1
|
Cho H, Han S, Cho HJ. Empirical relationship between TEM-derived myelin volume fraction and MRI-R 2 values in aging ex vivo rat corpus callosum. Magn Reson Imaging 2023; 103:75-83. [PMID: 37451521 DOI: 10.1016/j.mri.2023.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/26/2023] [Accepted: 07/09/2023] [Indexed: 07/18/2023]
Abstract
Ex vivo ratiometric measurements of short- and long-T2 components using the multiple spin echo sequence of MRI are often employed to evaluate alterations in myelin content in the white matter (WM) of the brain. However, the relationship between absolute MRI-T2 values (long-T2 component) and myelin volumetric information in aged ex vivo rodent WM appears to be influenced by factors such as animal species, field strength, and fixation durations/washing. Here, multiple spin echo sequence-based MRI-R2 (the reciprocal of T2) values were measured in the corpus callosum (CC) region in the post-mortem rat brains (n = 9) of different age groups with common fixation techniques without washing at 7 T. Transmission electron microscopy (TEM)-based quantification of myelin volume fraction (MVF) and corresponding Monte-Carlo simulation to estimate relaxation rates (R2,IE) due to diffusion in the presence of inhomogeneous magnetic field perturbation in intra- and extra-cellular (IE) spaces were respectively performed. To determine whether the short-T2 components originating from myelin water were mixed with long-T2 components from IE water or were undetectable, the MVF values obtained from TEM results were respectively compared with MRI-R2 and R2,IE values. A significant correlation (Pearson's correlation coefficient r = 0.8763; p < 0.01) of average MRI-R2 and MVF values was observed. Estimated R2,IE values from Monte-Carlo simulations in IE water signals were also positively correlated (r = 0.8281; p < 0.01) with MVF values. However, the magnitudes of R2,IE values were much smaller than those observed for MRI-R2 values, indicating that changes in R2 related MVF are likely dominated by myelin water components. Such comparisons between independent parameters from MRI, TEM, and simulations support the suggestion that myelin water signals were indistinguishably mixed to exhibit mono-exponential T2 relaxation, and multiple spin echo sequence-based MRI-R2 values in aging ex vivo rat CC without prolonged washing still reflect the volumetric information of myelin, likely due to enhanced water exchange across the myelin.
Collapse
Affiliation(s)
- Hwapyeong Cho
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, South Korea
| | - Sohyun Han
- Research Equipment Operations Division, Korea Basic Science Institute, Cheongju, South Korea.
| | - Hyung Joon Cho
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, South Korea.
| |
Collapse
|
2
|
Bond DJ, Silveira LE, Torres IJ, Lam RW, Yatham LN. Weight gain as a risk factor for progressive neurochemical abnormalities in first episode mania patients: a longitudinal magnetic resonance spectroscopy study. Psychol Med 2021; 52:1-9. [PMID: 33706825 DOI: 10.1017/s0033291721000544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND We previously reported that bipolar disorder (BD) patients with clinically significant weight gain (CSWG; ⩾7% of baseline weight) in the 12 months after their first manic episode experienced greater limbic brain volume loss than patients without CSWG. It is unknown whether CSWG is also a risk factor for progressive neurochemical abnormalities. METHODS We investigated whether 12-month CSWG predicted greater 12-month decreases in hippocampal N-acetylaspartate (NAA) and greater increases in glutamate + glutamine (Glx) following a first manic episode. In BD patients (n = 58) and healthy comparator subjects (HS; n = 34), we measured baseline and 12-month hippocampal NAA and Glx using bilateral 3-Tesla single-voxel proton magnetic resonance spectroscopy. We used general linear models for repeated measures to investigate whether CSWG predicted neurochemical changes. RESULTS Thirty-three percent of patients and 18% of HS experienced CSWG. After correcting for multiple comparisons, CSWG in patients predicted a greater decrease in left hippocampal NAA (effect size = -0.52, p = 0.005). CSWG also predicted a greater decrease in left hippocampal NAA in HS with a similar effect size (-0.53). A model including patients and HS found an effect of CSWG on Δleft NAA (p = 0.007), but no diagnosis effect and no diagnosis × CSWG interaction, confirming that CSWG had similar effects in patients and HS. CONCLUSION CSWG is a risk factor for decreasing hippocampal NAA in BD patients and HS. These results suggest that the well-known finding of reduced NAA in BD may result from higher body mass index in patients rather than BD diagnosis.
