1
|
Rudolph MD, Cohen JR, Madden DJ. Distributed associations among white matter hyperintensities and structural brain networks with fluid cognition in healthy aging. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2024; 24:1121-1140. [PMID: 39300013 PMCID: PMC11525275 DOI: 10.3758/s13415-024-01219-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/13/2024] [Indexed: 09/22/2024]
Abstract
White matter hyperintensities (WMHs) are associated with age-related cognitive impairment and increased risk of Alzheimer's disease. However, the manner by which WMHs contribute to cognitive impairment is unclear. Using a combination of predictive modeling and network neuroscience, we investigated the relationship between structural white matter connectivity and age, fluid cognition, and WMHs in 68 healthy adults (18-78 years). Consistent with previous work, WMHs were increased in older adults and exhibited a strong negative association with fluid cognition. Extending previous work, using predictive modeling, we demonstrated that age, WMHs, and fluid cognition were jointly associated with widespread alterations in structural connectivity. Subcortical-cortical connections between the thalamus/basal ganglia and frontal and parietal regions of the default mode and frontoparietal networks were most prominent. At the network level, both age and WMHs were negatively associated with network density and communicability, and positively associated with modularity. Spatially, WMHs were most prominent in arterial zones served by the middle cerebral artery and associated lenticulostriate branches that supply subcortical regions. Finally, WMHs overlapped with all major white matter tracts, most prominently in tracts that facilitate subcortical-cortical communication and are implicated in fluid cognition, including the anterior thalamic-radiations and forceps minor. Finally, results of mediation analyses suggest that whole-brain WMH load influences age-related decline in fluid cognition. Thus, across multiple levels of analysis, we showed that WMHs were increased in older adults and associated with altered structural white matter connectivity and network topology involving subcortical-cortical pathways critical for fluid cognition.
Collapse
Affiliation(s)
- Marc D Rudolph
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Internal Medicine, Section of Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
- Alzheimer's Disease Research Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
| | - Jessica R Cohen
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, NC, USA
| | - David J Madden
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, NC, USA
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA
- Center for Cognitive Neuroscience, Duke University, Durham, NC, USA
| |
Collapse
|
2
|
Zhang X, Zhou Z, Wang Y, Long J, Chen Z. Cerebellar representation during phonetic processing in tonal and non-tonal language speakers: An ALE meta-analysis. Neuroimage 2024; 303:120950. [PMID: 39577574 DOI: 10.1016/j.neuroimage.2024.120950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/05/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024] Open
Abstract
The role of the cerebellum in phonetic processing has been discovered and widely discussed for decades. However, with the idea that the cerebral representation of phonetic processing is different in tonal language and non-tonal language speakers, whether the cerebellar representation of phonetic processing differs based on language background remains unknown. In the present study, we conducted an activation likelihood estimation (ALE) analysis among 33 functional neuroimaging studies involving 541 healthy adults (213 tonal language speakers and 328 non-tonal language speakers). The aim was to explore the cerebellar representation of phonetic perception and phonetic production in these two language backgrounds. Our results demonstrated the involvement of cerebellum left Crus I, right Crus II, lobules VI, and VIIb in phonetic perception among tonal language speakers, whereas only one focal cluster (right Crus I and Crus II) was demonstrated in non-tonal language speakers. Conjunction analysis revealed overlapping regions located in the right Crus II both in tonal and non-tonal language speakers during phonetic perception. During phonetic production, no significant cluster was detected among tonal language speakers, whereas one focal cluster (within right lobule VI) was detected in non-tonal language speakers. These results highlight the specific cerebellar representation of phonetic processing in tonal and non-tonal languages. Overall, this ALE analysis provides a profound view of the neural mechanism of phonetic processing.
Collapse
Affiliation(s)
- Xiaotong Zhang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Zhaowen Zhou
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Ying Wang
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Jinyi Long
- College of Information Science and Technology, Jinan University, Guangzhou, Guangdong, China.
| | - Zhuoming Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China.
| |
Collapse
|
3
|
Romero-Martínez Á, Beser-Robles M, Cerdá-Alberich L, Aparici F, Martí-Bonmatí L, Sarrate-Costa C, Lila M, Moya-Albiol L. Gray matter volume differences in intimate partner violence perpetrators and its role in explaining dropout and recidivism. J Psychiatr Res 2024; 179:220-228. [PMID: 39321520 DOI: 10.1016/j.jpsychires.2024.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/08/2024] [Accepted: 09/12/2024] [Indexed: 09/27/2024]
Abstract
AIM Psychological instruments that are employed to adequately explain treatment compliance and recidivism of intimate partner violence (IPV) perpetrators present a limited ability and certain biases. Therefore, it becomes necessary to incorporate new techniques, such as magnetic resonance imaging (MRI), to be able to surpass those limitations and measure central nervous system characteristics to explain dropout (premature abandonment of intervention) and recidivism. METHOD The main objectives of this study were: 1) to assess whether IPV perpetrators (n = 60) showed differences in terms of their brain's regional gray matter volume (GMV) when compared to a control group of non-violent men (n = 57); 2) to analyze whether the regional GMV of IPV perpetrators before starting a tailored intervention program explain treatment compliance (dropout) and recidivism rate. RESULTS IPV perpetrators presented increased GMV in the cerebellum and the occipital, temporal, and subcortical brain regions compared to controls. There were also bilateral differences in the occipital pole and subcortical structures (thalamus, and putamen), with IPV perpetrators presenting reduced GMV in the above-mentioned brain regions compared to controls. Moreover, while a reduced GMV of the left pallidum explained dropout, a considerable number of frontal, temporal, parietal, occipital, subcortical and limbic regions added to dropout to explain recidivism. CONCLUSIONS Our study found that certain brain structures not only distinguished IPV perpetrators from controls but also played a role in explaining dropout and recidivism. Given the multifactorial nature of IPV perpetration, it is crucial to combine neuroimaging techniques with other psychological instruments to effectively create risk profiles of IPV perpetrators.
