by a progressive reduction on successive lifts. This adaptation was transferred to the LH in both groups on their first lift and remained stable over subsequent lifts. In contrast, the training-induced peak abduction acceleration on the ballistic task transferred poorly to the LH in older with considerably better transfer in young adults. We conclude that the memory representations scaling the lift force for the grip and lift task generalized to the untrained hand, while the greater acceleration that was acquired during practice of the ballistic task showed an incomplete transfer to the opposite hand. These differences may indicate task-dependent interhemispheric transfer of learning in old age.
Collapse
Affiliation(s)
- Pranav J Parikh
- Motor Control Laboratories, Department of Health and Human Physiology, University of Iowa, Iowa City, IA 52242, USA.
| | | |
Collapse
|
30
|
DTI Measurements in Multiple Sclerosis: Evaluation of Brain Damage and Clinical Implications. Mult Scler Int 2013; 2013:671730. [PMID: 23606965 PMCID: PMC3628664 DOI: 10.1155/2013/671730] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2012] [Revised: 02/20/2013] [Accepted: 03/05/2013] [Indexed: 11/18/2022] Open
Abstract
Diffusion tensor imaging (DTI) is an effective means of quantifying parameters of demyelination and axonal loss. The application of DTI in Multiple Sclerosis (MS) has yielded noteworthy results. DTI abnormalities, which are already detectable in patients with clinically isolated syndrome (CIS), become more pronounced as disease duration and neurological impairment increase. The assessment of the microstructural alterations of white and grey matter in MS may shed light on mechanisms responsible for irreversible disability accumulation. In this paper, we examine the DTI analysis methods, the results obtained in the various tissues of the central nervous system, and correlations with clinical features and other MRI parameters. The adoption of DTI metrics to assess the outcome of prognostic measures may represent an extremely important step forward in the MS research field.
Collapse
|
31
|
Microstructural organization of corpus callosum projections to prefrontal cortex predicts bimanual motor learning. Learn Mem 2012; 19:351-7. [DOI: 10.1101/lm.026534.112] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|