1
|
Stern MA, Cole ER, Gutekunst CA, Yang JJ, Berglund K, Gross RE. Organellular imaging in vivo reveals a depletion of endoplasmic reticular calcium during post-ictal cortical spreading depolarization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.21.614252. [PMID: 39386598 PMCID: PMC11463492 DOI: 10.1101/2024.09.21.614252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
During cortical spreading depolarization (CSD), neurons exhibit a dramatic increase in cytosolic calcium, which may be integral to CSD-mediated seizure termination. This calcium increase greatly exceeds that during seizures, suggesting the calcium source may not be solely extracellular. Thus, we sought to determine if the endoplasmic reticulum (ER), the largest intracellular calcium store, is involved. We developed a two-photon calcium imaging paradigm to simultaneously record the cytosol and ER during seizures in awake mice. Paired with direct current recording, we reveal that CSD can manifest as a slow post-ictal cytosolic calcium wave with a concomitant depletion of ER calcium that is spatiotemporally consistent with a calcium-induced calcium release. Importantly, we observed both naturally occurring and electrically induced CSD suppressed post-ictal epileptiform activity. Collectively, this work links ER dynamics to CSD, which serves as an innate process for seizure suppression and a potential mechanism underlying therapeutic electrical stimulation for epilepsy.
Collapse
Affiliation(s)
- Matthew A. Stern
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, United States
| | - Eric R. Cole
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, United States
- Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, United States
| | - Claire-Anne Gutekunst
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, United States
| | - Jenny J. Yang
- Department of Chemistry, Center for Diagnostics and Therapeutics, Advanced Translational Imaging Facility, Georgia State University, Atlanta, GA, United States
| | - Ken Berglund
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, United States
| | - Robert E. Gross
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
2
|
Groschup B, Calandra GM, Raitmayr C, Shrouder J, Llovera G, Zaki AG, Burgstaller S, Bischof H, Eroglu E, Liesz A, Malli R, Filser S, Plesnila N. Probing intracellular potassium dynamics in neurons with the genetically encoded sensor lc-LysM GEPII 1.0 in vitro and in vivo. Sci Rep 2024; 14:13753. [PMID: 38877089 PMCID: PMC11178854 DOI: 10.1038/s41598-024-62993-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/23/2024] [Indexed: 06/16/2024] Open
Abstract
Neuronal activity is accompanied by a net outflow of potassium ions (K+) from the intra- to the extracellular space. While extracellular [K+] changes during neuronal activity are well characterized, intracellular dynamics have been less well investigated due to lack of respective probes. In the current study we characterized the FRET-based K+ biosensor lc-LysM GEPII 1.0 for its capacity to measure intracellular [K+] changes in primary cultured neurons and in mouse cortical neurons in vivo. We found that lc-LysM GEPII 1.0 can resolve neuronal [K+] decreases in vitro during seizure-like and intense optogenetically evoked activity. [K+] changes during single action potentials could not be recorded. We confirmed these findings in vivo by expressing lc-LysM GEPII 1.0 in mouse cortical neurons and performing 2-photon fluorescence lifetime imaging. We observed an increase in the fluorescence lifetime of lc-LysM GEPII 1.0 during periinfarct depolarizations, which indicates a decrease in intracellular neuronal [K+]. Our findings suggest that lc-LysM GEPII 1.0 can be used to measure large changes in [K+] in neurons in vitro and in vivo but requires optimization to resolve smaller changes as observed during single action potentials.
Collapse
Affiliation(s)
- Bernhard Groschup
- Institute for Stroke and Dementia Research (ISD), LMU University Hospital, LMU Munich, Munich, Germany
- Graduate School of Systemic Neurosciences, LMU Munich, Planegg-Martinsried, Germany
| | - Gian Marco Calandra
- Institute for Stroke and Dementia Research (ISD), LMU University Hospital, LMU Munich, Munich, Germany
- Graduate School of Systemic Neurosciences, LMU Munich, Planegg-Martinsried, Germany
| | - Constanze Raitmayr
- Institute for Stroke and Dementia Research (ISD), LMU University Hospital, LMU Munich, Munich, Germany
| | - Joshua Shrouder
- Institute for Stroke and Dementia Research (ISD), LMU University Hospital, LMU Munich, Munich, Germany
| | - Gemma Llovera
- Institute for Stroke and Dementia Research (ISD), LMU University Hospital, LMU Munich, Munich, Germany
| | - Asal Ghaffari Zaki
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| | - Sandra Burgstaller
- Institut für Klinische Anatomie und Zellanalytik (Österbergstraße 3), Eberhard Karls Universität Tübingen, Tübingen, Germany
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/4, 8010, Graz, Austria
| | - Helmut Bischof
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/4, 8010, Graz, Austria
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany
| | - Emrah Eroglu
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| | - Arthur Liesz
- Institute for Stroke and Dementia Research (ISD), LMU University Hospital, LMU Munich, Munich, Germany
- Graduate School of Systemic Neurosciences, LMU Munich, Planegg-Martinsried, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Roland Malli
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/4, 8010, Graz, Austria
- BioTechMed-Graz, Mozartgasse 12/II, 8010, Graz, Austria
| | - Severin Filser
- Institute for Stroke and Dementia Research (ISD), LMU University Hospital, LMU Munich, Munich, Germany
- Deutsches Zentrum Für Neurodegenerative Erkrankungen (DZNE), Light Microscope Facility (LMF), Bonn, Germany
| | - Nikolaus Plesnila
- Institute for Stroke and Dementia Research (ISD), LMU University Hospital, LMU Munich, Munich, Germany.
- Graduate School of Systemic Neurosciences, LMU Munich, Planegg-Martinsried, Germany.
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany.
| |
Collapse
|
3
|
Kelmanson IV, Shokhina AG, Kotova DA, Pochechuev MS, Ivanova AD, Kostyuk AI, Panova AS, Borodinova AA, Solotenkov MA, Stepanov EA, Raevskii RI, Moshchenko AA, Pak VV, Ermakova YG, van Belle GJC, Tarabykin V, Balaban PM, Fedotov IV, Fedotov AB, Conrad M, Bogeski I, Katschinski DM, Doeppner TR, Bähr M, Zheltikov AM, Belousov VV, Bilan DS. In vivo dynamics of acidosis and oxidative stress in the acute phase of an ischemic stroke in a rodent model. Redox Biol 2021; 48:102178. [PMID: 34773835 PMCID: PMC8600061 DOI: 10.1016/j.redox.2021.102178] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 02/08/2023] Open
Abstract
Ischemic cerebral stroke is one of the leading causes of death and disability in humans. However, molecular processes underlying the development of this pathology remain poorly understood. There are major gaps in our understanding of metabolic changes that occur in the brain tissue during the early stages of ischemia and reperfusion. In particular, it is generally accepted that both ischemia (I) and reperfusion (R) generate reactive oxygen species (ROS) that cause oxidative stress which is one of the main drivers of the pathology, although ROS generation during I/R was never demonstrated in vivo due to the lack of suitable methods. In the present study, we record for the first time the dynamics of intracellular pH and H2O2 during I/R in cultured neurons and during experimental stroke in rats using the latest generation of genetically encoded biosensors SypHer3s and HyPer7. We detect a buildup of powerful acidosis in the brain tissue that overlaps with the ischemic core from the first seconds of pathogenesis. At the same time, no significant H2O2 generation was found in the acute phase of ischemia/reperfusion. HyPer7 oxidation in the brain was detected only 24 h later. Comparison of in vivo experiments with studies on cultured neurons under I/R demonstrates that the dynamics of metabolic processes in these models significantly differ, suggesting that a cell culture is a poor predictor of metabolic events in vivo.