Collapse
Affiliation(s)
- David J Bond
- Department of Psychiatry and Behavioral Sciences, University of Minnesota Medical School, Minneapolis, MN, USA
- Mood Disorders Centre, University of British Columbia, Vancouver, BC, Canada
| | - Leonardo E Silveira
- Laboratory of Molecular Psychiatry, Centro de Pesquisas Experimentais, Hospital de Clínicas de Porto Alegre, and INCT for Translational Medicine, Porto Alegre, RS, Brazil
| | - Ivan J Torres
- Mood Disorders Centre, University of British Columbia, Vancouver, BC, Canada
| | - Raymond W Lam
- Mood Disorders Centre, University of British Columbia, Vancouver, BC, Canada
| | - Lakshmi N Yatham
- Mood Disorders Centre, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
3
|
McCreary CR, Salluzzi M, Andersen LB, Gobbi D, Lauzon L, Saad F, Smith EE, Frayne R. Calgary Normative Study: design of a prospective longitudinal study to characterise potential quantitative MR biomarkers of neurodegeneration over the adult lifespan. BMJ Open 2020; 10:e038120. [PMID: 32792445 PMCID: PMC7430487 DOI: 10.1136/bmjopen-2020-038120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
INTRODUCTION A number of MRI methods have been proposed to be useful, quantitative biomarkers of neurodegeneration in ageing. The Calgary Normative Study (CNS) is an ongoing single-centre, prospective, longitudinal study that seeks to develop, test and assess quantitative magnetic resonance (MR) methods as potential biomarkers of neurodegeneration. The CNS has three objectives: first and foremost, to evaluate and characterise the dependence of the selected quantitative neuroimaging biomarkers on age over the adult lifespan; second, to evaluate the precision, variability and repeatability of quantitative neuroimaging biomarkers as part of biomarker validation providing proof-of-concept and proof-of-principle; and third, provide a shared repository of normative data for comparison to various disease cohorts. METHODS AND ANALYSIS Quantitative MR mapping of the brain including longitudinal relaxation time (T1), transverse relaxation time (T2), T2*, magnetic susceptibility (QSM), diffusion and perfusion measurements, as well as morphological assessments are performed. The Montreal Cognitive Assessment (MoCA) and a brief, self-report medical history will be collected. Mixed regression models will be used to characterise changes in quantitative MR biomarker measures over the adult lifespan. In this report, we describe the study design, strategies to recruit and perform changes to the acquisition protocol from inception to 31 December 2018, planned statistical approach and data sharing procedures for the study. ETHICS AND DISSEMINATION Participants provide signed informed consent. Changes in quantitative MR biomarkers measured over the adult lifespan as well as estimates of measurement variance and repeatability will be disseminated through peer-reviewed scientific publication.
Collapse
Affiliation(s)
- Cheryl R McCreary
- Departments of Clinical Neurosciences and Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Seaman Family MR Research Centre, University of Calgary, Calgary, Alberta, Canada
| | - Marina Salluzzi
- Departments of Clinical Neurosciences and Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Calgary Image Analysis and Processing Centre, University of Calgary, Calgary, Alberta, Canada
| | - Linda B Andersen
- Departments of Clinical Neurosciences and Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - David Gobbi
- Departments of Clinical Neurosciences and Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Calgary Image Analysis and Processing Centre, University of Calgary, Calgary, Alberta, Canada
| | - Louis Lauzon
- Departments of Clinical Neurosciences and Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Seaman Family MR Research Centre, University of Calgary, Calgary, Alberta, Canada
| | - Feryal Saad
- Departments of Clinical Neurosciences and Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Eric E Smith
- Departments of Clinical Neurosciences and Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Seaman Family MR Research Centre, University of Calgary, Calgary, Alberta, Canada
| | - Richard Frayne
- Departments of Clinical Neurosciences and Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Seaman Family MR Research Centre, University of Calgary, Calgary, Alberta, Canada
- Calgary Image Analysis and Processing Centre, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
4
|