Collapse
Affiliation(s)
| | - María Beser-Robles
- Biomedical Imaging Research Group (GIBI230), La Fe Health Research Institute, Valencia, Spain
| | - Leonor Cerdá-Alberich
- Biomedical Imaging Research Group (GIBI230), La Fe Health Research Institute, Valencia, Spain
| | - Fernando Aparici
- Biomedical Imaging Research Group (GIBI230), La Fe Health Research Institute, Valencia, Spain
| | - Luis Martí-Bonmatí
- Biomedical Imaging Research Group (GIBI230), La Fe Health Research Institute, Valencia, Spain
| | | | - Marisol Lila
- Department of Social Psychology, University of Valencia, Valencia, Spain
| | - Luis Moya-Albiol
- Department of Psychobiology, University of Valencia, Valencia, Spain
| |
Collapse
|
4
|
Lyu W, Thung KH, Huynh KM, Wang L, Lin W, Ahmad S, Yap PT. The Growing Little Brain: Cerebellar Functional Development from Cradle to School. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.12.617938. [PMID: 39416101 PMCID: PMC11482888 DOI: 10.1101/2024.10.12.617938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Despite the cerebellum's crucial role in brain functions, its early development, particularly in relation to the cerebrum, remains poorly understood. Here, we examine cerebellocortical connectivity using over 1,000 high-quality resting-state functional MRI scans of children from birth to 60 months. By mapping cerebellar topography with fine temporal detail for the first time, we show the hierarchical and contralateral organization of cerebellocortical connectivity from birth. We observe dynamic shifts in cerebellar network gradients, which become more focal with age while maintaining stable anchor points similar to adults, highlighting the cerebellum's evolving yet stable role in functional integration during early development. Our findings provide the first evidence of cerebellar connections to higher-order networks at birth, which generally strengthen with age, emphasizing the cerebellum's early role in cognitive processing beyond sensory and motor functions. Our study provides insights into early cerebellocortical interactions, reveals functional asymmetry and sexual dimorphism in cerebellar development, and lays the groundwork for future research on cerebellum-related disorders in children.
Collapse
Affiliation(s)
- Wenjiao Lyu
- Department of Radiology, University of North Carolina, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA
| | - Kim-Han Thung
- Department of Radiology, University of North Carolina, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA
| | - Khoi Minh Huynh
- Department of Radiology, University of North Carolina, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA
| | - Li Wang
- Department of Radiology, University of North Carolina, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA
| | - Weili Lin
- Department of Radiology, University of North Carolina, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA
| | - Sahar Ahmad
- Department of Radiology, University of North Carolina, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA
| | - Pew-Thian Yap
- Department of Radiology, University of North Carolina, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
5
|
Biondi M, Marino M, Mantini D, Spironelli C. Unveiling altered connectivity between cognitive networks and cerebellum in schizophrenia. Schizophr Res 2024; 271:47-58. [PMID: 39013344 DOI: 10.1016/j.schres.2024.06.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/12/2024] [Accepted: 06/23/2024] [Indexed: 07/18/2024]
Abstract
Cognitive functioning is a crucial aspect in schizophrenia (SZ), and when altered it has devastating effects on patients' quality of life and treatment outcomes. Several studies suggested that they could result from altered communication between the cortex and cerebellum. However, the neural correlates underlying these impairments have not been identified. In this study, we investigated resting state functional connectivity (rsFC) in SZ patients, by considering the interactions between cortical networks supporting cognition and cerebellum. In addition, we investigated the relationship between SZ patients' rsFC and their symptoms. We used fMRI data from 74 SZ patients and 74 matched healthy controls (HC) downloaded from the publicly available database SchizConnect. We implemented a seed-based connectivity approach to identify altered functional connections between specific cortical networks and cerebellum. We considered ten commonly studied resting state networks, whose functioning encompasses specific cognitive functions, and the cerebellum, whose involvement in supporting cognition has been recently identified. We then explored the relationship between altered rsFC values and Positive and Negative Syndrome Scale (PANSS) scores. The SZ group showed increased connectivity values compared with HC group for cortical networks involved in attentive processes, which were also linked to PANSS items describing attention and language-related processing. We also showed decreased connectivity between cerebellar regions, and increased connectivity between them and attentive networks, suggesting the contribution of cerebellum to attentive and affective deficits. In conclusion, our findings highlighted the link between negative symptoms in SZ and altered connectivity within the cerebellum and between the same and cortical networks supporting cognition.