Collapse
Affiliation(s)
- Ilya V Kelmanson
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia; Laboratory of Experimental Oncology, Pirogov Russian National Research Medical University, 117997, Moscow, Russia
| | - Arina G Shokhina
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia; Laboratory of Experimental Oncology, Pirogov Russian National Research Medical University, 117997, Moscow, Russia
| | - Daria A Kotova
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Matvei S Pochechuev
- Physics Department, International Laser Center, M.V. Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Alexandra D Ivanova
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia; Biological Department, M.V. Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Alexander I Kostyuk
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Anastasiya S Panova
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Anastasia A Borodinova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia
| | - Maxim A Solotenkov
- Physics Department, International Laser Center, M.V. Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Evgeny A Stepanov
- Physics Department, International Laser Center, M.V. Lomonosov Moscow State University, Moscow, 119992, Russia; Russian Quantum Center, Skolkovo, Moscow Region, 143025, Russia
| | - Roman I Raevskii
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Aleksandr A Moshchenko
- Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, Moscow, 117997, Russia
| | - Valeriy V Pak
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Yulia G Ermakova
- European Molecular Biology Laboratory, Heidelberg, 69117, Germany
| | - Gijsbert J C van Belle
- Institute for Cardiovascular Physiology, University Medical Center Göttingen, Georg-August-University, Humboldtallee 23, 37073, Göttingen, Germany
| | - Viktor Tarabykin
- Institute of Cell Biology and Neurobiology, Charité - Universitätsmedizin Berlin, Berlin, 10117, Germany
| | - Pavel M Balaban
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia
| | - Ilya V Fedotov
- Physics Department, International Laser Center, M.V. Lomonosov Moscow State University, Moscow, 119992, Russia; Russian Quantum Center, Skolkovo, Moscow Region, 143025, Russia; Kazan Quantum Center, A.N. Tupolev Kazan National Research Technical University, Kazan, 420126, Russia; Department of Physics and Astronomy, Texas A&M University, College Station, TX, 77843, USA
| | - Andrei B Fedotov
- Physics Department, International Laser Center, M.V. Lomonosov Moscow State University, Moscow, 119992, Russia; Russian Quantum Center, Skolkovo, Moscow Region, 143025, Russia
| | - Marcus Conrad
- Laboratory of Experimental Oncology, Pirogov Russian National Research Medical University, 117997, Moscow, Russia; Helmholtz Zentrum München, Institute of Metabolism and Cell Death, Ingolstädter Landstr. 1, Neuherberg, 85764, Germany
| | - Ivan Bogeski
- Institute for Cardiovascular Physiology, University Medical Center Göttingen, Georg-August-University, Humboldtallee 23, 37073, Göttingen, Germany
| | - Dörthe M Katschinski
- Institute for Cardiovascular Physiology, University Medical Center Göttingen, Georg-August-University, Humboldtallee 23, 37073, Göttingen, Germany
| | - Thorsten R Doeppner
- Department of Neurology, University Medical Center Göttingen, Göttingen, 37075, Germany; Istanbul Medipol University, Research Institute for Health Sciences and Technologies (SABITA), Istanbul, Turkey; Istanbul Medipol University, School of Medicine, Dept. of Physiology, Istanbul, Turkey
| | - Mathias Bähr
- Department of Neurology, University Medical Center Göttingen, Göttingen, 37075, Germany
| | - Aleksei M Zheltikov
- Physics Department, International Laser Center, M.V. Lomonosov Moscow State University, Moscow, 119992, Russia; Russian Quantum Center, Skolkovo, Moscow Region, 143025, Russia; Kazan Quantum Center, A.N. Tupolev Kazan National Research Technical University, Kazan, 420126, Russia; Department of Physics and Astronomy, Texas A&M University, College Station, TX, 77843, USA
| | - Vsevolod V Belousov
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia; Laboratory of Experimental Oncology, Pirogov Russian National Research Medical University, 117997, Moscow, Russia; Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, Moscow, 117997, Russia; Institute for Cardiovascular Physiology, University Medical Center Göttingen, Georg-August-University, Humboldtallee 23, 37073, Göttingen, Germany.
| | - Dmitry S Bilan
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia; Laboratory of Experimental Oncology, Pirogov Russian National Research Medical University, 117997, Moscow, Russia.
| |
Collapse
|
4
|
Blawn KT, Kellohen KL, Galloway EA, Wahl J, Vivek A, Verkhovsky VG, Barker NK, Cottier KE, Vallecillo TG, Langlais PR, Liktor-Busa E, Vanderah TW, Largent-Milnes TM. Sex hormones regulate NHE1 functional expression and brain endothelial proteome to control paracellular integrity of the blood endothelial barrier. Brain Res 2021; 1763:147448. [PMID: 33771519 PMCID: PMC10494867 DOI: 10.1016/j.brainres.2021.147448] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 01/31/2023]
Abstract
BACKGROUND Sex hormones have been implicated in pH regulation of numerous physiological systems. One consistent factor of these studies is the sodium-hydrogen exchanger 1 (NHE1). NHE1 has been associated with pH homeostasis at epithelial barriers. Hormone fluctuations have been implicated in protection and risk for breaches in blood brain barrier (BBB)/blood endothelial barrier (BEB) integrity. Few studies, however, have investigated BBB/BEB integrity in neurological disorders in the context of sex-hormone regulation of pH homeostasis. METHODS//RESULTS Physiologically relevant concentrations of 17-β-estradiol (E2, 294 pM), progesterone (P, 100 nM), and testosterone (T,3.12 nM) were independently applied to cultured immortalized bEnd.3 brain endothelial cells to study the BEB. Individual gonadal hormones showed preferential effects on extracellular pH (E2), 14C-sucrose uptake (T), stimulated paracellular breaches (P) with dependence on functional NHE1 expression without impacting transendothelial resistance (TEER) or total protein expression. While total NHE1 expression was not changed as determined via whole cell lysate and subcellular fractionation experiment, biotinylation of NHE1 for surface membrane expression showed E2 reduced functional expression. Quantitative proteomic analysis revealed divergent effects of 17-β-estradiol and testosterone on changes in protein abundance in bEnd.3 endothelial cells as compared to untreated controls. CONCLUSIONS These data suggest that circulating levels of sex hormones may independently control BEB integrity by 1) regulating pH homeostasis through NHE1 functional expression and 2) modifying the endothelial proteome.
Collapse
Affiliation(s)
- Kiera T Blawn
- University of Arizona, Department of Pharmacology, Tucson, AZ, USA
| | | | - Emily A Galloway
- University of Arizona, Department of Pharmacology, Tucson, AZ, USA
| | - Jared Wahl
- University of Arizona, Department of Pharmacology, Tucson, AZ, USA
| | - Anjali Vivek
- University of Arizona, Department of Pharmacology, Tucson, AZ, USA
| | | | - Natalie K Barker
- University of Arizona, Department of Medicine, Division of Endocrinology, College of Medicine, Tucson, AZ, USA
| | | | | | - Paul R Langlais
- University of Arizona, Department of Medicine, Division of Endocrinology, College of Medicine, Tucson, AZ, USA
| | | | - Todd W Vanderah
- University of Arizona, Department of Pharmacology, Tucson, AZ, USA
| | | |
Collapse
|
5
|
Bian N, Yuan Y, Li Y, Liu M, Li X. Low-Intensity Pulsed Ultrasound Stimulation Inhibits Cortical Spreading Depression. Cereb Cortex 2021; 31:3872-3880. [PMID: 33860305 DOI: 10.1093/cercor/bhab055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 01/18/2021] [Accepted: 02/19/2021] [Indexed: 12/23/2022] Open
Abstract
Cortical spreading depression (CSD), which is closely correlated with migraine aura, cerebral ischemia, seizure, and brain injury, is a spreading wave of neuronal and glial depolarization. The purpose of this study is to investigate whether low-intensity pulsed ultrasound stimulation (PUS) inhibits CSD by modulating neural activity and hemodynamics. Behavioral test, intrinsic signal optical imaging and western blot analysis were used for evaluating the inhibition effect of PUS on CSD in rat. We found that: 1) 30 min of PUS can significantly improve motor activity of rat with CSD. 2) Both 30 s and 30 min of PUS can significantly reduce count and propagation speed of CSD in rat and the inhibitory effect was enhanced with increase of ultrasound intensity. 3) 30 min of PUS significantly enhanced levels of brain-derived neurotrophic factor protein in brain tissue with CSD. These results suggest that PUS has the potential to treat brain disorders associated with CSD.
Collapse
Affiliation(s)
- Nannan Bian
- Institute of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Yi Yuan
- Institute of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Yingwei Li
- Institute of Information Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Mengyang Liu
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna 1090, Austria
| | - Xiaoli Li
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
6
|
M. Tóth O, Menyhárt Á, Frank R, Hantosi D, Farkas E, Bari F. Tissue Acidosis Associated with Ischemic Stroke to Guide Neuroprotective Drug Delivery. BIOLOGY 2020; 9:biology9120460. [PMID: 33322264 PMCID: PMC7764344 DOI: 10.3390/biology9120460] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/02/2020] [Accepted: 12/07/2020] [Indexed: 12/14/2022]
Abstract
Simple Summary Ischemic stroke is caused by the blockade of a blood vessel in the brain. Consequently, the brain region supplied by the blocked vessel suffers brain damage and becomes acidic. Here we provide a summary of the causes and consequences of acid accumulation in the brain tissue. Ischemic stroke requires immediate medical attention to minimize the damage of brain tissue, and to save function. It would be desirable for the medical treatment to target the site of injury selectively, to enrich the site of ongoing injury with the protective agent, and to avoid undesirable side effects at the same time. We propose that acid accumulation at the sight of brain tissue injury can be used to delineate the region that would benefit most from medical treatment. Tiny drug carriers known as nanoparticles may be loaded with drugs that protect the brain tissue. These nanoparticles may be designed to release their drug cargo in response to an acidic environment. This would ensure that the therapeutic agent is directed selectively to the site where it is needed. Ultimately, this approach may offer a new way to treat stroke patients with the hope of more effective therapy, and better stroke outcome. Abstract Ischemic stroke is a leading cause of death and disability worldwide. Yet, the effective therapy of focal cerebral ischemia has been an unresolved challenge. We propose here that ischemic tissue acidosis, a sensitive metabolic indicator of injury progression in cerebral ischemia, can be harnessed for the targeted delivery of neuroprotective agents. Ischemic tissue acidosis, which represents the accumulation of lactic acid in malperfused brain tissue is significantly exacerbated by the recurrence of spreading depolarizations. Deepening acidosis itself activates specific ion channels to cause neurotoxic cellular Ca2+ accumulation and cytotoxic edema. These processes are thought to contribute to the loss of the ischemic penumbra. The unique metabolic status of the ischemic penumbra has been exploited to identify the penumbra zone with imaging tools. Importantly, acidosis in the ischemic penumbra may also be used to guide therapeutic intervention. Agents with neuroprotective promise are suggested here to be delivered selectively to the ischemic penumbra with pH-responsive smart nanosystems. The administered nanoparticels release their cargo in acidic tissue environment, which reliably delineates sites at risk of injury. Therefore, tissue pH-targeted drug delivery is expected to enrich sites of ongoing injury with the therapeutical agent, without the risk of unfavorable off-target effects.