Avakyan GN, Blinov DV, Alikhanov AA, Perepelova EM, Perepelov VA, Burd SG, Lebedeva AV, Avakyan GG. Recommendations of the Russian League Against Epilepsy (RLAE) on the use of magnetic resonance imaging in the diagnosis of epilepsy. ACTA ACUST UNITED AC 2019. [DOI: 10.17749/2077-8333.2019.11.3.208-232] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Introduction. The MRI method has revolutionized the diagnosis of epilepsy. However, the widespread adoption of MRI in clinical practice is slowed by an insufficient number of high-field MRI scanners, a shortage of trained specialists, and the lack of standard examination protocols. The aim of this article is to present the Recommendations of the Russian League Against Epilepsy (RLAE) on the use of magnetic resonance imaging in the diagnosis of epilepsy.Materials and methods. As a structural element of the International League Against Epilepsy (ILAE), the RLAE considers it important to adapt the Protocol developed by ILAE for specialists in Russia and EAEU countries. The working group analyzed and generalized the clinical practice existing in the Russian Federation, the Republic of Kazakhstan, the Republic of Belarus and the Republic of Uzbekistan. These recommendations are intended for doctors in specialized centers of epilepsy surgery, and for doctors in general medical centers. The recommendations are applicable primarily to adult patients, but the general principles are relevant to children as well.Results. In all patients with convulsive seizures shortly after the first seizure, or patients diagnosed with epilepsy who have an unexplained increase in the frequency of seizures, rapid decrease in cognitive functions or the appearance / worsening of neuropsychiatric symptoms, the RLAE recommends using a unified MR protocol for the neuroimaging of structural sequences in epilepsy with three-dimensional pulse sequences T1 and T2 FLAIR with isotropic voxel 1 × 1 × 1 mm3 and two-dimensional T2- weighted pulse sequences with a pixel size of 1 × 1 mm2 or less. The MRI examination should be combined with EEG or EEG-video monitoring. Using this protocol allows one to set a unified standard for examining patients with epilepsy in order to detect (with high sensitivity) brain lesions playing a key role in the occurrence of seizures. Here, all 13 recommendations are presented.Conclusion. Implementation of these recommendations in clinical practice will improve the access to high-tech medical care and optimize health care costs.
Collapse
Affiliation(s)
- G. N. Avakyan
- Pirogov Russian National Research Medical University
| | - D. V. Blinov
- Institute for Preventive and Social Medicine;
Moscow Haass Medical – Social Institute;
Lapino Clinic Hospital, MD Medical Group
| | | | | | | | - S. G. Burd
- Pirogov Russian National Research Medical University
| | | | - G. G. Avakyan
- Pirogov Russian National Research Medical University
| |
Collapse
|
5
|
Bernasconi A, Cendes F, Theodore WH, Gill RS, Koepp MJ, Hogan RE, Jackson GD, Federico P, Labate A, Vaudano AE, Blümcke I, Ryvlin P, Bernasconi N. Recommendations for the use of structural magnetic resonance imaging in the care of patients with epilepsy: A consensus report from the International League Against Epilepsy Neuroimaging Task Force. Epilepsia 2019; 60:1054-1068. [PMID: 31135062 DOI: 10.1111/epi.15612] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 01/01/2023]
Abstract
Structural magnetic resonance imaging (MRI) is of fundamental importance to the diagnosis and treatment of epilepsy, particularly when surgery is being considered. Despite previous recommendations and guidelines, practices for the use of MRI are variable worldwide and may not harness the full potential of recent technological advances for the benefit of people with epilepsy. The International League Against Epilepsy Diagnostic Methods Commission has thus charged the 2013-2017 Neuroimaging Task Force to develop a set of recommendations addressing the following questions: (1) Who should have an MRI? (2) What are the minimum requirements for an MRI epilepsy protocol? (3) How should magnetic resonance (MR) images be evaluated? (4) How to optimize lesion detection? These recommendations target clinicians in established epilepsy centers and neurologists in general/district hospitals. They endorse routine structural imaging in new onset generalized and focal epilepsy alike and describe the range of situations when detailed assessment is indicated. The Neuroimaging Task Force identified a set of sequences, with three-dimensional acquisitions at its core, the harmonized neuroimaging of epilepsy structural sequences-HARNESS-MRI protocol. As these sequences are available on most MR scanners, the HARNESS-MRI protocol is generalizable, regardless of the clinical setting and country. The Neuroimaging Task Force also endorses the use of computer-aided image postprocessing methods to provide an objective account of an individual's brain anatomy and pathology. By discussing the breadth and depth of scope of MRI, this report emphasizes the unique role of this noninvasive investigation in the care of people with epilepsy.