Collapse
Affiliation(s)
| | - Marco Marino
- Department of General Psychology, University of Padova, Italy; Movement Control and Neuroplasticity Research Group, KU, Leuven, Belgium
| | - Dante Mantini
- Movement Control and Neuroplasticity Research Group, KU, Leuven, Belgium.
| | - Chiara Spironelli
- Padova Neuroscience Center, University of Padova, Italy; Department of General Psychology, University of Padova, Italy
| |
Collapse
|
6
|
Du Y, Fang S, He X, Calhoun VD. A survey of brain functional network extraction methods using fMRI data. Trends Neurosci 2024; 47:608-621. [PMID: 38906797 DOI: 10.1016/j.tins.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/04/2024] [Accepted: 05/23/2024] [Indexed: 06/23/2024]
Abstract
Functional network (FN) analyses play a pivotal role in uncovering insights into brain function and understanding the pathophysiology of various brain disorders. This paper focuses on classical and advanced methods for deriving brain FNs from functional magnetic resonance imaging (fMRI) data. We systematically review their foundational principles, advantages, shortcomings, and interrelations, encompassing both static and dynamic FN extraction approaches. In the context of static FN extraction, we present hypothesis-driven methods such as region of interest (ROI)-based approaches as well as data-driven methods including matrix decomposition, clustering, and deep learning. For dynamic FN extraction, both window-based and windowless methods are surveyed with respect to the estimation of time-varying FN and the subsequent computation of FN states. We also discuss the scope of application of the various methods and avenues for future improvements.
Collapse
Affiliation(s)
- Yuhui Du
- School of Computer and Information Technology, Shanxi University, Taiyuan, China.
| | - Songke Fang
- School of Computer and Information Technology, Shanxi University, Taiyuan, China
| | - Xingyu He
- School of Computer and Information Technology, Shanxi University, Taiyuan, China
| | - Vince D Calhoun
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, GA, USA
| |
Collapse
|
7
|
Yang C, Liu G, Chen X, Le W. Cerebellum in Alzheimer's disease and other neurodegenerative diseases: an emerging research frontier. MedComm (Beijing) 2024; 5:e638. [PMID: 39006764 PMCID: PMC11245631 DOI: 10.1002/mco2.638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 06/04/2024] [Accepted: 06/12/2024] [Indexed: 07/16/2024] Open
Abstract
The cerebellum is crucial for both motor and nonmotor functions. Alzheimer's disease (AD), alongside other dementias such as vascular dementia (VaD), Lewy body dementia (DLB), and frontotemporal dementia (FTD), as well as other neurodegenerative diseases (NDs) like Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), and spinocerebellar ataxias (SCA), are characterized by specific and non-specific neurodegenerations in central nervous system. Previously, the cerebellum's significance in these conditions was underestimated. However, advancing research has elevated its profile as a critical node in disease pathology. We comprehensively review the existing evidence to elucidate the relationship between cerebellum and the aforementioned diseases. Our findings reveal a growing body of research unequivocally establishing a link between the cerebellum and AD, other forms of dementia, and other NDs, supported by clinical evidence, pathological and biochemical profiles, structural and functional neuroimaging data, and electrophysiological findings. By contrasting cerebellar observations with those from the cerebral cortex and hippocampus, we highlight the cerebellum's distinct role in the disease processes. Furthermore, we also explore the emerging therapeutic potential of targeting cerebellum for the treatment of these diseases. This review underscores the importance of the cerebellum in these diseases, offering new insights into the disease mechanisms and novel therapeutic strategies.