Collapse
|
7
|
Liktor-Busa E, Blawn KT, Kellohen KL, Wiese BM, Verkhovsky V, Wahl J, Vivek A, Palomino SM, Davis TP, Vanderah TW, Largent-Milnes TM. Functional NHE1 expression is critical to blood brain barrier integrity and sumatriptan blood to brain uptake. PLoS One 2020; 15:e0227463. [PMID: 32469979 PMCID: PMC7259629 DOI: 10.1371/journal.pone.0227463] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 05/04/2020] [Indexed: 12/31/2022] Open
Abstract
Disruption of blood-brain barrier integrity and dramatic failure of brain ion homeostasis including fluctuations of pH occurs during cortical spreading depression (CSD) events associated with several neurological disorders, including migraine with aura, traumatic brain injury and stroke. NHE1 is the primary regulator of pH in the central nervous system. The goal of the current study was to investigate the role of sodium-hydrogen exchanger type 1 (NHE1) in blood brain barrier (BBB) integrity during CSD events and the contributions of this antiporter on xenobiotic uptake. Using immortalized cell lines, pharmacologic inhibition and genetic knockdown of NHE1 mitigated the paracellular uptake of radiolabeled sucrose implicating functional NHE1 in BBB maintenance. In contrast, loss of functional NHE1 in endothelial cells facilitated uptake of the anti-migraine therapeutic, sumatriptan. In female rats, cortical KCl but not aCSF selectively reduced total expression of NHE1 in cortex and PAG but increased expression in trigeminal ganglia; no changes were seen in trigeminal nucleus caudalis. Thus, in vitro observations may have a significance in vivo to increase brain sumatriptan levels. Pharmacological inhibition of NHE1 prior to cortical manipulations enhanced the efficacy of sumatriptan at early time-points but induced facial sensitivity alone. Overall, our results suggest that dysregulation of NHE1 contributes to breaches in BBB integrity, drug penetrance, and the behavioral sensitivity to the antimigraine agent, sumatriptan.
Collapse
Affiliation(s)
- Erika Liktor-Busa
- Department of Pharmacology, University of Arizona, Tucson, Arizona, United States of America
| | - Kiera T. Blawn
- Department of Pharmacology, University of Arizona, Tucson, Arizona, United States of America
| | - Kathryn L. Kellohen
- Department of Pharmacology, University of Arizona, Tucson, Arizona, United States of America
| | - Beth M. Wiese
- Department of Pharmacology, University of Arizona, Tucson, Arizona, United States of America
| | - Vani Verkhovsky
- Department of Pharmacology, University of Arizona, Tucson, Arizona, United States of America
| | - Jared Wahl
- Department of Pharmacology, University of Arizona, Tucson, Arizona, United States of America
| | - Anjali Vivek
- Department of Pharmacology, University of Arizona, Tucson, Arizona, United States of America
| | - Seph M. Palomino
- Department of Pharmacology, University of Arizona, Tucson, Arizona, United States of America
| | - Thomas P. Davis
- Department of Pharmacology, University of Arizona, Tucson, Arizona, United States of America
| | - Todd W. Vanderah
- Department of Pharmacology, University of Arizona, Tucson, Arizona, United States of America
| | - Tally M. Largent-Milnes
- Department of Pharmacology, University of Arizona, Tucson, Arizona, United States of America
- * E-mail:
| |
Collapse
|
8
|
Wang C, Chen X, Hong J, Meng L, Cheng W, Zhu X, Lu J, Li P. Extendable, large-field multi-modal optical imaging system for measuring tissue hemodynamics. BIOMEDICAL OPTICS EXPRESS 2020; 11:2339-2351. [PMID: 32499927 PMCID: PMC7249820 DOI: 10.1364/boe.386197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/26/2020] [Accepted: 03/30/2020] [Indexed: 05/08/2023]
Abstract
Simultaneous imaging of multiple hemodynamic parameters helps to evaluate the physiological and pathological status of biological tissue. To achieve multimodal hemodynamics imaging with a large field of view, an infinite conjugate relay lens system compatible with the standard C-Mount camera lens is designed to adapt one camera lens with multiple CCD/CMOS cameras for simultaneously multi-wavelength imaging. Using this relay lens system, dual wavelength reflectance imaging and laser speckle contrast imaging were combined to simultaneously detect the changes in blood flow, oxygenation, and hemoglobin concentrations. To improve the accuracy of hemoglobin concentration measurement with an LED illumination source, an integral algorithm is proposed that accounts for the dependence of differential pathlength factors (DPF) on hemoglobin concentrations and the integral effect of both the emission spectrum of the light source and the spectrum response of the detector. The imaging system is validated by both phantom and in vivo experiments, including the arterial occlusion, and the detection of blood volume pulse (BVP) and blood flow pulse (BFP) signal in human subjects. The system helps in the exploration of macroscopic tissue hemodynamics.
Collapse
Affiliation(s)
- Chen Wang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Xiao Chen
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Jiachi Hong
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Liangwei Meng
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Weimin Cheng
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Xuan Zhu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Jinling Lu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Pengcheng Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- HUST-Suzhou Institute for Brainsmatics, Suzhou 215125, China
| |
Collapse
|
9
|
Optogenetic translocation of protons out of penumbral neurons is protective in a rodent model of focal cerebral ischemia. Brain Stimul 2020; 13:881-890. [PMID: 32289721 DOI: 10.1016/j.brs.2020.03.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Intracellular acidosis in the ischemic penumbra can contribute to further cell death, effectively enlarging the infarct core. Restoring the acid-base balance may enhance tissue survivability after cerebral ischemia. OBJECTIVE This study investigated whether translocating protons out of penumbral neurons could mitigate tissue acidification and induce neuroprotection in a rodent model of acute cerebral ischemia. METHODS We modulated the penumbral neurons via a light-driven pump to translocate protons out (i.e., archaerhodopsin/ArchT group) or into (i.e., channelrhodopsin-2/ChR2 group) neurons after focal cerebral ischemia in rats. Intracellular pH values were imaged via neutral red (NR) fluorescence and cerebral blood flow (CBF) was monitored through laser speckle contrast imaging (LSCI). Global CBF responses to electrical stimulation of the hindlimbs were obtained 24 h and 48 h after ischemia to assess neurological function. Behavioral and histological outcomes were evaluated 48 h after ischemia. A control group without gene modification was included. RESULTS The reduction of relative pH (RpH), the amplitude of negative peak of hypoemic response (RNP) and the hemispheric lateralization index (LI) in ArchT group were significantly less than those of the ChR2 or control group. Moreover, RpH was strongly correlated with RNP (r = 0.60) and LI (r24h = 0.80, r48h = 0.59). In addition, behavioral and histological results supported a neuroprotective effect of countering neuronal acidosis in penumbra through optogenetic stimulation. CONCLUSION(S) These results indicate that countering intracellular acidosis by optogenetically translocating protons out of penumbral neurons during the acute ischemic stage could induce protection after ischemic brain injury.
Collapse
|
10
|
Kentar M, Mann M, Sahm F, Olivares-Rivera A, Sanchez-Porras R, Zerelles R, Sakowitz OW, Unterberg AW, Santos E. Detection of spreading depolarizations in a middle cerebral artery occlusion model in swine. Acta Neurochir (Wien) 2020; 162:581-592. [PMID: 31940093 DOI: 10.1007/s00701-019-04132-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 11/04/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND The main objective of this study was to generate a hemodynamically stable swine model to detect spreading depolarizations (SDs) using electrocorticography (ECoG) and intrinsic optical signal (IOS) imaging and laser speckle flowmetry (LSF) after a 30-h middle cerebral artery (MCA) occlusion (MCAo) in German Landrace Swine. METHODS A total of 21 swine were used. The study comprised a training group (group 1, n = 7), a group that underwent bilateral craniectomy and MCAo (group 2, n = 10) and a group used for 2,3,5-triphenyltetrazolium (TTC) staining (group 3, n = 5). RESULTS In group 2, nine animals that underwent MCAo survived for 30 h, and one animal survived for 12 h. We detected MCA variants with 2 to 4 vessels. In all cases, all of the MCAs were occluded. The intensity changes exhibited by IOS and LSF after clipping were closely correlated and indicated a lower blood volume and reduced blood flow in the middle cerebral artery territory. Using IOS, we detected a mean of 2.37 ± (STD) 2.35 SDs/h. Using ECoG, we detected a mean of 0.29 ± (STD) 0.53 SDs/h. Infarctions were diagnosed using histological analysis. TTC staining in group 3 confirmed that the MCA territory was compromised and that the anterior and posterior cerebral arteries were preserved. CONCLUSIONS We confirm the reliability of performing live monitoring of cerebral infarctions using our MCAo protocol to detect SDs.
