1
|
Sensory recruitment in visual short-term memory: A systematic review and meta-analysis of sensory visual cortex interference using transcranial magnetic stimulation. Psychon Bull Rev 2022; 29:1594-1624. [PMID: 35606595 DOI: 10.3758/s13423-022-02107-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2022] [Indexed: 11/08/2022]
Abstract
Sensory visual areas are involved in encoding information in visual short-term memory (VSTM). Yet it remains unclear whether sensory visual cortex is a necessary component of the brain network for maintenance of information in VSTM. Here, we aimed to systematically review studies that have investigated the role of the sensory visual cortex in VSTM using transcranial magnetic stimulation (TMS) and to quantitatively explore these effects using meta-analyses. Fourteen studies were identified and reviewed. Eight studies provided sufficient data for meta-analysis. Two meta-analyses, one regarding the VSTM encoding phase (17 effect sizes) and one regarding the VSTM maintenance phase (15 effect sizes), two meta-regressions (32 effect sizes in each), and one exploratory meta-analysis were conducted. Our results indicate that the sensory visual cortex is similarly involved in both the encoding and maintenance VSTM phase. We suggest that some cases where evidence did not show significant TMS effects was due to low memory or perceptual task demands. Overall, these findings support the idea that sensory visual areas are part of the brain network responsible for successfully maintaining information in VSTM.
Collapse
|
2
|
Janssens SEW, Sack AT. Spontaneous Fluctuations in Oscillatory Brain State Cause Differences in Transcranial Magnetic Stimulation Effects Within and Between Individuals. Front Hum Neurosci 2021; 15:802244. [PMID: 34924982 PMCID: PMC8674306 DOI: 10.3389/fnhum.2021.802244] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 11/16/2021] [Indexed: 01/01/2023] Open
Abstract
Transcranial magnetic stimulation (TMS) can cause measurable effects on neural activity and behavioral performance in healthy volunteers. In addition, TMS is increasingly used in clinical practice for treating various neuropsychiatric disorders. Unfortunately, TMS-induced effects show large intra- and inter-subject variability, hindering its reliability, and efficacy. One possible source of this variability may be the spontaneous fluctuations of neuronal oscillations. We present recent studies using multimodal TMS including TMS-EMG (electromyography), TMS-tACS (transcranial alternating current stimulation), and concurrent TMS-EEG-fMRI (electroencephalography, functional magnetic resonance imaging), to evaluate how individual oscillatory brain state affects TMS signal propagation within targeted networks. We demonstrate how the spontaneous oscillatory state at the time of TMS influences both immediate and longer-lasting TMS effects. These findings indicate that at least part of the variability in TMS efficacy may be attributable to the current practice of ignoring (spontaneous) oscillatory fluctuations during TMS. Ignoring this state-dependent spread of activity may cause great individual variability which so far is poorly understood and has proven impossible to control. We therefore also compare two technical solutions to directly account for oscillatory state during TMS, namely, to use (a) tACS to externally control these oscillatory states and then apply TMS at the optimal (controlled) brain state, or (b) oscillatory state-triggered TMS (closed-loop TMS). The described multimodal TMS approaches are paramount for establishing more robust TMS effects, and to allow enhanced control over the individual outcome of TMS interventions aimed at modulating information flow in the brain to achieve desirable changes in cognition, mood, and behavior.