Collapse
Affiliation(s)
- Cui Yang
- Institute of Neurology Sichuan Provincial People's Hospital School of Medicine University of Electronic Science and Technology of China Chengdu China
| | - Guangdong Liu
- Institute of Neurology Sichuan Provincial People's Hospital School of Medicine University of Electronic Science and Technology of China Chengdu China
| | - Xi Chen
- Institute of Neurology Sichuan Provincial People's Hospital School of Medicine University of Electronic Science and Technology of China Chengdu China
| | - Weidong Le
- Institute of Neurology Sichuan Provincial People's Hospital School of Medicine University of Electronic Science and Technology of China Chengdu China
| |
Collapse
|
8
|
Yang Y, Fu S, Jiang G, Xu G, Tian J, Ma X. Functional connectivity changes of the hippocampal subregions in anti-N-methyl-D-aspartate receptor encephalitis. Brain Imaging Behav 2024; 18:686-697. [PMID: 38363500 DOI: 10.1007/s11682-024-00852-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2024] [Indexed: 02/17/2024]
Abstract
The hippocampus plays an important role in the pathophysiological mechanism of Anti-N-methyl-D-aspartate receptor (anti-NMDAR) encephalitis. Nevertheless, the connection between the resting-state activity of the hippocampal subregions and neuropsychiatric disorders in patients remains unclear. This study aimed to explore the changes in functional connectivity (FC) in the hippocampal subregions of patients with anti-NMDAR encephalitis and its association with clinical symptoms and cognitive performance. Twenty-three patients with anti-NMDAR encephalitis and 23 healthy controls (HC) were recruited. All participants underwent resting-state functional magnetic resonance imaging (rs-fMRI) scans and completed clinical cognitive scales. Based on the Brainnetome Atlas, the rostral (anterior) and caudal (posterior) hippocampi of both the left and right hemispheres were selected as regions of interest (ROIs) for FC analysis. First, a one-sample t-test was used to observe the whole-brain connectivity distribution of hippocampal subregions within the patient and HC groups at a threshold of p < 0.05. The two-sample t-test was used to compare the differences in hippocampal ROIs connectivity between groups, followed by a partial correlation analysis between the FC values of brain regions with statistical differences and clinical variables. This study observed that the distribution of whole-brain functional connectivity in the rostral and caudal hippocampi aligned with the connectivity differences between the anterior and posterior hippocampi. Compared to the HC group, the patients showed significantly decreased FC between the bilateral rostral hippocampus and the left inferior orbitofrontal gyrus and between the right rostral hippocampus and the right cerebellum. However, a significant increase in FC was observed between the right rostral hippocampus and left superior temporal gyrus, the left caudal hippocampus and right superior frontal gyrus, and the right caudal hippocampus and left gyrus rectus. Partial correlation analysis showed that FC between the left inferior orbitofrontal gyrus and the right rostral hippocampus was significantly negatively correlated with the California Verbal Learning Test (CVLT) and Brief Visuospatial Memory Test (BVMT) scores. The FC between the right rostral hippocampus and the left superior temporal gyrus was negatively correlated with BVMT scores. FC abnormalities in the hippocampal subregions of patients with anti-NMDAR encephalitis were associated with cognitive impairment, emotional changes, and seizures. These results may help explain the pathophysiological mechanisms and clinical manifestations of anti-NMDAR encephalitis and NMDAR dysfunction-related diseases such as schizophrenia.
Collapse
Affiliation(s)
- Yujie Yang
- The Second School of Clinical Medicine, Southern Medial University, Guangzhou City, Guangdong province, PR China
- Department of Nuclear Medicine, Guangdong Second Provincial General Hospital, No. 466 Road Xingang, Guangzhou, 510317, P. R. China
| | - Shishun Fu
- Department of Nuclear Medicine, Guangdong Second Provincial General Hospital, No. 466 Road Xingang, Guangzhou, 510317, P. R. China
| | - Guihua Jiang
- Department of Nuclear Medicine, Guangdong Second Provincial General Hospital, No. 466 Road Xingang, Guangzhou, 510317, P. R. China
| | - Guang Xu
- Department of Neurology, Guangdong Second Provincial General Hospital, No.466 Road Xingang, Guangzhou, 510317, P. R. China
| | - Junzhang Tian
- Department of Nuclear Medicine, Guangdong Second Provincial General Hospital, No. 466 Road Xingang, Guangzhou, 510317, P. R. China.
| | - Xiaofen Ma
- Department of Nuclear Medicine, Guangdong Second Provincial General Hospital, No. 466 Road Xingang, Guangzhou, 510317, P. R. China.
| |
Collapse
|
9
|
Zhan X, Asmara H, Pfaffinger P, Turner RW. Calcium-Dependent Regulation of Neuronal Excitability Is Rescued in Fragile X Syndrome by a Tat-Conjugated N-Terminal Fragment of FMRP. J Neurosci 2024; 44:e0136242024. [PMID: 38664011 PMCID: PMC11112635 DOI: 10.1523/jneurosci.0136-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/04/2024] [Accepted: 04/12/2024] [Indexed: 05/24/2024] Open
Abstract
Fragile X syndrome (FXS) arises from the loss of fragile X messenger ribonucleoprotein (FMRP) needed for normal neuronal excitability and circuit functions. Recent work revealed that FMRP contributes to mossy fiber long-term potentiation by adjusting the Kv4 A-type current availability through interactions with a Cav3-Kv4 ion channel complex, yet the mechanism has not yet been defined. In this study using wild-type and Fmr1 knock-out (KO) tsA-201 cells and cerebellar sections from male Fmr1 KO mice, we show that FMRP associates with all subunits of the Cav3.1-Kv4.3-KChIP3 complex and is critical to enabling calcium-dependent shifts in Kv4.3 inactivation to modulate the A-type current. Specifically, upon depolarization Cav3 calcium influx activates dual-specific phosphatase 1/6 (DUSP1/6) to deactivate ERK1/2 (ERK) and lower phosphorylation of Kv4.3, a signaling pathway that does not function in Fmr1 KO cells. In Fmr1 KO mouse tissue slices, cerebellar granule cells exhibit a hyperexcitable response to membrane depolarizations. Either incubating Fmr1 KO cells or in vivo administration of a tat-conjugated FMRP N-terminus fragment (FMRP-N-tat) rescued Cav3-Kv4 function and granule cell excitability, with a decrease in the level of DUSP6. Together these data reveal a Cav3-activated DUSP signaling pathway critical to the function of a FMRP-Cav3-Kv4 complex that is misregulated in Fmr1 KO conditions. Moreover, FMRP-N-tat restores function of this complex to rescue calcium-dependent control of neuronal excitability as a potential therapeutic approach to alleviating the symptoms of FXS.