Collapse
|
11
|
Menyhárt Á, Zölei-Szénási D, Puskás T, Makra P, Bari F, Farkas E. Age or ischemia uncouples the blood flow response, tissue acidosis, and direct current potential signature of spreading depolarization in the rat brain. Am J Physiol Heart Circ Physiol 2017; 313:H328-H337. [DOI: 10.1152/ajpheart.00222.2017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 05/24/2017] [Accepted: 06/07/2017] [Indexed: 12/14/2022]
Abstract
Spreading depolarization (SD) events contribute to lesion maturation in the acutely injured human brain. Neurodegeneration related to SD is thought to be caused by the insufficiency of the cerebral blood flow (CBF) response; yet the mediators of the CBF response, or their deficiency in the aged or ischemic cerebral cortex, remain the target of intensive research. Here, we postulated that tissue pH effectively modulates the magnitude of hyperemia in response to SD, the coupling of which is prone to be dysfunctional in the aged or ischemic cerebral cortex. To test this hypothesis, we conducted systematic correlation analysis between the direct current (DC) potential signature of SD, SD-associated tissue acidosis, and hyperemic element of the CBF response in the isoflurane-anesthetized, young or old, and intact or ischemic rat cerebral cortex. The data demonstrate that the amplitude of the SD-related DC potential shift, tissue acidosis, and hyperemia are tightly coupled in the young intact cortex; ischemia and old age uncouples the amplitude of hyperemia from the amplitude of the DC potential shift and acidosis; the duration of the DC potential shift, hyperemia and acidosis positively correlate under ischemia alone; and old age disproportionally elongates the duration of acidosis with respect to the DC potential shift and hyperemia under ischemia. The coincidence of the variables supports the view that local CBF regulation with SD must have an effective metabolic component, which becomes dysfunctional with age or under ischemia. Finally, the known age-related acceleration of ischemic neurodegeneration may be promoted by exaggerated tissue acidosis. NEW & NOTEWORTHY The hyperemic element of the cerebral blood flow response to spreading depolarization is effectively modulated by tissue pH in the young intact rat cerebral cortex. This coupling becomes dysfunctional with age or under ischemia, and tissue acidosis lasts disproportionally longer in the aged cortex, making the tissue increasingly more vulnerable.
Collapse
Affiliation(s)
- Ákos Menyhárt
- Department of Medical Physics and Informatics, Faculty of Medicine and Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Dániel Zölei-Szénási
- Department of Medical Physics and Informatics, Faculty of Medicine and Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Tamás Puskás
- Department of Medical Physics and Informatics, Faculty of Medicine and Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Péter Makra
- Department of Medical Physics and Informatics, Faculty of Medicine and Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Ferenc Bari
- Department of Medical Physics and Informatics, Faculty of Medicine and Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Eszter Farkas
- Department of Medical Physics and Informatics, Faculty of Medicine and Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| |
Collapse
|
12
|
Menyhárt Á, Zölei-Szénási D, Puskás T, Makra P, Orsolya MT, Szepes BÉ, Tóth R, Ivánkovits-Kiss O, Obrenovitch TP, Bari F, Farkas E. Spreading depolarization remarkably exacerbates ischemia-induced tissue acidosis in the young and aged rat brain. Sci Rep 2017; 7:1154. [PMID: 28442781 PMCID: PMC5430878 DOI: 10.1038/s41598-017-01284-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 03/27/2017] [Indexed: 11/16/2022] Open
Abstract
Spreading depolarizations (SDs) occur spontaneously in the cerebral cortex of subarachnoid hemorrhage, stroke or traumatic brain injury patients. Accumulating evidence prove that SDs exacerbate focal ischemic injury by converting zones of the viable but non-functional ischemic penumbra to the core region beyond rescue. Yet the SD-related mechanisms to mediate neurodegeneration remain poorly understood. Here we show in the cerebral cortex of isoflurane-anesthetized, young and old laboratory rats, that SDs propagating under ischemic penumbra-like conditions decrease intra and- extracellular tissue pH transiently to levels, which have been recognized to cause tissue damage. Further, tissue pH after the passage of each spontaneous SD event remains acidic for over 10 minutes. Finally, the recovery from SD-related tissue acidosis is hampered further by age. We propose that accumulating acid load is an effective mechanism for SD to cause delayed cell death in the ischemic nervous tissue, particularly in the aged brain.
Collapse
Affiliation(s)
- Ákos Menyhárt
- Department of Medical Physics and Informatics, Faculty of Medicine & Faculty of Science and Informatics, University of Szeged, H-6720 Szeged, Korányi fasor 9, Hungary
| | - Dániel Zölei-Szénási
- Department of Medical Physics and Informatics, Faculty of Medicine & Faculty of Science and Informatics, University of Szeged, H-6720 Szeged, Korányi fasor 9, Hungary
| | - Tamás Puskás
- Department of Medical Physics and Informatics, Faculty of Medicine & Faculty of Science and Informatics, University of Szeged, H-6720 Szeged, Korányi fasor 9, Hungary
| | - Péter Makra
- Department of Medical Physics and Informatics, Faculty of Medicine & Faculty of Science and Informatics, University of Szeged, H-6720 Szeged, Korányi fasor 9, Hungary
| | - M Tóth Orsolya
- Department of Medical Physics and Informatics, Faculty of Medicine & Faculty of Science and Informatics, University of Szeged, H-6720 Szeged, Korányi fasor 9, Hungary
| | - Borbála É Szepes
- Department of Medical Physics and Informatics, Faculty of Medicine & Faculty of Science and Informatics, University of Szeged, H-6720 Szeged, Korányi fasor 9, Hungary
| | - Réka Tóth
- Department of Medical Physics and Informatics, Faculty of Medicine & Faculty of Science and Informatics, University of Szeged, H-6720 Szeged, Korányi fasor 9, Hungary
| | - Orsolya Ivánkovits-Kiss
- Department of Medical Physics and Informatics, Faculty of Medicine & Faculty of Science and Informatics, University of Szeged, H-6720 Szeged, Korányi fasor 9, Hungary
| | - Tihomir P Obrenovitch
- Department of Medical Physics and Informatics, Faculty of Medicine & Faculty of Science and Informatics, University of Szeged, H-6720 Szeged, Korányi fasor 9, Hungary
| | - Ferenc Bari
- Department of Medical Physics and Informatics, Faculty of Medicine & Faculty of Science and Informatics, University of Szeged, H-6720 Szeged, Korányi fasor 9, Hungary
| | - Eszter Farkas
- Department of Medical Physics and Informatics, Faculty of Medicine & Faculty of Science and Informatics, University of Szeged, H-6720 Szeged, Korányi fasor 9, Hungary.
| |
Collapse
|
13
|
Unekawa M, Tomita Y, Masamoto K, Toriumi H, Osada T, Kanno I, Suzuki N. Dynamic diameter response of intraparenchymal penetrating arteries during cortical spreading depression and elimination of vasoreactivity to hypercapnia in anesthetized mice. J Cereb Blood Flow Metab 2017; 37:657-670. [PMID: 26935936 PMCID: PMC5381456 DOI: 10.1177/0271678x16636396] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 02/01/2016] [Indexed: 11/16/2022]
Abstract
Cortical spreading depression (CSD) induces marked hyperemia with a transient decrease of regional cerebral blood flow (rCBF), followed by sustained oligemia. To further understand the microcirculatory mechanisms associated with CSD, we examined the temporal changes of diameter of intraparenchymal penetrating arteries during CSD. In urethane-anesthetized mice, the diameter of single penetrating arteries at three depths was measured using two-photon microscopy during passage of repeated CSD, with continuous recordings of direct current potential and rCBF. The first CSD elicited marked constriction superimposed on the upstrokes of profound dilation throughout each depth of the penetrating artery, and the vasoreaction temporally corresponded to the change of rCBF. Second or later CSD elicited marked dilation with little or no constriction phase throughout each depth, and the vasodilation also temporally corresponded to the increase of rCBF. Furthermore, the peak dilation showed good negative correlations with basal diameter and increase of rCBF. Vasodilation induced by 5% CO2 inhalation was significantly suppressed after CSD passage at any depth as well as hyperperfusion. These results may indicate that CSD-induced rCBF changes mainly reflect the diametric changes of the intraparenchymal arteries, despite the elimination of responsiveness to hypercapnia.
Collapse
Affiliation(s)
- Miyuki Unekawa
- Department of Neurology, School of Medicine, Keio University, Tokyo, Japan
| | - Yutaka Tomita
- Department of Neurology, School of Medicine, Keio University, Tokyo, Japan
| | - Kazuto Masamoto
- Brain Science Inspired Life Support Research Center, University of Electro-Communications, Chofu, Japan
- Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan
| | - Haruki Toriumi
- Department of Neurology, School of Medicine, Keio University, Tokyo, Japan
| | - Takashi Osada
- Department of Neurology, School of Medicine, Keio University, Tokyo, Japan
| | - Iwao Kanno
- Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan
| | - Norihiro Suzuki
- Department of Neurology, School of Medicine, Keio University, Tokyo, Japan
| |
Collapse
|
14
|
Santos E, León F, Silos H, Sanchez-Porras R, Shuttleworth CW, Unterberg A, Sakowitz OW. Incidence, hemodynamic, and electrical characteristics of spreading depolarization in a swine model are affected by local but not by intravenous application of magnesium. J Cereb Blood Flow Metab 2016; 36:2051-2057. [PMID: 27683450 PMCID: PMC5363671 DOI: 10.1177/0271678x16671317] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 08/26/2016] [Accepted: 08/28/2016] [Indexed: 11/17/2022]
Abstract
The aim was to characterize the effects of magnesium sulfate, using i.v. bolus and local administration, using intrinsic signal imaging, and on electrocorticographic activity during the induction and propagation of spreading depolarizations in the gyrencephalic porcine brain. Local application of magnesium sulfate led to a complete inhibition of spreading depolarizations. One hour after washing out the topical magnesium sulfate, re-incidence of the spreading depolarizations was observed in 50% of the hemispheres. Those spreading depolarizations showed attenuation in hemodynamic characteristics and speed in intrinsic optical signal imaging. The electrical amplitude decreased through electrocorticographic activity. Intravenous magnesium therapy showed no significant effects on spreading depolarization incidence and characteristics.