Collapse
Affiliation(s)
- Shanice E. W. Janssens
- Section Brain Stimulation and Cognition, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
- Maastricht Brain Imaging Centre (MBIC), Maastricht, Netherlands
| | - Alexander T. Sack
- Section Brain Stimulation and Cognition, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
- Maastricht Brain Imaging Centre (MBIC), Maastricht, Netherlands
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Brain + Nerve Centre, Maastricht University Medical Centre+ (MUMC+), Maastricht, Netherlands
- Centre for Integrative Neuroscience (CIN), Maastricht University, Maastricht, Netherlands
| |
Collapse
|
3
|
Herz N, Bar-Haim Y, Tavor I, Tik N, Sharon H, Holmes EA, Censor N. Neuromodulation of Visual Cortex Reduces the Intensity of Intrusive Memories. Cereb Cortex 2021; 32:408-417. [PMID: 34265849 PMCID: PMC8754386 DOI: 10.1093/cercor/bhab217] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 12/24/2022] Open
Abstract
Aversive events can be reexperienced as involuntary and spontaneous mental images of the event. Given that the vividness of retrieved mental images is coupled with elevated visual activation, we tested whether neuromodulation of the visual cortex would reduce the frequency and negative emotional intensity of intrusive memories. Intrusive memories of a viewed trauma film and their accompanied emotional intensity were recorded throughout 5 days. Functional connectivity, measured with resting-state functional magnetic resonance imaging prior to film viewing, was used as predictive marker for intrusions-related negative emotional intensity. Results indicated that an interaction between the visual network and emotion processing areas predicted intrusions’ emotional intensity. To test the causal influence of early visual cortex activity on intrusions’ emotional intensity, participants’ memory of the film was reactivated by brief reminders 1 day following film viewing, followed by inhibitory 1 Hz repetitive transcranial magnetic stimulation (rTMS) over early visual cortex. Results showed that visual cortex inhibitory stimulation reduced the emotional intensity of later intrusions, while leaving intrusion frequency and explicit visual memory intact. Current findings suggest that early visual areas constitute a central node influencing the emotional intensity of intrusive memories for negative events. Potential neuroscience-driven intervention targets designed to downregulate the emotional intensity of intrusive memories are discussed.
Collapse
Affiliation(s)
- Noa Herz
- School of Psychological Sciences, Tel Aviv University, Tel Aviv 69978, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Yair Bar-Haim
- School of Psychological Sciences, Tel Aviv University, Tel Aviv 69978, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ido Tavor
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 6997801, Israel
| | - Niv Tik
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 6997801, Israel
| | - Haggai Sharon
- Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 6997801, Israel.,Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
| | - Emily A Holmes
- Department of Psychology, Uppsala University, Uppsala 75142, Sweden.,Department of Clinical Neuroscience, Karolinska Institutet, Solna 17177, Sweden
| | - Nitzan Censor
- School of Psychological Sciences, Tel Aviv University, Tel Aviv 69978, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
4
|
Abstract
The development of the use of transcranial magnetic stimulation (TMS) in the study of psychological functions has entered a new phase of sophistication. This is largely due to an increasing physiological knowledge of its effects and to its being used in combination with other experimental techniques. This review presents the current state of our understanding of the mechanisms of TMS in the context of designing and interpreting psychological experiments. We discuss the major conceptual advances in behavioral studies using TMS. There are meaningful physiological and technical achievements to review, as well as a wealth of new perceptual and cognitive experiments. In doing so we summarize the different uses and challenges of TMS in mental chronometry, perception, awareness, learning, and memory.
Collapse
Affiliation(s)
- David Pitcher
- Department of Psychology, University of York, York YO10 5DD, United Kingdom;
| | - Beth Parkin
- Department of Psychology, University of Westminster, London W1W 6UW, United Kingdom;
| | - Vincent Walsh
- Institute of Cognitive Neuroscience, University College London, London WC1N 3AR, United Kingdom;
| |
Collapse
|
5
|
Beynel L, Appelbaum LG, Luber B, Crowell CA, Hilbig SA, Lim W, Nguyen D, Chrapliwy NA, Davis SW, Cabeza R, Lisanby SH, Deng ZD. Effects of online repetitive transcranial magnetic stimulation (rTMS) on cognitive processing: A meta-analysis and recommendations for future studies. Neurosci Biobehav Rev 2019; 107:47-58. [PMID: 31473301 PMCID: PMC7654714 DOI: 10.1016/j.neubiorev.2019.08.018] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/28/2019] [Accepted: 08/22/2019] [Indexed: 01/03/2023]
Abstract
Online repetitive transcranial magnetic stimulation (rTMS), applied while subjects are performing a task, is widely used to disrupt brain regions underlying cognition. However, online rTMS has also induced "paradoxical enhancement". Given the rapid proliferation of this approach, it is crucial to develop a better understanding of how online stimulation influences cognition, and the optimal parameters to achieve desired effects. To accomplish this goal, a quantitative meta-analysis was performed with random-effects models fitted to reaction time (RT) and accuracy data. The final dataset included 126 studies published between 1998 and 2016, with 244 total effects for reaction times, and 202 for accuracy. Meta-analytically, rTMS at 10 Hz and 20 Hz disrupted accuracy for attention, executive, language, memory, motor, and perception domains, while no effects were found with 1 Hz or 5 Hz. Stimulation applied at and 10 and 20 Hz slowed down RTs in attention and perception tasks. No performance enhancement was found. Meta-regression analysis showed that fMRI-guided targeting and short inter-trial intervals are associated with increased disruptive effects with rTMS.