Collapse
Affiliation(s)
- Xiaoqin Zhan
- Hotchkiss Brain Institute, Baylor College of Medicine, Houston, Texas 77030
- Alberta Children's Hospital Research Institute, Baylor College of Medicine, Houston, Texas 77030
| | - Hadhimulya Asmara
- Hotchkiss Brain Institute, Baylor College of Medicine, Houston, Texas 77030
- Alberta Children's Hospital Research Institute, Baylor College of Medicine, Houston, Texas 77030
| | - Paul Pfaffinger
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
| | - Ray W Turner
- Hotchkiss Brain Institute, Baylor College of Medicine, Houston, Texas 77030
- Alberta Children's Hospital Research Institute, Baylor College of Medicine, Houston, Texas 77030
- Department Clinical Neurosciences, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| |
Collapse
|
10
|
Boerwinkle VL, Sussman BL, de Lima Xavier L, Wyckoff SN, Reuther W, Kruer MC, Arhin M, Fine JM. Motor network dynamic resting state fMRI connectivity of neurotypical children in regions affected by cerebral palsy. Front Hum Neurosci 2024; 18:1339324. [PMID: 38835646 PMCID: PMC11148452 DOI: 10.3389/fnhum.2024.1339324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/29/2024] [Indexed: 06/06/2024] Open
Abstract
Background Normative childhood motor network resting-state fMRI effective connectivity is undefined, yet necessary for translatable dynamic resting-state-network-informed evaluation in pediatric cerebral palsy. Methods Cross-spectral dynamic causal modeling of resting-state-fMRI was investigated in 50 neurotypically developing 5- to 13-year-old children. Fully connected six-node network models per hemisphere included primary motor cortex, striatum, subthalamic nucleus, globus pallidus internus, thalamus, and contralateral cerebellum. Parametric Empirical Bayes with exhaustive Bayesian model reduction and Bayesian modeling averaging informed the model; Purdue Pegboard Test scores of hand motor behavior were the covariate at the group level to determine the effective-connectivity-functional behavior relationship. Results Although both hemispheres exhibited similar effective connectivity of motor cortico-basal ganglia-cerebellar networks, magnitudes were slightly greater on the right, except for left-sided connections of the striatum which were more numerous and of opposite polarity. Inter-nodal motor network effective connectivity remained consistent and robust across subjects. Age had a greater impact on connections to the contralateral cerebellum, bilaterally. Motor behavior, however, affected different connections in each hemisphere, exerting a more prominent effect on the left modulatory connections to the subthalamic nucleus, contralateral cerebellum, primary motor cortex, and thalamus. Discussion This study revealed a consistent pattern of directed resting-state effective connectivity in healthy children aged 5-13 years within the motor network, encompassing cortical, subcortical, and cerebellar regions, correlated with motor skill proficiency. Both hemispheres exhibited similar effective connectivity within motor cortico-basal ganglia-cerebellar networks reflecting inter-nodal signal direction predicted by other modalities, mainly differing from task-dependent studies due to network differences at rest. Notably, age-related changes were more pronounced in connections to the contralateral cerebellum. Conversely, motor behavior distinctly impacted connections in each hemisphere, emphasizing its role in modulating left sided connections to the subthalamic nucleus, contralateral cerebellum, primary motor cortex, and thalamus. Motor network effective connectivity was correlated with motor behavior, validating its physiological significance. This study is the first to evaluate a normative effective connectivity model for the pediatric motor network using resting-state functional MRI correlating with behavior and serves as a foundation for identifying abnormal findings and optimizing targeted interventions like deep brain stimulation, potentially influencing future therapeutic approaches for children with movement disorders.