Collapse
Affiliation(s)
- Edgar Santos
- Department of Neurosurgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Fiorella León
- Department of Neurosurgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Humberto Silos
- Department of Neurosurgery, University Hospital Heidelberg, Heidelberg, Germany
| | | | | | - Andreas Unterberg
- Department of Neurosurgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Oliver W Sakowitz
- Department of Neurosurgery, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
15
|
Mirelle Costa Monteiro H, Lima Barreto-Silva N, Elizabete dos Santos G, de Santana Santos A, Séfora Bezerra Sousa M, Amâncio-dos-Santos Â. Physical exercise versus fluoxetine: Antagonistic effects on cortical spreading depression in Wistar rats. Eur J Pharmacol 2015; 762:49-54. [DOI: 10.1016/j.ejphar.2015.05.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 05/11/2015] [Accepted: 05/18/2015] [Indexed: 12/21/2022]
|
16
|
Ayata C, Lauritzen M. Spreading Depression, Spreading Depolarizations, and the Cerebral Vasculature. Physiol Rev 2015; 95:953-93. [PMID: 26133935 DOI: 10.1152/physrev.00027.2014] [Citation(s) in RCA: 367] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Spreading depression (SD) is a transient wave of near-complete neuronal and glial depolarization associated with massive transmembrane ionic and water shifts. It is evolutionarily conserved in the central nervous systems of a wide variety of species from locust to human. The depolarization spreads slowly at a rate of only millimeters per minute by way of grey matter contiguity, irrespective of functional or vascular divisions, and lasts up to a minute in otherwise normal tissue. As such, SD is a radically different breed of electrophysiological activity compared with everyday neural activity, such as action potentials and synaptic transmission. Seventy years after its discovery by Leão, the mechanisms of SD and its profound metabolic and hemodynamic effects are still debated. What we did learn of consequence, however, is that SD plays a central role in the pathophysiology of a number of diseases including migraine, ischemic stroke, intracranial hemorrhage, and traumatic brain injury. An intriguing overlap among them is that they are all neurovascular disorders. Therefore, the interplay between neurons and vascular elements is critical for our understanding of the impact of this homeostatic breakdown in patients. The challenges of translating experimental data into human pathophysiology notwithstanding, this review provides a detailed account of bidirectional interactions between brain parenchyma and the cerebral vasculature during SD and puts this in the context of neurovascular diseases.
Collapse
Affiliation(s)
- Cenk Ayata
- Neurovascular Research Laboratory, Department of Radiology, and Stroke Service and Neuroscience Intensive Care Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Department of Neuroscience and Pharmacology and Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark; and Department of Clinical Neurophysiology, Glostrup Hospital, Glostrup, Denmark
| | - Martin Lauritzen
- Neurovascular Research Laboratory, Department of Radiology, and Stroke Service and Neuroscience Intensive Care Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Department of Neuroscience and Pharmacology and Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark; and Department of Clinical Neurophysiology, Glostrup Hospital, Glostrup, Denmark
| |
Collapse
|
17
|
Umesh Rudrapatna S, Hamming AM, Wermer MJH, van der Toorn A, Dijkhuizen RM. Measurement of distinctive features of cortical spreading depolarizations with different MRI contrasts. NMR IN BIOMEDICINE 2015; 28:591-600. [PMID: 25820404 DOI: 10.1002/nbm.3288] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 12/16/2014] [Accepted: 02/23/2015] [Indexed: 06/04/2023]
Abstract
Growing clinical evidence suggests critical involvement of spreading depolarizations (SDs) in the pathophysiology of neurological disorders such as migraine and stroke. MRI provides powerful tools to detect and assess co-occurring cerebral hemodynamic and cellular changes during SDs. This study reports the feasibility and advantages of two MRI scans, based on balanced steady-state free precession (b-SSFP) and diffusion-weighted multi-spin-echo (DT2), heretofore unexplored for monitoring SDs. These were compared with gradient-echo MRI. SDs were induced by KCl application in rat brain. Known for high SNR, the T2- and T1-based b-SSFP contrast was hypothesized to provide higher spatiotemporal specificity than T2*-based gradient-echo scanning. DT2 scanning was designed to provide simultaneous T2 and apparent diffusion coefficient (ADC) measurements, thus enabling combined quantitative assessment of hemodynamic and cellular changes during SDs. Procedures were developed to automate identification of SD-induced responses in all the scans. These responses were analyzed to determine detection sensitivity and temporal characteristics of signals from each scanning method. Cluster analysis was performed to elucidate unique temporal patterns for each contrast. All scans allowed detection of SD-induced responses. b-SSFP scans showed significantly larger relative intensity changes, narrower peak widths and greater spatial specificity compared with gradient-echo MRI. SD-induced effects on ADC, calculated from DT2 scans, showed the most pronounced signal changes, displaying about 20% decrease, as against 10-15% signal increases observed with b-SSFP and gradient-echo scanning. Cluster analysis revealed additional temporal sub-patterns, such as an initial dip on gradient-echo scans and temporally shifted T2 and proton density changes in DT2 data. To summarize, b-SSFP and DT2 scanning provide distinct information on SDs compared with gradient-echo MRI. DT2 scanning, with its potential to simultaneously provide cellular and hemodynamic information, can offer unique information on the inter-relationship between these processes in pathologic brain, which may improve monitoring of spreading depolarizations in (pre)clinical settings.
Collapse
Affiliation(s)
- S Umesh Rudrapatna
- Biomedical MR Imaging and Spectroscopy Group, Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
18
|
Bere Z, Obrenovitch TP, Kozák G, Bari F, Farkas E. Imaging reveals the focal area of spreading depolarizations and a variety of hemodynamic responses in a rat microembolic stroke model. J Cereb Blood Flow Metab 2014; 34:1695-705. [PMID: 25074743 PMCID: PMC4269732 DOI: 10.1038/jcbfm.2014.136] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 06/11/2014] [Accepted: 07/02/2014] [Indexed: 01/24/2023]
Abstract
Spreading depolarizations (SDs) occur in stroke, but the spatial association between SDs and the corresponding hemodynamic changes is incompletely understood. We applied multimodal imaging to visualize the focal area of selected SDs, and hemodynamic responses with SDs propagating over the ischemic cortex. The intracarotid infusion of polyethylene microspheres (d=45 to 53 μm) produced multifocal ischemia in anesthetized rats (n=7). Synchronous image sequences captured through a cranial window above the frontoparietal cortex revealed: Changes in membrane potential (voltage-sensitive (VS) dye method); cerebral blood flow (CBF; laser speckle contrast (LSC) imaging); and hemoglobin (Hb) deoxygenation (red intrinsic optical signal (IOS) at 620 to 640 nm). A total of 31 SD events were identified. The foci of five SDs were seen in the cranial window, originating where CBF was the lowest (56.9±9%), but without evident signs of infarcts. The hyperemic CBF responses to propagating SDs were coupled with three types of Hb saturation kinetics. More accentuated Hb desaturation was related to a larger decrease in CBF shortly after ischemia induction. Microsphere-induced embolization triggers SDs in the rat brain, relevant for small embolic infarcts in patients. The SD occurrence during the early phase of ischemia is not tightly associated with immediate infarct evolution. Various kinetics of Hb saturation may determine the metabolic consequences of individual SDs.
Collapse
Affiliation(s)
- Zsófia Bere
- Department of Medical Physics and Informatics, Faculty of Medicine and Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
- Department of Physiology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Tihomir P Obrenovitch
- Department of Medical Physics and Informatics, Faculty of Medicine and Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Gábor Kozák
- Department of Medical Physics and Informatics, Faculty of Medicine and Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Ferenc Bari
- Department of Medical Physics and Informatics, Faculty of Medicine and Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Eszter Farkas
- Department of Medical Physics and Informatics, Faculty of Medicine and Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
- Department of Physiology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| |
Collapse
|
19
|
Sánchez-Porras R, Santos E, Schöll M, Stock C, Zheng Z, Schiebel P, Orakcioglu B, Unterberg AW, Sakowitz OW. The effect of ketamine on optical and electrical characteristics of spreading depolarizations in gyrencephalic swine cortex. Neuropharmacology 2014; 84:52-61. [DOI: 10.1016/j.neuropharm.2014.04.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 04/14/2014] [Accepted: 04/24/2014] [Indexed: 11/26/2022]
|
20
|
Cerebral hemodynamic change and metabolic alteration in severe hemorrhagic shock. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014. [PMID: 24729236 DOI: 10.1007/978-1-4939-0620-8_29] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
Understanding the biological mechanism and identifying biomarkers of hemorrhagic shock is important for diagnosis and treatment. We aim to use optical imaging to study how the cerebral blood circulation and metabolism change during the progression of severe hemorrhagic shock, especially the decompensatory stage. We used a multi-parameter (blood pressure (BP), cerebral blood flow (CBF), functional vascular density (FVD), blood oxygenation and mitochondrial NADH signal) cerebral cortex optical imaging system to observe brain hemodynamic change and metabolic alteration of rats in vivo for 4 h. Cerebral circulation and mitochondrial metabolism could be well preserved in the compensatory stage but impaired during the decompensatory stage. The changes of brain hemodynamics and metabolism may provide sensitive indicators for various shock stages including the transition from compensatory stage to decompensatory stage. Our novel imaging observations of hemodynamic and metabolic signals in vivo indicated that the rat brains under hemorrhagic shock suffered irreversible damage which could not be compensated by the autoregulation mechanism, probably due to injured mitochondria.