Collapse
Affiliation(s)
- Lysianne Beynel
- Departments of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, United States
| | - Lawrence G Appelbaum
- Departments of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, United States
| | - Bruce Luber
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Courtney A Crowell
- Departments of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, United States
| | - Susan A Hilbig
- Departments of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, United States
| | - Wesley Lim
- Departments of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, United States
| | - Duy Nguyen
- Departments of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, United States
| | - Nicolas A Chrapliwy
- Departments of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, United States
| | - Simon W Davis
- Department of Neurology, Duke University School of Medicine, Durham, NC, United States
| | - Roberto Cabeza
- Center for Cognitive Neuroscience, Duke University, Durham, NC, United States
| | - Sarah H Lisanby
- Departments of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, United States; Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Zhi-De Deng
- Departments of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, United States; Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States.
| |
Collapse
|
6
|
Pinna B, Conti L. The Limiting Case of Amodal Completion: The Phenomenal Salience and the Role of Contrast Polarity. Brain Sci 2019; 9:brainsci9060149. [PMID: 31238584 PMCID: PMC6627845 DOI: 10.3390/brainsci9060149] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 06/19/2019] [Accepted: 06/20/2019] [Indexed: 11/16/2022] Open
Abstract
In this work, we demonstrated unique and relevant visual properties imparted by contrast polarity in perceptual organization and in eliciting amodal completion, which is the vivid completion of a single continuous object of the visible parts of an occluded shape despite portions of its boundary contours not actually being seen. T-junction, good continuation, and closure are considered the main principles involved according to relevant explanations of amodal completion based on the simplicity–Prägnanz principle, Helmholtz’s likelihood, and Bayesian inference. The main interest of these approaches is to explain how the occluded object is completed, what is the amodal shape, and how contours of partially visible fragments are relatable behind an occluder. Different from these perspectives, amodal completion was considered here as a visual phenomenon and not as a process, i.e., the final outcome of perceptual processes and grouping principles. Therefore, the main question we addressed through our stimuli was “What is the role of shape formation and perceptual organization in inducing amodal completion?” To answer this question, novel stimuli, similar to limiting cases and instantiae crucis, were studied through Gestalt experimental phenomenology. The results demonstrated the domination of the contrast polarity against good continuation, T-junctions, and regularity. Moreover, the limiting conditions explored revealed a new kind of junction next to the T- and Y-junctions, respectively responsible for amodal completion and tessellation. We called them I-junctions. The results were theoretically discussed in relation to the previous approaches and in the light of the phenomenal salience imparted by contrast polarity.
Collapse
Affiliation(s)
- Baingio Pinna
- Department of Biomedical Science, University of Sassari, 07100 Sassari, Italy.
| | - Livio Conti
- Faculty of Engineering, Uninettuno University, 00186 Roma, Italy.
| |
Collapse
|
7
|
TMS of the occipital face area modulates cross-domain identity priming. Brain Struct Funct 2018; 224:149-157. [DOI: 10.1007/s00429-018-1768-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 10/02/2018] [Indexed: 10/28/2022]
|
8
|
Silvanto J, Bona S, Marelli M, Cattaneo Z. On the Mechanisms of Transcranial Magnetic Stimulation (TMS): How Brain State and Baseline Performance Level Determine Behavioral Effects of TMS. Front Psychol 2018; 9:741. [PMID: 29867693 PMCID: PMC5966578 DOI: 10.3389/fpsyg.2018.00741] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 04/27/2018] [Indexed: 11/13/2022] Open
Abstract
The behavioral effects of Transcranial Magnetic Stimulation (TMS) can change qualitatively when stimulation is preceded by initial state manipulations such as priming or adaptation. In addition, baseline performance level of the participant has been shown to play a role in modulating the impact of TMS. Here we examined the link between these two factors. This was done using data from a previous study using a TMS-priming paradigm, in which, at group level, TMS selectively facilitated targets incongruent with the prime while having no statistically significant effects on other prime-target congruencies. Correlation and linear mixed-effects analyses indicated that, for all prime-target congruencies, a significant linear relationship between baseline performance and the magnitude of the induced TMS effect was present: low levels of baseline performance were associated with TMS-induced facilitations and high baseline performance with impairments. Thus as performance level increased, TMS effects turned from facilitation to impairment. The key finding was that priming shifted the transition from facilitatory to disruptive effects for targets incongruent with the prime, such that TMS-induced facilitations were obtained until a higher level of performance than for other prime-target congruencies. Given that brain state manipulations such as priming operate via modulations of neural excitability, this result is consistent with the view that neural excitability, coupled with non-linear neural effects, underlie behavioral effects of TMS.