Collapse
Affiliation(s)
- Varina L Boerwinkle
- Division of Pediatric Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Bethany L Sussman
- Division of Neurosciences, Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, United States
- Division of Neonatology, Center for Fetal and Neonatal Medicine, Children's Hospital Los Angeles, Los Angeles, CA, United States
| | - Laura de Lima Xavier
- Division of Pediatric Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Sarah N Wyckoff
- Division of Neurosciences, Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, United States
- Brainbox Inc., Baltimore, MD, United States
| | - William Reuther
- Division of Pediatric Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Michael C Kruer
- Division of Neurosciences, Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, United States
- Departments of Child Health, Neurology, Genetics and Cellular & Molecular Medicine, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, United States
| | - Martin Arhin
- Division of Pediatric Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Justin M Fine
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
11
|
Wu X, Lei Z, Wu Y, Jiang M, Luo H, Chen X, Ruan J. Dynamics of Cerebral Function in Patients with Acute Cerebellar Infarction. CEREBELLUM (LONDON, ENGLAND) 2024; 23:374-382. [PMID: 36810748 DOI: 10.1007/s12311-023-01534-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/13/2023] [Indexed: 02/24/2023]
Abstract
Few studies were devoted to investigating cerebral functional changes after acute cerebellar infarction (CI). The purpose of this study was to examine the brain functional dynamics of CI using electroencephalographic (EEG) microstate analysis. And the possible heterogenicity in neural dynamics between CI with vertigo and CI with dizziness was explored. Thirty-four CI patients and 37 age- and gender-matched healthy controls(HC) were included in the study. Each included subject underwent a 19-channel video EEG examination. Five 10-s resting-state EEG epochs were extracted after data preprocessing. Then, microstate analysis and source localization were performed using the LORETA-KEY tool. Microstate parameters such as duration, coverage, occurrence, and transition probability are all extracted. The current study showed that the duration, coverage, and occurrence of microstate(Ms) B significantly increased in CI patients, but the duration and coverage of MsA and MsD decreased. Compared CI with vertigo to dizziness, finding a decreased trend in the coverage of MsD and the transition from MsA and MsB to MsD. Taken together, our study sheds new light on the dynamics of cerebral function after CI, mainly reflecting increased activity in functional networks involved in MsB and decreased activity in functional networks involved in MsA and MsD. Vertigo and dizziness post-CI may be suggested by cerebral functional dynamics. Further longitudinal studies are needed to validate and explore the alterations in brain dynamics to what extent depict the clinical traits and their potential applications in the recovery of CI.
Collapse
Affiliation(s)
- Xin Wu
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
- Laboratory of Neurological Diseases and Brain Function, Luzhou, 646000, China
| | - Ziye Lei
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
- Laboratory of Neurological Diseases and Brain Function, Luzhou, 646000, China
| | - Yusi Wu
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
- Laboratory of Neurological Diseases and Brain Function, Luzhou, 646000, China
| | - Mingqing Jiang
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
- Laboratory of Neurological Diseases and Brain Function, Luzhou, 646000, China
| | - Hua Luo
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
- Laboratory of Neurological Diseases and Brain Function, Luzhou, 646000, China
| | - Xiu Chen
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
- Laboratory of Neurological Diseases and Brain Function, Luzhou, 646000, China
| | - Jianghai Ruan
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.
- Laboratory of Neurological Diseases and Brain Function, Luzhou, 646000, China.
| |
Collapse
|
12
|
Cakar ME, Okada NJ, Cummings KK, Jung J, Bookheimer SY, Dapretto M, Green SA. Functional connectivity of the sensorimotor cerebellum in autism: associations with sensory over-responsivity. Front Psychiatry 2024; 15:1337921. [PMID: 38590791 PMCID: PMC10999625 DOI: 10.3389/fpsyt.2024.1337921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/27/2024] [Indexed: 04/10/2024] Open
Abstract
The cerebellum has been consistently shown to be atypical in autism spectrum disorder (ASD). However, despite its known role in sensorimotor function, there is limited research on its association with sensory over-responsivity (SOR), a common and impairing feature of ASD. Thus, this study sought to examine functional connectivity of the sensorimotor cerebellum in ASD compared to typically developing (TD) youth and investigate whether cerebellar connectivity is associated with SOR. Resting-state functional connectivity of the sensorimotor cerebellum was examined in 54 ASD and 43 TD youth aged 8-18 years. Using a seed-based approach, connectivity of each sensorimotor cerebellar region (defined as lobules I-IV, V-VI and VIIIA&B) with the whole brain was examined in ASD compared to TD youth, and correlated with parent-reported SOR severity. Across all participants, the sensorimotor cerebellum was functionally connected with sensorimotor and visual regions, though the three seed regions showed distinct connectivity with limbic and higher-order sensory regions. ASD youth showed differences in connectivity including atypical connectivity within the cerebellum and increased connectivity with hippocampus and thalamus compared to TD youth. More severe SOR was associated with stronger connectivity with cortical regions involved in sensory and motor processes and weaker connectivity with cognitive and socio-emotional regions, particularly prefrontal cortex. These results suggest that atypical cerebellum function in ASD may play a role in sensory challenges in autism.