Collapse
Affiliation(s)
- Andrea Bernasconi
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Fernando Cendes
- Department of Neurology, University of Campinas, Campinas, Brazil
| | - William H Theodore
- Clinical Epilepsy Section, National Institutes of Health, Bethesda, Maryland
| | - Ravnoor S Gill
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | | | - Robert Edward Hogan
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri
| | - Graeme D Jackson
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Heidelberg, Victoria, Australia
| | - Paolo Federico
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Angelo Labate
- Institute of Neurology, University of Catanzaro, Catanzaro, Italy
| | - Anna Elisabetta Vaudano
- Neurology Unit, Azienda Ospedaliero Universitaria, University of Modena and Reggio Emilia, Modena, Italy
| | - Ingmar Blümcke
- Department of Neuropathology, University Hospital Erlangen, Erlangen, Germany
| | - Philippe Ryvlin
- Clinical Neurosciences, Lausanne University Hospital, Lausanne, Switzerland
| | - Neda Bernasconi
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
6
|
Diagnosis and body mass index effects on hippocampal volumes and neurochemistry in bipolar disorder. Transl Psychiatry 2017; 7:e1071. [PMID: 28350397 PMCID: PMC5404613 DOI: 10.1038/tp.2017.42] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 11/14/2016] [Accepted: 01/15/2017] [Indexed: 12/14/2022] Open
Abstract
We previously reported that higher body mass index (BMI) was associated with greater hippocampal glutamate+glutamine in people with bipolar disorder (BD), but not in non-BD healthy comparator subjects (HSs). In the current report, we extend these findings by examining the impact of BD diagnosis and BMI on hippocampal volumes and the concentrations of several additional neurochemicals in 57 early-stage BD patients and 31 HSs. Using 3-T magnetic resonance imaging and magnetic resonance spectroscopy, we measured bilateral hippocampal volumes and the hippocampal concentrations of four neurochemicals relevant to BD: N-acetylaspartate+N-acteylaspartylglutamate (tNAA), creatine+phosphocreatine (Cre), myoinositol (Ins) and glycerophosphocholine+phosphatidylcholine (Cho). We used multivariate factorial analysis of covariance to investigate the impact of diagnosis (patient vs HS) and BMI category (normal weight vs overweight/obese) on these variables. We found a main effect of diagnosis on hippocampal volumes, with patients having smaller hippocampi than HSs. There was no association between BMI and hippocampal volumes. We found diagnosis and BMI effects on hippocampal neurochemistry, with patients having lower Cre, Ins and Cho, and overweight/obese subjects having higher levels of these chemicals. In patient-only models that controlled for clinical and treatment variables, we detected an additional association between higher BMI and lower tNAA that was absent in HSs. To our knowledge, this was the first study to investigate the relative contributions of BD diagnosis and BMI to hippocampal volumes, and only the second to investigate their contributions to hippocampal chemistry. It provides further evidence that diagnosis and elevated BMI both impact limbic brain areas relevant to BD.
Collapse
|
7
|
Milford D, Rosbach N, Bendszus M, Heiland S. Mono-Exponential Fitting in T2-Relaxometry: Relevance of Offset and First Echo. PLoS One 2015; 10:e0145255. [PMID: 26678918 PMCID: PMC4683054 DOI: 10.1371/journal.pone.0145255] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 11/30/2015] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION T2 relaxometry has become an important tool in quantitative MRI. Little focus has been put on the effect of the refocusing flip angle upon the offset parameter, which was introduced to account for a signal floor due to noise or to long T2 components. The aim of this study was to show that B1 imperfections contribute significantly to the offset. We further introduce a simple method to reduce the systematic error in T2 by discarding the first echo and using the offset fitting approach. MATERIALS AND METHODS Signal curves of T2 relaxometry were simulated based on extended phase graph theory and evaluated for 4 different methods (inclusion and exclusion of the first echo, while fitting with and without the offset). We further performed T2 relaxometry in a phantom at 9.4T magnetic resonance imaging scanner and used the same methods for post-processing as in the extended phase graph simulated data. Single spin echo sequences were used to determine the correct T2 time. RESULTS The simulation data showed that the systematic error in T2 and the offset depends on the refocusing pulse, the echo spacing and the echo train length. The systematic error could be reduced by discarding the first echo. Further reduction of the systematic T2 error was reached by using the offset as fitting parameter. The phantom experiments confirmed these findings. CONCLUSION The fitted offset parameter in T2 relaxometry is influenced by imperfect refocusing pulses. Using the offset as a fitting parameter and discarding the first echo is a fast and easy method to minimize the error in T2, particularly for low to intermediate echo train length.