Collapse
Affiliation(s)
- Juha Silvanto
- Department of Psychology, Faculty of Science and Technology, University of Westminster, London, United Kingdom
| | - Silvia Bona
- Department of Psychology, University of Milano-Bicocca, Milan, Italy
| | - Marco Marelli
- Department of Psychology, University of Milano-Bicocca, Milan, Italy
| | - Zaira Cattaneo
- Department of Psychology, University of Milano-Bicocca, Milan, Italy.,National Scientific Neurological Institute (IRCCS), Mondino Foundation, Pavia, Italy
| |
Collapse
|
9
|
Pinto M, Fattorini E, Lasaponara S, D'Onofrio M, Fortunato G, Doricchi F. Visualising numerals: An ERPs study with the attentional SNARC task. Cortex 2018; 101:1-15. [DOI: 10.1016/j.cortex.2017.12.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 08/10/2017] [Accepted: 12/19/2017] [Indexed: 10/18/2022]
|
10
|
Ferrari C, Nadal M, Schiavi S, Vecchi T, Cela-Conde CJ, Cattaneo Z. The dorsomedial prefrontal cortex mediates the interaction between moral and aesthetic valuation: a TMS study on the beauty-is-good stereotype. Soc Cogn Affect Neurosci 2018; 12:707-717. [PMID: 28158864 PMCID: PMC5460046 DOI: 10.1093/scan/nsx002] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 01/16/2017] [Indexed: 11/13/2022] Open
Abstract
Attractive individuals are perceived as possessing more positive personal traits than unattractive individuals. This reliance on aesthetic features to infer moral character suggests a close link between aesthetic and moral valuation. Here we aimed to investigate the neural underpinnings of the interaction between aesthetic and moral valuation by combining transcranial magnetic stimulation (TMS) with a priming paradigm designed to assess the Beauty-is-Good stereotype. Participants evaluated the trustworthiness of a series of faces (targets), each of which was preceded by an adjective describing desirable, undesirable, or neutral aesthetic qualities (primes). TMS was applied between prime and target to interfere with activity in two regions known to be involved in aesthetic and moral valuation: the dorsomedial prefrontal cortex (dmPFC, a core region in social cognition) and the dorsolateral prefrontal cortex (dlPFC, critical in decision making). Our results showed that when TMS was applied over vertex (control) and over the dlPFC, participants judged faces as more trustworthy when preceded by positive than by negative aesthetic primes (as also shown in two behavioral experiments). However, when TMS was applied over the dmPFC, primes had no effect on trustworthiness judgments. A second Experiment corroborated this finding. Our results suggest that mPFC plays a causal role linking moral and aesthetic valuation.