Collapse
Affiliation(s)
- Melis E. Cakar
- Neuroscience Interdepartmental Program, University of California Los Angeles, Los Angeles, CA, United States
| | - Nana J. Okada
- Department of Psychology, Harvard Medical School, Boston, MA, United States
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, United States
- Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, United States
| | - Kaitlin K. Cummings
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, United States
- Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, United States
- Department of Psychology and Neuroscience, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jiwon Jung
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, United States
- Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, United States
| | - Susan Y. Bookheimer
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, United States
- Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, United States
| | - Mirella Dapretto
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, United States
- Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, United States
| | - Shulamite A. Green
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, United States
- Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
13
|
Dong X, Gui X, Klich S, Zhu L, Chen D, Sun Z, Shi Y, Chen A. The effects of football juggling learning on executive function and brain functional connectivity. Front Hum Neurosci 2024; 18:1362418. [PMID: 38516307 PMCID: PMC10954781 DOI: 10.3389/fnhum.2024.1362418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/20/2024] [Indexed: 03/23/2024] Open
Abstract
This study aimed to explore the relationship between motor skill learning and executive function (EF), with an emphasis on the potential effects of football juggling learning. A randomized controlled trial involving 111 participants aged 17-19 years was conducted. Participants were randomly assigned to either the football juggling learning (FJL) group or a control group. The FJL group underwent 70 sessions of football juggling learning, while the control group engaged in their normal daily activities without any exercise intervention during the same time frame. Both groups were assessed for EF performance and underwent functional magnetic resonance imaging (fMRI) scans before and after the experiment. The executive function test included three tasks, namely, inhibition, working memory, and shifting. The results showed significant improvement in inhibition and shifting in both groups, and the FJL group showed greater improvement in these aspects of EF compared to the control group. Additionally, in comparison to the control group, the FJL group exhibited increased functional connectivity within the frontal, temporal, and cerebellar regions from the pre-test to the post-test. Notably, enhanced functional connectivity between the right superior temporal gyrus (posterior division) and left cerebellum 6 was identified in the FJL group and was associated with improved EF performance induced by football juggling learning. These findings shed light on the potential causal relationship between motor skill learning, EF, and brain plasticity. Importantly, our study provides preliminary evidence supporting the use of motor skill learning, such as football juggling, as a potential avenue for cognitive enhancement.
Collapse
Affiliation(s)
| | - Xiang Gui
- Yangzhou University, Yangzhou, China
| | - Sebastian Klich
- Department of Paralympic Sport, Wroclaw University of Health and Sport Sciences, Wroclaw, Poland
| | - Lina Zhu
- Yangzhou University, Yangzhou, China
| | | | | | - Yifan Shi
- Yangzhou University, Yangzhou, China
| | | |
Collapse
|
14
|
Chen Y, Spina S, Callahan P, Grinberg LT, Seeley WW, Rosen HJ, Kramer JH, Miller BL, Rankin KP. Pathology-specific patterns of cerebellar atrophy in neurodegenerative disorders. Alzheimers Dement 2024; 20:1771-1783. [PMID: 38109286 PMCID: PMC10984510 DOI: 10.1002/alz.13551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 12/20/2023]
Abstract
INTRODUCTION Associations of cerebellar atrophy with specific neuropathologies in Alzheimer's disease and related dementias (ADRD) have not been systematically analyzed. This study examined cerebellar gray matter volume across major pathological subtypes of ADRD. METHODS Cerebellar gray matter volume was examined using voxel-based morphometry in 309 autopsy-proven ADRD cases and 80 healthy controls. ADRD subtypes included AD, mixed Lewy body disease and AD (LBD-AD), and frontotemporal lobar degeneration (FTLD). Clinical function was assessed using the Clinical Dementia Rating (CDR) scale. RESULTS Distinct patterns of cerebellar atrophy were observed in all ADRD subtypes. Significant cerebellar gray matter changes appeared in the early stages of most subtypes and the very early stages of AD, LBD-AD, FTLD-TDP type A, and progressive supranuclear palsy. Cortical atrophy positively predicted cerebellar atrophy across all subtypes. DISCUSSION Our findings establish pathology-specific profiles of cerebellar atrophy in ADRD and propose cerebellar neuroimaging as a non-invasive biomarker for differential diagnosis and disease monitoring. HIGHLIGHTS Cerebellar atrophy was examined in 309 patients with autopsy-proven neurodegeneration. Distinct patterns of cerebellar atrophy are found in all pathological subtypes of Alzheimer's disease and related dementias (ADRD). Cerebellar atrophy is seen in early-stage (Clinical Dementia Rating [CDR] ≤1) AD, Lewy body dementia (LBD), frontotemporal lobar degeneration with tau-positive inclusion (FTLD-tau), and FTLD-transactive response DNA binding protein (FTLD-TDP). Cortical atrophy positively predicts cerebellar atrophy across all neuropathologies.