Collapse
|
21
|
Santos E, Schöll M, Sánchez-Porras R, Dahlem MA, Silos H, Unterberg A, Dickhaus H, Sakowitz OW. Radial, spiral and reverberating waves of spreading depolarization occur in the gyrencephalic brain. Neuroimage 2014; 99:244-55. [PMID: 24852458 DOI: 10.1016/j.neuroimage.2014.05.021] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 05/01/2014] [Accepted: 05/10/2014] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVES The detection of the hemodynamic and propagation patterns of spreading depolarizations (SDs) in the gyrencephalic brain using intrinsic optical signal imaging (IOS). METHODS The convexity of the brain surface was surgically exposed in fourteen male swine. Within the boundaries of this window, brains were immersed and preconditioned with an elevated K(+) concentration (7 mmol/l) in the standard Ringer lactate solution for 30-40 min. SDs were triggered using 3-5 μl of 1 mol/l KCl solution. Changes in tissue absorbency or reflection were registered with a CCD camera at a wavelength of 564 nm (14 nm FWHM), which was mounted 25 cm above the exposed cortex. Additional monitoring by electrocorticography and laser-Doppler was used in a subset of animals (n=7) to validate the detection of SD. RESULTS Of 198 SDs quantified in all of the experiments, 187 SDs appeared as radial waves that developed semi-planar fronts. The morphology was affected by the surface of the gyri, the sulci and the pial vessels. Other SD patterns such as spirals and reverberating waves, which have not been described before in gyrencephalic brains, were also observed. Diffusion gradients created in the cortex surface (i.e., KCl concentrations), sulci, vessels and SD-SD interactions make the gyrencephalic brain prone to the appearance of irregular SD waves. CONCLUSION The gyrencephalic brain is capable of irregular SD propagation patterns. The irregularities of the gyrencephalic brain cortex may promote the presence of re-entrance waves, such as spirals and reverberating waves.
Collapse
Affiliation(s)
- Edgar Santos
- Department of Neurosurgery, University Hospital Heidelberg, Germany.
| | - Michael Schöll
- Department of Neurosurgery, University Hospital Heidelberg, Germany
| | | | - Markus A Dahlem
- Department of Physics, Humboldt Universität zu Berlin, Berlin, Germany
| | - Humberto Silos
- Department of Neurosurgery, University Hospital Heidelberg, Germany
| | | | - Hartmut Dickhaus
- Institute for Medical Biometry and Informatics, University of Heidelberg, Germany
| | | |
Collapse
|
22
|
Intraoperative visualization of cerebral oxygenation using hyperspectral image data: a two-dimensional mapping method. Int J Comput Assist Radiol Surg 2014; 9:1059-72. [PMID: 24737109 DOI: 10.1007/s11548-014-0989-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 02/17/2014] [Indexed: 12/13/2022]
Abstract
PURPOSE Superficial temporal artery (STA)-middle cerebral artery (MCA) bypass is an important technique for cerebrovascular reconstruction. Intraoperative hemodynamic imaging is needed to perform cerebrovascular reconstruction safely and effectively. Optical intrinsic signal (OIS) imaging is commonly used for assessing cerebral hemodynamics in experimental studies, because it can provide high-resolution mapping images. However, OIS is not used clinically due to algorithm, instrumentation and spectral resolution limitations. We tested the feasibility of a hyperspectral camera (HSC) for assessment of cortical hemodynamics with spectral imaging of the cerebral cortex in rats and in vivo humans. METHODS A hyperspectral camera (HSC) was tested in a rat model of cerebral ischemia (middle cerebral artery occlusion) and during human revascularization surgery (STA-MCA anastomosis). Changes in cortical oxygen saturation were derived from spectral imaging data (400-800 nm) collected by exposing the cortex to Xenon light. Reflected light was sampled using the HSC. The system was then tested intraoperatively during superficial temporal artery to middle cerebral artery anastomosis procedures. Comparison with single-photon emission computed tomography (SPECT) imaging data was done. RESULTS During middle cerebral artery occlusion in rats, the HSC technique showed a significant decrease in cortical oxygen saturation in the ischemic hemisphere. In clinical cases, the cortical oxygen saturation was increased after STA-MCA anastomosis, which agreed with the SPECT imaging data. CONCLUSION Continuous collection of imaging spectroscopic data is feasible and may provide reliable quantification of the hemodynamic responses in the brain. The HSC system may be useful for monitoring intraoperative changes in cortical surface hemodynamics during revascularization procedures in humans.
Collapse
|
23
|
Gramer M, Feuerstein D, Steimers A, Takagaki M, Kumagai T, Sué M, Vollmar S, Kohl-Bareis M, Backes H, Graf R. Device for simultaneous positron emission tomography, laser speckle imaging and RGB reflectometry: validation and application to cortical spreading depression and brain ischemia in rats. Neuroimage 2014; 94:250-262. [PMID: 24657778 DOI: 10.1016/j.neuroimage.2014.03.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 02/06/2014] [Accepted: 03/10/2014] [Indexed: 11/16/2022] Open
Abstract
Brain function critically relies on the supply with energy substrates (oxygen and glucose) via blood flow. Alterations in energy demand as during neuronal activation induce dynamic changes in substrate fluxes and blood flow. To study the complex system that regulates cerebral metabolism requires the combination of methods for the simultaneous assessment of multiple parameters. We developed a multimodal imaging device to combine positron emission tomography (PET) with laser speckle imaging (LSI) and RGB reflectometry (RGBR). Depending on the radiotracer, PET provides 3-dimensional quantitative information of specific molecular processes, while LSI and RGBR measure cerebral blood flow (CBF) and hemoglobin oxygenation at high temporal and spatial resolution. We first tested the functional capability of each modality within our system and showed that interference between the modalities is negligible. We then cross-calibrated the system by simultaneously measuring absolute CBF using (15)O-H2O PET (CBF(PET)) and the inverse correlation time (ICT), the LSI surrogate for CBF. ICT and CBF(PET) correlated in multiple measurements in individuals as well as across different animals (R(2)=0.87, n=44 measurements) indicating that ICT can be used for absolute quantitative assessment of CBF. To demonstrate the potential of the combined system, we applied it to cortical spreading depression (CSD), a wave of transient cellular depolarization that served here as a model system for neurovascular and neurometabolic coupling. We analyzed time courses of hemoglobin oxygenation and CBF alterations coupled to CSD, and simultaneously measured regional uptake of (18)F-2-fluoro-2-deoxy-D-glucose ((18)F-FDG) used as a radiotracer for regional glucose metabolism, in response to a single CSD and to a cluster of CSD waves. With this unique combination, we characterized the changes in cerebral metabolic rate of oxygen (CMRO2) in real-time and showed a correlation between (18)F-FDG uptake and the number of CSD waves that passed the local tissue. Finally, we examined CSD spontaneously occurring during focal ischemia also referred to as peri-infarct depolarization (PID). In the vicinity of the ischemic territory, we observed PIDs that were characterized by reduced CMRO2 and increased oxygen extraction fraction (OEF), indicating a limitation of oxygen supply. Simultaneously measured PET showed an increased (18)F-FDG uptake in these regions. Our combined system proved to be a novel tool for the simultaneous study of dynamic spatiotemporal alterations of cortical blood flow, oxygen metabolism and glucose consumption under normal and pathologic conditions.
Collapse
Affiliation(s)
- M Gramer
- Max-Planck-Institute of Neurological Research, Gleueler Str. 50, 50825 Cologne, Germany.
| | - D Feuerstein
- Max-Planck-Institute of Neurological Research, Gleueler Str. 50, 50825 Cologne, Germany
| | - A Steimers
- RheinAhrCampus Remagen, University of Applied Sciences Koblenz, Joseph-Rovan Allee 2, 53424 Remagen, Germany
| | - M Takagaki
- Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - T Kumagai
- Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - M Sué
- Max-Planck-Institute of Neurological Research, Gleueler Str. 50, 50825 Cologne, Germany
| | - S Vollmar
- Max-Planck-Institute of Neurological Research, Gleueler Str. 50, 50825 Cologne, Germany
| | - M Kohl-Bareis
- RheinAhrCampus Remagen, University of Applied Sciences Koblenz, Joseph-Rovan Allee 2, 53424 Remagen, Germany
| | - H Backes
- Max-Planck-Institute of Neurological Research, Gleueler Str. 50, 50825 Cologne, Germany
| | - R Graf
- Max-Planck-Institute of Neurological Research, Gleueler Str. 50, 50825 Cologne, Germany
| |
Collapse
|
24
|
Sun N, Luo W, Li LZ, Luo Q. Monitoring hemodynamic and metabolic alterations during severe hemorrhagic shock in rat brains. Acad Radiol 2014; 21:175-84. [PMID: 24439331 DOI: 10.1016/j.acra.2013.11.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 11/26/2013] [Accepted: 11/26/2013] [Indexed: 10/25/2022]
Abstract
RATIONALE AND OBJECTIVES Our long-term goals are to identify imaging biomarkers for hemorrhagic shock and to understand how the preservation of cerebral microcirculation works. We also seek to understand how the damage occurs to the cerebral hemodynamics and the mitochondrial metabolism during severe hemorrhagic shock. MATERIALS AND METHODS We used a multimodal cerebral cortex optical imaging system to obtain 4-hour observations of cerebral hemodynamic and metabolic alterations in exposed rat cortexes during severe hemorrhagic shock. We monitored the mean arterial pressure, heart rate, cerebral blood flow (CBF), functional vascular density (FVD), vascular perfusion and diameter, blood oxygenation, and mitochondrial reduced nicotinamide adenine dinucleotide (NADH) signals. RESULTS During the rapid bleeding and compensatory stage, cerebral parenchymal circulation was protected by inhibiting the perfusion of dural vessels. During the compensatory stage, although the brain parenchymal CBF and FVD decreased rapidly, the NADH signal did not show a significant increase. During the decompensatory stage, FVD and CBF maintained the same low level and the NADH signal remained unchanged. However, the NADH signal showed a significant increase after the rapid blood infusion. FVD and CBF rebounded to the baseline after the resuscitation and then declined again. CONCLUSIONS We present for the first time simultaneous imaging of cerebral hemodynamics and NADH signals in vivo during the process of hemorrhagic shock. This novel multimodal method demonstrated clearly that severe hemorrhagic shock imparts irreversible tissue damage that is not compensated by the autoregulatory mechanism. Hemodynamic and metabolic signatures including CBF, FVD, and NADH may be further developed to provide sensitive biomarkers for stage transitions in hemorrhagic shock.