Collapse
Affiliation(s)
- Chiara Ferrari
- Department of Psychology, University of Milano-Bicocca, Milan, Italy
| | - Marcos Nadal
- Human Evolution and Cognition Group (EvoCog), University of the Balearic Islands and IFISC, Associated Unit to CSIC, Palma de Mallorca, Spain
| | - Susanna Schiavi
- Department of Psychology, University of Milano-Bicocca, Milan, Italy
| | - Tomaso Vecchi
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.,Brain Connectivity Center, C. Mondino National Neurological Institute, Pavia, Italy
| | - Camilo J Cela-Conde
- Human Evolution and Cognition Group (EvoCog), University of the Balearic Islands and IFISC, Associated Unit to CSIC, Palma de Mallorca, Spain
| | - Zaira Cattaneo
- Department of Psychology, University of Milano-Bicocca, Milan, Italy.,Brain Connectivity Center, C. Mondino National Neurological Institute, Pavia, Italy
| |
Collapse
|
11
|
Not all visual symmetry is equal: Partially distinct neural bases for vertical and horizontal symmetry. Neuropsychologia 2017; 104:126-132. [DOI: 10.1016/j.neuropsychologia.2017.08.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 07/12/2017] [Accepted: 08/02/2017] [Indexed: 11/21/2022]
|
12
|
The occipital face area is causally involved in the formation of identity-specific face representations. Brain Struct Funct 2017; 222:4271-4282. [DOI: 10.1007/s00429-017-1467-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 06/20/2017] [Indexed: 10/19/2022]
|
13
|
Brogaard B, Gatzia DE. Unconscious Imagination and the Mental Imagery Debate. Front Psychol 2017; 8:799. [PMID: 28588527 PMCID: PMC5440590 DOI: 10.3389/fpsyg.2017.00799] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 05/02/2017] [Indexed: 11/13/2022] Open
Abstract
Traditionally, philosophers have appealed to the phenomenological similarity between visual experience and visual imagery to support the hypothesis that there is significant overlap between the perceptual and imaginative domains. The current evidence, however, is inconclusive: while evidence from transcranial brain stimulation seems to support this conclusion, neurophysiological evidence from brain lesion studies (e.g., from patients with brain lesions resulting in a loss of mental imagery but not a corresponding loss of perception and vice versa) indicates that there are functional and anatomical dissociations between mental imagery and perception. Assuming that the mental imagery and perception do not overlap, at least, to the extent traditionally assumed, then the question arises as to what exactly mental imagery is and whether it parallels perception by proceeding via several functionally distinct mechanisms. In this review, we argue that even though there may not be a shared mechanism underlying vision for perception and conscious imagery, there is an overlap between the mechanisms underlying vision for action and unconscious visual imagery. On the basis of these findings, we propose a modification of Kosslyn's model of imagery that accommodates unconscious imagination and explore possible explanations of the quasi-pictorial phenomenology of conscious visual imagery in light of the fact that its underlying neural substrates and mechanisms typically are distinct from those of visual experience.
Collapse
Affiliation(s)
- Berit Brogaard
- The Brogaard Lab for Multisensory Research, University of Miami, MiamiFL, United States.,Department of Philosophy, University of OsloOslo, Norway
| | - Dimitria Electra Gatzia
- Department of Philosophy, University of Akron Wayne College, AkronOH, United States.,Centre for Philosophical Psychology, University of AntwerpAntwerp, Belgium
| |
Collapse
|
14
|
Roldan SM. Object Recognition in Mental Representations: Directions for Exploring Diagnostic Features through Visual Mental Imagery. Front Psychol 2017; 8:833. [PMID: 28588538 PMCID: PMC5441390 DOI: 10.3389/fpsyg.2017.00833] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 05/08/2017] [Indexed: 11/13/2022] Open
Abstract
One of the fundamental goals of object recognition research is to understand how a cognitive representation produced from the output of filtered and transformed sensory information facilitates efficient viewer behavior. Given that mental imagery strongly resembles perceptual processes in both cortical regions and subjective visual qualities, it is reasonable to question whether mental imagery facilitates cognition in a manner similar to that of perceptual viewing: via the detection and recognition of distinguishing features. Categorizing the feature content of mental imagery holds potential as a reverse pathway by which to identify the components of a visual stimulus which are most critical for the creation and retrieval of a visual representation. This review will examine the likelihood that the information represented in visual mental imagery reflects distinctive object features thought to facilitate efficient object categorization and recognition during perceptual viewing. If it is the case that these representational features resemble their sensory counterparts in both spatial and semantic qualities, they may well be accessible through mental imagery as evaluated through current investigative techniques. In this review, methods applied to mental imagery research and their findings are reviewed and evaluated for their efficiency in accessing internal representations, and implications for identifying diagnostic features are discussed. An argument is made for the benefits of combining mental imagery assessment methods with diagnostic feature research to advance the understanding of visual perceptive processes, with suggestions for avenues of future investigation.