Collapse
Affiliation(s)
- David Milford
- Department of Neuroradiology, University Hospital Heidelberg, Heidelberg, Germany
- * E-mail:
| | - Nicolas Rosbach
- Department of Neuroradiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Martin Bendszus
- Department of Neuroradiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Sabine Heiland
- Department of Neuroradiology, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
8
|
Aribisala BS, Royle NA, Maniega SM, Valdés Hernández MC, Murray C, Penke L, Gow A, Starr JM, Bastin ME, Deary IJ, Wardlaw JM. Quantitative multi-modal MRI of the Hippocampus and cognitive ability in community-dwelling older subjects. Cortex 2013; 53:34-44. [PMID: 24561387 PMCID: PMC3979658 DOI: 10.1016/j.cortex.2013.12.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Revised: 11/26/2013] [Accepted: 12/19/2013] [Indexed: 11/29/2022]
Abstract
Hippocampal structural integrity is commonly quantified using volumetric measurements derived from brain magnetic resonance imaging (MRI). Previously reported associations with cognitive decline have not been consistent. We investigate hippocampal integrity using quantitative MRI techniques and its association with cognitive abilities in older age. Participants from the Lothian Birth Cohort 1936 underwent brain MRI at mean age 73 years. Longitudinal relaxation time (T1), magnetization transfer ratio (MTR), fractional anisotropy (FA) and mean diffusivity (MD) were measured in the hippocampus. General factors of fluid-type intelligence (g), cognitive processing speed (speed) and memory were obtained at age 73 years, as well as childhood IQ test results at age 11 years. Amongst 565 older adults, multivariate linear regression showed that, after correcting for ICV, gender and age 11 IQ, larger left hippocampal volume was significantly associated with better memory ability (β = .11, p = .003), but not with speed or g. Using quantitative MRI and after correcting for multiple testing, higher T1 and MD were significantly associated with lower scores of g (β range = −.11 to −.14, p < .001), speed (β range = −.15 to −.20, p < .001) and memory (β range = −.10 to −.12, p < .001). Higher MTR and FA in the hippocampus were also significantly associated with higher scores of g (β range = .17 to .18, p < .0001) and speed (β range = .10 to .15, p < .0001), but not memory. Quantitative multi-modal MRI assessments were more sensitive at detecting cognition-hippocampal integrity associations than volumetric measurements, resulting in stronger associations between MRI biomarkers and age-related cognition changes.
Collapse
Affiliation(s)
- Benjamin S Aribisala
- Brain Research Imaging Centre, University of Edinburgh, Edinburgh, UK; Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK; Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE), Edinburgh, UK; Department of Computer Science, Lagos State University, Lagos, Nigeria
| | - Natalie A Royle
- Brain Research Imaging Centre, University of Edinburgh, Edinburgh, UK; Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK; Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE), Edinburgh, UK
| | - Susana Muñoz Maniega
- Brain Research Imaging Centre, University of Edinburgh, Edinburgh, UK; Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK; Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE), Edinburgh, UK
| | - Maria C Valdés Hernández
- Brain Research Imaging Centre, University of Edinburgh, Edinburgh, UK; Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK; Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE), Edinburgh, UK
| | - Catherine Murray
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK; Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Lars Penke
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK; Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE), Edinburgh, UK; Institute of Psychology, Georg August University Göttingen, Göttingen, Germany
| | - Alan Gow
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK; Psychology, School of Life Sciences, Herriot-Watt University, Edinburgh, UK
| | - John M Starr
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK; Geriatric Medicine Unit, University of Edinburgh, Edinburgh, UK
| | - Mark E Bastin
- Brain Research Imaging Centre, University of Edinburgh, Edinburgh, UK; Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK; Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE), Edinburgh, UK
| | - Ian J Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK; Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Joanna M Wardlaw
- Brain Research Imaging Centre, University of Edinburgh, Edinburgh, UK; Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK; Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE), Edinburgh, UK.
| |
Collapse
|
9
|
Bartoli A, Vulliemoz S, Haller S, Schaller K, Seeck M. Imaging techniques for presurgical evaluation of temporal lobe epilepsy. ACTA ACUST UNITED AC 2012. [DOI: 10.2217/iim.12.28] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|