Collapse
|
25
|
Li B, Liu R, Huang Q, Lu J, Luo Q, Li P. Coherent slow cortical potentials reveal a superior localization of resting-state functional connectivity using voltage-sensitive dye imaging. Neuroimage 2014; 91:162-8. [PMID: 24434676 DOI: 10.1016/j.neuroimage.2014.01.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 11/25/2013] [Accepted: 01/02/2014] [Indexed: 01/11/2023] Open
Abstract
The resting-state functional connectivity (RSFC) of spontaneous hemodynamic fluctuations is widely used to investigate large-scale functional brain networks based on neurovascular mechanisms. However, high-resolution RSFC networks based on neural activity have not been disclosed to explore the neural basis of these spontaneous hemodynamic signals. The present study examines the neural RSFC networks in mice at high spatial resolution using optical imaging with voltage-sensitive dyes (VSDs). Our results show that neural RSFC networks for the slow cortical potentials (0.1-4Hz) showed similar correlation patterns to the RSFC networks for the spontaneous hemodynamic signals, indicating a tight coupling between the slow cortical potential and the spontaneous hemodynamic signals during rest, but the bilateral symmetry of the RSFC networks for the slow cortical potentials was significantly lower than that for the spontaneous hemodynamic signals. Moreover, similar asymmetric neural activation patterns could also be found between the bilateral cortexes after stimulating the paws of mice. By increasing anesthetic levels to induce the reduction of consciousness, the RSFC networks for the slow cortical potentials persisted, but those for the spontaneous hemodynamic signals became discrete. These results suggest that the coherent slow cortical potentials underlie the spontaneous hemodynamic fluctuations and reveal a superior localization of RSFC networks. VSD imaging may potentially be used to examine the RSFC of neural activity, particularly under conditions of impaired neurovascular coupling.
Collapse
Affiliation(s)
- Bing Li
- Britton Chance Center of Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, PR China; Key Laboratory of Biomedical Photonics of Ministry of Education, Department of Biomedical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Rd., Wuhan 430074, PR China
| | - Rui Liu
- Britton Chance Center of Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, PR China; Key Laboratory of Biomedical Photonics of Ministry of Education, Department of Biomedical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Rd., Wuhan 430074, PR China
| | - Qin Huang
- Britton Chance Center of Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, PR China; Key Laboratory of Biomedical Photonics of Ministry of Education, Department of Biomedical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Rd., Wuhan 430074, PR China
| | - Jinling Lu
- Britton Chance Center of Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, PR China; Key Laboratory of Biomedical Photonics of Ministry of Education, Department of Biomedical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Rd., Wuhan 430074, PR China
| | - Qingming Luo
- Britton Chance Center of Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, PR China; Key Laboratory of Biomedical Photonics of Ministry of Education, Department of Biomedical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Rd., Wuhan 430074, PR China
| | - Pengcheng Li
- Britton Chance Center of Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, PR China; Key Laboratory of Biomedical Photonics of Ministry of Education, Department of Biomedical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Rd., Wuhan 430074, PR China.
| |
Collapse
|
26
|
Wang M. Cortical spreading depression and calcitonin gene-related peptide: a brief review of current progress. Neuropeptides 2013; 47:463-6. [PMID: 24220568 DOI: 10.1016/j.npep.2013.10.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 10/11/2013] [Accepted: 10/12/2013] [Indexed: 10/26/2022]
Abstract
Although detailed disease mechanisms of migraine remain poorly understood, migraine is known to have a complex pathophysiology with both vascular and neuronal mechanisms. The neuronal mechanisms of migraine may be attributed to cortical spreading depression (CSD); consequently, CSD has been widely studied for understanding the pathophysiology of migraine. Well validated CSD models have been developed for evaluating anti-migraine drugs. Neuropeptides, mainly, calcitonin gene-related peptide (CGRP), have been proposed as an emerging class of effective drugs against migraine headache. The central role of this neuropeptide has led to research into CSD for understanding disease mechanisms of migraine. This review briefly summarizes our current understanding of CSD and CGRP involvement in CSD. Although CSD can also worsen strokes, this brief paper has excluded the possible connection between the neuropeptide and CSD associated with them. Instead it has focused solely on CGRP in CSD associated with migraine.
Collapse
Affiliation(s)
- Minyan Wang
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou 215123, PR China.
| |
Collapse
|
27
|
Yin C, Zhou F, Wang Y, Luo W, Luo Q, Li P. Simultaneous detection of hemodynamics, mitochondrial metabolism and light scattering changes during cortical spreading depression in rats based on multi-spectral optical imaging. Neuroimage 2013; 76:70-80. [PMID: 23507389 DOI: 10.1016/j.neuroimage.2013.02.079] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 02/25/2013] [Accepted: 02/28/2013] [Indexed: 10/27/2022] Open
Abstract
Cortical spreading depression (CSD) is a self-propagating wave of cellular depolarization that plays an important role in the development of cerebral pathology following ischemia or trauma. Optical intrinsic signal (OIS) imaging has been widely used to investigate CSD. Sources of OIS are complex and related to the changes in brain tissue absorption and scattering. The absorbing chromophores may include oxy-hemoglobin, deoxy-hemoglobin, cytochromes, flavin adenine dinucleotide (FAD) and nicotinamide adenine dinucleotide (NADH). Considering only one or part of these elements in studies involving OIS may cause inaccurate results. Thus, we simultaneously calculated changes in HbO, HbR, FAD, cytochrome c, cytochrome aa3 and light scattering during CSD by applying multi-spectral OIS imaging at 450, 470, 500, 530, 550, 570, 600, 630, and 650 nm in the rat brain. We also showed that the hemodynamic changes during CSD may not be correctly estimated if the scattering and other chromophores such as FAD, cytochrome c and cytochrome aa3, are not included in the fitting model of multi-wavelength data analysis. As shown in our results, if considering the changes in scattering and other chromophores in data fitting model, deoxy-hemoglobin (HbR) showed a triphasic change while only a monophasic decrease in HbR will be resolved without considering changes in scattering and other chromophores as reported in previous studies. Moreover, our results showed that changes in cytochrome c was tightly related to OIS at 550 nm, cytochrome aa3 was closely related to OIS at 450, 600 and 650 nm, and FAD was closely related to OIS at 450 and 470 nm during CSD. It indicates that if the contribution by these related chromophores is not considered, using OIS at these wavelengths to determine the hemoglobin changes during CSD may lead to inaccurate results.
Collapse
Affiliation(s)
- Cui Yin
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | | | | | | | | | | |
Collapse
|
28
|
Liu R, Huang Q, Li B, Yin C, Jiang C, Wang J, Lu J, Luo Q, Li P. Extendable, miniaturized multi-modal optical imaging system: cortical hemodynamic observation in freely moving animals. OPTICS EXPRESS 2013; 21:1911-24. [PMID: 23389174 DOI: 10.1364/oe.21.001911] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Observation of brain activities in freely moving animals has become an important approach for neuroscientists to understand the correlation between brain function and behavior. We describe an extendable fiber-optic-based multi-modal imaging system that can concurrently carry out laser speckle contrast imaging (LSCI) of blood flow and optical intrinsic signal (OIS) imaging in freely moving animals, and it could be extended to fluorescence imaging. Our imaging system consists of a multi-source illuminator, a fiber multi-channel optical imaging unit, and a head-mounted microscope. The imaging fiber bundle delivers optical images from the head-mounted microscope to the multi-channel optical imaging unit. Illuminating multi-mode fiber bundles transmit light to the head-mounted microscope which has a mass of less than 1.5 g and includes a gradient index lens, giving the animal maximum movement capability. The internal optical components are adjustable, allowing for a change in magnification and field of view. We test the system by observing hemodynamic changes during cortical spreading depression (CSD) in freely moving and anesthetized animals by simultaneous LSCI and dual-wavelength OIS imaging. Hemodynamic parameters were calculated. Significant differences in CSD propagation durations between the two states were observed. Furthermore, it is capable of performing fluorescence imaging to explore animal behavior and the underlying brain functional activity further.