Collapse
Affiliation(s)
- Stephanie M. Roldan
- Virginia Tech Visual Neuroscience Laboratory, Psychology Department, Virginia Polytechnic Institute and State University, BlacksburgVA, United States
| |
Collapse
|
15
|
Theoretical Implications on Visual (Color) Representation and Cytochrome Oxidase Blobs. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/bf03379594] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Abstract
The rich concentration of mitochondrial cytochrome oxidase (CO) blobs in the V1 (striate) primate visual cortex has never been explained. Although the distribution of CO blobs provided a persuasive example of columnar structure in the V1, there are contradictions about the existence of hypercolumns. Since photoreceptors and other retinal cells process and convey basically external visible photonic signals, it suggests that one of the most important tasks of early visual areas is to represent these external visible color photonic signals during visual perception. This representation may occur essentially in CO-rich blobs of the V1. Here we suggest that the representation of external visible photon signals (i.e. visual representation) can be the most energetic allocation process in the brain, which is reasonably performed by the highest density neuron al V1 areas and mitochondrial-rich cytochrome oxidases. It is also raised that the functional unit for phosphene induction can be linked to small clusters of Co —rich blobs in V1. We present some implications about distinction between the physics of visible photons/ light and its subjective experiences. We also discuss that amodal and modal visual completions are possible due to the visual perception induced visualization when the brain tries to interpret the unseen parts of objects or represent features of perceived objects that are not actually visible. It is raised that continuously produced intrinsic bioluminescent photons from retinal lipid peroxidation may have functional role in initial development of retinogeniculate pathways as well as initial appearance topographic organizations of V1 before birth. Finally, the metaphysical framework is the extended version of dual-aspect monism (DAMv) that has the least number of problems compared to all other frameworks and hence it is better than the materialism that is currently dominant in science.
Collapse
|
16
|
Affiliation(s)
- Zaira Cattaneo
- Department of Psychology, University of Milano-Bicocca, Milan, Italy
- Brain Connectivity Center, C. Mondino National Neurological Institute, Pavia, Italy
| |
Collapse
|
17
|
Grotheer M, Kovács G. Can predictive coding explain repetition suppression? Cortex 2016; 80:113-24. [PMID: 26861559 DOI: 10.1016/j.cortex.2015.11.027] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 11/13/2015] [Accepted: 11/13/2015] [Indexed: 11/19/2022]
Abstract
While in earlier work various local or bottom-up neural mechanisms were proposed to give rise to repetition suppression (RS), current theories suggest that top-down processes play a role in determining the repetition related reduction of the neural responses. In the current review we summarise those results, which support the role of these top-down processes, concentrating on the Bayesian models of predictive coding (PC). Such models assume that RS is related to the statistical probabilities of prior stimulus occurrences and to the future predictability of these stimuli. Here we review the current results that support or argue against this explanation. We point out that the heterogeneity of experimental manipulations that are thought to reflect predictive processes are likely to measure different processing steps, making their direct comparison difficult. In addition we emphasize the importance of identifying these sub-processes and clarifying their role in explaining RS. Finally, we propose a two-stage model for explaining the relationships of repetition and expectation phenomena in the human cortex.
Collapse
Affiliation(s)
- Mareike Grotheer
- Institute of Psychology, Friedrich Schiller University Jena, Jena, Germany; DFG Research Unit Person Perception, Friedrich Schiller University Jena, Jena, Germany.
| | - Gyula Kovács
- Institute of Psychology, Friedrich Schiller University Jena, Jena, Germany; DFG Research Unit Person Perception, Friedrich Schiller University Jena, Jena, Germany.
| |
Collapse
|
18
|
Non-invasive Human Brain Stimulation in Cognitive Neuroscience: A Primer. Neuron 2015; 87:932-45. [DOI: 10.1016/j.neuron.2015.07.032] [Citation(s) in RCA: 172] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 06/07/2015] [Accepted: 07/16/2015] [Indexed: 11/21/2022]
|
19
|
Saad E, Wojciechowska M, Silvanto J. Partial dissociation in the neural bases of VSTM and imagery in the early visual cortex. Neuropsychologia 2015; 75:143-8. [PMID: 26026256 PMCID: PMC4542523 DOI: 10.1016/j.neuropsychologia.2015.05.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Revised: 05/22/2015] [Accepted: 05/25/2015] [Indexed: 11/23/2022]
Abstract
Visual short-term memory (VSTM) and visual imagery are believed to involve overlapping neuronal representations in the early visual cortex. While a number of studies have provided evidence for this overlap, at the behavioral level VSTM and imagery are dissociable processes; this begs the question of how their neuronal mechanisms differ. Here we used transcranial magnetic stimulation (TMS) to examine whether the neural bases of imagery and VSTM maintenance are dissociable in the early visual cortex (EVC). We intentionally used a similar task for VSTM and imagery in order to equate their assessment. We hypothesized that any differential effect of TMS on VSTM and imagery would indicate that their neuronal bases differ at the level of EVC. In the “alone” condition, participants were asked to engage either in VSTM or imagery, whereas in the “concurrent” condition, each trial required both VSTM maintenance and imagery simultaneously. A dissociation between VSTM and imagery was observed for reaction times: TMS slowed down responses for VSTM but not for imagery. The impact of TMS on sensitivity did not differ between VSTM and imagery, but did depend on whether the tasks were carried concurrently or alone. This study shows that neural processes associated with VSTM and imagery in the early visual cortex can be partially dissociated. Both VSTM and visual imagery are believed to involve early visual cortex (EVC). TMS was used to investigate whether their neural bases can be dissociated. TMS dissociated VSTM and imagery at the level of reaction times. No differences in the effect of TMS on task sensitivity.
Collapse
Affiliation(s)
- Elyana Saad
- Brain Research Unit, O.V. Lounasmaa Laboratory, School of Science, Aalto University, 00076 Espoo, Finland; Institute of Behavioral Sciences, University of Helsinki, 00014 Helsinki, Finland.
| | - Maria Wojciechowska
- Department of Biomedical Engineering and Computational Science BECS, Aalto University, 02150 Espoo, Finland
| | - Juha Silvanto
- Brain Research Unit, O.V. Lounasmaa Laboratory, School of Science, Aalto University, 00076 Espoo, Finland; Department of Psychology, Faculty of Science and Technology, University of Westminster, 309 Regent Street, London W1B 2HW, UK
| |
Collapse
|
20
|
Bona S, Herbert A, Toneatto C, Silvanto J, Cattaneo Z. The causal role of the lateral occipital complex in visual mirror symmetry detection and grouping: an fMRI-guided TMS study. Cortex 2013; 51:46-55. [PMID: 24360359 DOI: 10.1016/j.cortex.2013.11.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 09/26/2013] [Accepted: 11/11/2013] [Indexed: 11/29/2022]
Abstract
Despite the fact that bilateral mirror symmetry is an important characteristic of the visual world, few studies have investigated its neural basis. Here we addressed this issue by investigating whether the object-selective lateral occipital (LO) cortex, a key brain region in object and shape processing, is causally involved in bilateral symmetry detection. Participants were asked to discriminate between symmetric and asymmetric dot patterns, while fMRI-guided repetitive TMS was delivered online over either the left LO, the right LO or two control sites in the occipital cortex. We found that the application of TMS over both right and left LO impaired symmetry judgments, with disruption being greater following right LO than left LO TMS, indicative of right hemisphere lateralization in symmetry processing. TMS over LO bilaterally also affected a visual contour detection task, with no evidence for hemispheric difference in this task. Overall, our results demonstrates that LO bilaterally plays a causal role in symmetry detection possibly due to symmetry acting as a strong cue in Gestalt processes mediating object recognition.
Collapse
Affiliation(s)
- Silvia Bona
- Brain Research Unit, OV Lounasmaa Laboratory, Aalto University School of Science, Espoo, Finland; BioMag Laboratory, HUS Medical Imaging Center, Helsinki University Central Hospital, Helsinki, Finland; Advanced Magnetic Imaging Centre, Aalto Neuroimaging, OV Lounasmaa Laboratory, School of Science, Aalto University, Espoo, Finland
| | - Andrew Herbert
- Department of Psychology, Rochester Institute of Technology, Rochester, NY, USA
| | - Carlo Toneatto
- Department of Psychology, University of Milano, Milano, Italy
| | - Juha Silvanto
- Brain Research Unit, OV Lounasmaa Laboratory, Aalto University School of Science, Espoo, Finland; Department of Psychology, Faculty of Science and Technology, University of Westminster, UK
| | - Zaira Cattaneo
- Department of Psychology, University of Milano, Milano, Italy; Brain Connectivity Center, IRCCS Mondino, Pavia, Italy.