Collapse
Affiliation(s)
- Rui Liu
- Britton Chance Center of Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan 430074, China
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Senarathna J, Rege A, Li N, Thakor NV. Laser Speckle Contrast Imaging: theory, instrumentation and applications. IEEE Rev Biomed Eng 2013; 6:99-110. [PMID: 23372086 DOI: 10.1109/rbme.2013.2243140] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Laser Speckle Contrast Imaging (LSCI) is a wide field of view, non scanning optical technique for observing blood flow. Speckles are produced when coherent light scattered back from biological tissue is diffracted through the limiting aperture of focusing optics. Mobile scatterers cause the speckle pattern to blur; a model can be constructed by inversely relating the degree of blur, termed speckle contrast to the scatterer speed. In tissue, red blood cells are the main source of moving scatterers. Therefore, blood flow acts as a virtual contrast agent, outlining blood vessels. The spatial resolution (~10 μm) and temporal resolution (10 ms to 10 s) of LSCI can be tailored to the application. Restricted by the penetration depth of light, LSCI can only visualize superficial blood flow. Additionally, due to its non scanning nature, LSCI is unable to provide depth resolved images. The simple setup and non-dependence on exogenous contrast agents have made LSCI a popular tool for studying vascular structure and blood flow dynamics. We discuss the theory and practice of LSCI and critically analyze its merit in major areas of application such as retinal imaging, imaging of skin perfusion as well as imaging of neurophysiology.
Collapse
Affiliation(s)
- Janaka Senarathna
- Department of Biomedical Engineering, the Johns Hopkins University, Baltimore, MD 21205, USA.
| | | | | | | |
Collapse
|
30
|
Li B, Zhou F, Luo Q, Li P. Altered resting-state functional connectivity after cortical spreading depression in mice. Neuroimage 2012; 63:1171-7. [PMID: 22986358 DOI: 10.1016/j.neuroimage.2012.08.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 07/18/2012] [Accepted: 08/08/2012] [Indexed: 11/17/2022] Open
Abstract
Cortical spreading depression (CSD) underlies some neurological disorders. Previous imaging work suggests that CSD is associated with functional and structural alterations in the cerebral cortex. However, the changes in cortical functional network following CSD are poorly understood. The present study examines the changes in resting-state function connectivity (RSFC) of the mouse sensorimotor cortex after the onset of CSD by using optical intrinsic signal imaging. Our results show that RSFC between ipsilateral sensorimotor cortex (the cortex where CSD spreads) and contralateral sensorimotor cortex (the cortex where CSD does not spread) was significantly reduced after CSD. Moreover, a marked connectivity increase was found after CSD not only within contralateral somatosensory cortex and contralateral motor cortex themselves, but also between contralateral somatosensory cortex and contralateral motor cortex. Amplitude of low-frequency fluctuation (ALFF) analysis revealed an increase in ALFF in the ipsilateral cortex but a decrease in the contralateral cortex after CSD, indicating different effects of CSD on the neural activity in the ipsilateral and contralateral sensorimotor cortexes. These results suggest that CSD would alter the RSFC in the sensorimotor cortexes, and functional connectivity analysis may help to understand the effect of CSD on the cerebral functional network.
Collapse
Affiliation(s)
- Bing Li
- Britton Chance Center of Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan 430074, PR China
| | | | | | | |
Collapse
|
31
|
Deng Z, Wang Z, Yang X, Luo Q, Gong H. In vivo imaging of hemodynamics and oxygen metabolism in acute focal cerebral ischemic rats with laser speckle imaging and functional photoacoustic microscopy. JOURNAL OF BIOMEDICAL OPTICS 2012; 17:081415-1. [PMID: 23224176 DOI: 10.1117/1.jbo.17.8.081415] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Stroke is a devastating disease. The changes in cerebral hemodynamics and oxygen metabolism associated with stroke play an important role in pathophysiology study. But the changes were difficult to describe with a single imaging modality. Here the changes in cerebral blood flow (CBF), cerebral blood volume (CBV), and oxygen saturation (SO2) were yielded with laser speckle imaging (LSI) and photoacoustic microscopy (PAM) during and after 3-h acute focal ischemic rats. These hemodynamic measures were further synthesized to deduce the changes in oxygen extraction fraction (OEF). The results indicate that all the hemodynamics except CBV had rapid declines within 40-min occlusion of middle cerebral artery (MCAO). CBV in arteries and veins first increased to the maximum value of 112.42 ± 36.69% and 130.58 ± 31.01% by 15 min MCAO; then all the hemodynamics had a persistent reduction with small fluctuations during the ischemic. When ischemia lasted for 3 h, CBF in arteries, veins decreased to 17 ± 14.65%, 24.52 ± 20.66%, respectively, CBV dropped to 62 ± 18.56% and 59 ± 18.48%. And the absolute SO2 decreased by 40.52 ± 22.42% and 54.24 ± 11.77%. After 180-min MCAO, the changes in hemodynamics and oxygen metabolism were also quantified. The study suggested that combining LSI and PAM provides an attractive approach for stroke detection in small animal studies.
Collapse
Affiliation(s)
- Zilin Deng
- Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, 1037 Luoyu Road, Wuhan 430074, China
| | | | | | | | | |
Collapse
|
32
|
Abstract
Anesthesia has broad actions that include changing neuronal excitability, vascular reactivity, and other baseline physiologies and eventually modifies the neurovascular coupling relationship. Here, we review the effects of anesthesia on the spatial propagation, temporal dynamics, and quantitative relationship between the neural and vascular responses to cortical stimulation. Previous studies have shown that the onset latency of evoked cerebral blood flow (CBF) changes is relatively consistent across anesthesia conditions compared with variations in the time-to-peak. This finding indicates that the mechanism of vasodilation onset is less dependent on anesthesia interference, while vasodilation dynamics are subject to this interference. The quantitative coupling relationship is largely influenced by the type and dosage of anesthesia, including the actions on neural processing, vasoactive signal transmission, and vascular reactivity. The effects of anesthesia on the spatial gap between the neural and vascular response regions are not fully understood and require further attention to elucidate the mechanism of vascular control of CBF supply to the underlying focal and surrounding neural activity. The in-depth understanding of the anesthesia actions on neurovascular elements allows for better decision-making regarding the anesthetics used in specific models for neurovascular experiments and may also help elucidate the signal source issues in hemodynamic-based neuroimaging techniques.
Collapse
Affiliation(s)
- Kazuto Masamoto
- Center for Frontier Science and Engineering, University of Electro-Communications, Tokyo, Japan.
| | | |
Collapse
|
33
|
Aging-dependent brain electrophysiological effects in rats after distinct lactation conditions, and treadmill exercise: A spreading depression analysis. Exp Gerontol 2012; 47:452-7. [DOI: 10.1016/j.exger.2012.03.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 03/19/2012] [Accepted: 03/27/2012] [Indexed: 01/26/2023]
|
34
|
Zhang H, Li P, Feng N, Qiu J, Li B, Luo W, Luo Q. Correcting the detrimental effects of nonuniform intensity distribution on fiber-transmitting laser speckle imaging of blood flow. OPTICS EXPRESS 2012; 20:508-517. [PMID: 22274372 DOI: 10.1364/oe.20.000508] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Laser speckle spatial contrast analysis (LSSCA) is superior to laser speckle temporal contrast analysis (LSTCA) in monitoring the fast change in blood flow due to its advantage of high temporal resolution. However, the application of LSSCA which is based on spatial statistics may be limited when there is nonuniform intensity distribution such as fiber-transmitting laser speckle imaging. In this study, we present a normalized laser speckle spatial contrast analysis (nLSSCA) to correct the detrimental effects of nonuniform intensity distribution on the spatial statistics. Through numerical simulation and phantom experiments, it is found that just ten frames of dynamic laser speckle images are sufficient for nLSSCA to achieve effective correction. Furthermore, nLSSCA has higher temporal resolution than LSTCA to respond the change in velocity. LSSCA, LSTCA and nLSSCA are all applied in the fiber-transmitting laser speckle imaging system to analyze the change of cortical blood flow (CBF) during cortical spreading depression (CSD) in rat cortex respectively, and the results suggest that nLSSCA can examine the change of CBF more accurately. For these advantages, nLSSCA could be a potential tool for fiber-transmitting/endoscopic laser speckle imaging.
Collapse
Affiliation(s)
- Hongyan Zhang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | | | | | | | | | | | | |
Collapse
|
35
|
Jiang C, Zhang H, Wang J, Wang Y, He H, Liu R, Zhou F, Deng J, Li P, Luo Q. Dedicated hardware processor and corresponding system-on-chip design for real-time laser speckle imaging. JOURNAL OF BIOMEDICAL OPTICS 2011; 16:116008. [PMID: 22112113 DOI: 10.1117/1.3651772] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Laser speckle imaging (LSI) is a noninvasive and full-field optical imaging technique which produces two-dimensional blood flow maps of tissues from the raw laser speckle images captured by a CCD camera without scanning. We present a hardware-friendly algorithm for the real-time processing of laser speckle imaging. The algorithm is developed and optimized specifically for LSI processing in the field programmable gate array (FPGA). Based on this algorithm, we designed a dedicated hardware processor for real-time LSI in FPGA. The pipeline processing scheme and parallel computing architecture are introduced into the design of this LSI hardware processor. When the LSI hardware processor is implemented in the FPGA running at the maximum frequency of 130 MHz, up to 85 raw images with the resolution of 640×480 pixels can be processed per second. Meanwhile, we also present a system on chip (SOC) solution for LSI processing by integrating the CCD controller, memory controller, LSI hardware processor, and LCD display controller into a single FPGA chip. This SOC solution also can be used to produce an application specific integrated circuit for LSI processing.
Collapse
Affiliation(s)
- Chao Jiang
- Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Wuhan, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|