| |
Collapse
|
21
|
Jacquet PO, Avenanti A. Perturbing the action observation network during perception and categorization of actions' goals and grips: state-dependency and virtual lesion TMS effects. Cereb Cortex 2013; 25:598-608. [PMID: 24084126 DOI: 10.1093/cercor/bht242] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Watching others grasping and using objects activates an action observation network (AON), including inferior frontal (IFC), anterior intraparietal (AIP), and somatosensory cortices (S1). Yet, causal evidence of the differential involvement of such AON sensorimotor nodes in representing high- and low-level action components (i.e., end-goals and grip type) is meager. To address this issue, we used transcranial magnetic stimulation-adaptation (TMS-A) during 2 novel action perception tasks. Participants were shown adapting movies displaying a demonstrator performing goal-directed actions with a tool, using either power or precision grips. They were then asked to match the end-goal (Goal-recognition task) or the grip (Grip-recognition task) of actions shown in test pictures to the adapting movies. TMS was administered over IFC, AIP, or S1 during presentation of test pictures. Virtual lesion-like effects were found in the Grip-recognition task where IFC stimulation induced a general performance decrease, suggesting a critical role of IFC in perceiving grips. In the Goal-recognition task, IFC and S1 stimulation differently affected the processing of "adapted" and "nonadapted" goals. These "state-dependent" effects suggest that the overall goal of seen actions is encoded into functionally distinct and spatially overlapping neural populations in IFC-S1 and such encoding is critical for recognizing and understanding end-goals.
Collapse
Affiliation(s)
- Pierre O Jacquet
- Department of Psychology, Alma Mater Studiorum, University of Bologna, 40127 Bologna, Italy INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center, 69676 Bron cedex, France
| | - Alessio Avenanti
- Department of Psychology, Alma Mater Studiorum, University of Bologna, 40127 Bologna, Italy Centro studi e ricerche in Neuroscienze Cognitive, Campus di Cesena, University of Bologna, 47521 Cesena, Italy Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia, 00179 Roma, Italy
| |
Collapse
|
22
|
Neural pathways conveying novisual information to the visual cortex. Neural Plast 2013; 2013:864920. [PMID: 23840972 PMCID: PMC3690246 DOI: 10.1155/2013/864920] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Accepted: 05/22/2013] [Indexed: 11/18/2022] Open
Abstract
The visual cortex has been traditionally considered as a stimulus-driven, unimodal system with a hierarchical organization. However, recent animal and human studies have shown that the visual cortex responds to non-visual stimuli, especially in individuals with visual deprivation congenitally, indicating the supramodal nature of the functional representation in the visual cortex. To understand the neural substrates of the cross-modal processing of the non-visual signals in the visual cortex, we firstly showed the supramodal nature of the visual cortex. We then reviewed how the nonvisual signals reach the visual cortex. Moreover, we discussed if these non-visual pathways are reshaped by early visual deprivation. Finally, the open question about the nature (stimulus-driven or top-down) of non-visual signals is also discussed.
Collapse
|
23
|
Saad E, Silvanto J. How visual short-term memory maintenance modulates the encoding of external input: evidence from concurrent visual adaptation and TMS. Neuroimage 2013; 72:243-51. [PMID: 23384521 DOI: 10.1016/j.neuroimage.2013.01.053] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 01/12/2013] [Accepted: 01/26/2013] [Indexed: 11/29/2022] Open
Abstract
The impact of memory representations on the encoding of visual input has been the subject of much debate. Here we investigated this issue by examining how visual short-term memory (VSTM) maintenance of orientation information modulates the strength of the tilt aftereffect (TAE) induced by a concurrent visual adapter. We reasoned that if VSTM maintenance facilitates visual processing of stimuli that match the VSTM content, then the magnitude of the TAE should be enhanced when the orientations of the memory item and the adapter are identical. In contrast, if VSTM content inhibits visual processing, then the TAE induced by the adapter should be reduced. Our results are consistent with the latter hypothesis, and a TMS study demonstrated that the reduction of the TAE by VSTM maintenance of orientation information occurs in the early visual cortex. VSTM maintenance of shape information also reduced the TAE magnitude, but to a smaller extent than maintenance of orientation information. A TMS experiment did not implicate the early visual cortex in this phenomenon. In summary, our results indicate that VSTM maintenance under these circumstances inhibits the encoding of concurrent visual input, and that this inhibition occurs at various levels of the visual cortex.
Collapse
Affiliation(s)
- Elyana Saad
- Brain Research Unit, O.V. Lounasmaa Laboratory, School of Science, Aalto University, Espoo, Finland
| | | |
Collapse
|