Collapse
Affiliation(s)
- Yu Chen
- Department of NeurologyMemory and Aging CenterWeill Institute for NeurosciencesUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Salvatore Spina
- Department of NeurologyMemory and Aging CenterWeill Institute for NeurosciencesUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Patrick Callahan
- Department of NeurologyMemory and Aging CenterWeill Institute for NeurosciencesUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Lea T. Grinberg
- Department of NeurologyMemory and Aging CenterWeill Institute for NeurosciencesUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Department of PathologyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - William W. Seeley
- Department of NeurologyMemory and Aging CenterWeill Institute for NeurosciencesUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Department of PathologyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Howard J. Rosen
- Department of NeurologyMemory and Aging CenterWeill Institute for NeurosciencesUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Joel H. Kramer
- Department of NeurologyMemory and Aging CenterWeill Institute for NeurosciencesUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Bruce L. Miller
- Department of NeurologyMemory and Aging CenterWeill Institute for NeurosciencesUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Katherine P. Rankin
- Department of NeurologyMemory and Aging CenterWeill Institute for NeurosciencesUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| |
Collapse
|
15
|
Chen H, Zhan L, Li Q, Meng C, Quan X, Chen X, Hao Z, Li J, Gao Y, Li H, Jia X, Li M, Liang Z. Frequency specific alterations of the degree centrality in patients with acute basal ganglia ischemic stroke: a resting-state fMRI study. Brain Imaging Behav 2024; 18:19-33. [PMID: 37821673 PMCID: PMC10844151 DOI: 10.1007/s11682-023-00806-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2023] [Indexed: 10/13/2023]
Abstract
This study intended to investigate the frequency specific brain oscillation activity in patients with acute basal ganglia ischemic stroke (BGIS) by using the degree centrality (DC) method. A total of 34 acute BGIS patients and 44 healthy controls (HCs) underwent resting-state functional magnetic resonance imaging (rs-fMRI) scanning. The DC values in three frequency bands (conventional band: 0.01-0.08 Hz, slow‑4 band: 0.027-0.073 Hz, slow‑5 band: 0.01-0.027 Hz) were calculated. A two-sample t-test was used to explore the between-group differences in the conventional frequency band. A two-way repeated-measures analysis of variance (ANOVA) was used to analyze the DC differences between groups (BGIS patients, HCs) and bands (slow‑4, slow‑5). Moreover, correlations between DC values and clinical indicators were performed. In conventional band, the DC value in the right middle temporal gyrus was decreased in BGIS patients compared with HCs. Significant differences of DC were observed between the two bands mainly in the bilateral cortical brain regions. Compared with the HCs, the BGIS patients showed increased DC in the right superior temporal gyrus and the left precuneus, but decreased mainly in the right inferior temporal gyrus, right inferior occipital gyrus, right precentral, and right supplementary motor area. Furthermore, the decreased DC in the right rolandic operculum in slow-4 band and the right superior temporal gyrus in slow-5 band were found by post hoc two-sample t-test of main effect of group. There was no significant correlation between DC values and clinical scales after Bonferroni correction. Our findings showed that the DC changes in BGIS patients were frequency specific. Functional abnormalities in local brain regions may help us to understand the underlying pathogenesis mechanism of brain functional reorganization of BGIS patients.
Collapse
Affiliation(s)
- Hao Chen
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Linlin Zhan
- Faculty of Western Languages, Heilongjiang University, Heilongjiang, China
| | - Qianqian Li
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Chaoguo Meng
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xuemei Quan
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Department of Neurology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Xiaoling Chen
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zeqi Hao
- School of Teacher Education, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| | - Jing Li
- School of Teacher Education, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| | - Yanyan Gao
- School of Teacher Education, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| | - Huayun Li
- School of Teacher Education, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| | - Xize Jia
- School of Teacher Education, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| | - Mengting Li
- School of Teacher Education, Zhejiang Normal University, Jinhua, China.
- Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China.
| | - Zhijian Liang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.
| |
Collapse
|
16
|
Kang N, Chung S, Lee SH, Bang M. Cerebro-cerebellar gray matter abnormalities associated with cognitive impairment in patients with recent-onset and chronic schizophrenia. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2024; 10:11. [PMID: 38280893 PMCID: PMC10851702 DOI: 10.1038/s41537-024-00434-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/12/2024] [Indexed: 01/29/2024]
Abstract
Although the role of the cerebellum in schizophrenia has gained attention, its contribution to cognitive impairment remains unclear. We aimed to investigate volumetric alterations in the cerebro-cerebellar gray matter (GM) in patients with recent-onset schizophrenia (ROS) and chronic schizophrenia (CS) compared with healthy controls (HCs). Seventy-two ROS, 43 CS, and 127 HC participants were recruited, and high-resolution T1-weighted structural magnetic resonance images of the brain were acquired. We compared cerebellar GM volumes among the groups using voxel-based morphometry and examined the cerebro-cerebellar GM volumetric correlations in participants with schizophrenia. Exploratory correlation analysis investigated the functional relevance of cerebro-cerebellar GM volume alterations to cognitive function in the schizophrenia group. The ROS and CS participants demonstrated smaller cerebellar GM volumes, particularly in Crus I and II, than HCs. Extracted cerebellar GM volumes demonstrated significant positive correlations with the cerebral GM volume in the fronto-temporo-parietal association areas engaged in higher-order association. The exploratory analysis showed that smaller cerebellar GM in the posterior lobe regions was associated with poorer cognitive performance in participants with schizophrenia. Our study suggests that cerebellar pathogenesis is present in the early stages of schizophrenia and interconnected with structural abnormalities in the cerebral cortex. Integrating the cerebellum into the pathogenesis of schizophrenia will help advance our understanding of the disease and identify novel treatment targets concerning dysfunctional cerebro-cerebellar interactions.
Collapse
Affiliation(s)
- Naok Kang
- Department of Psychiatry, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Republic of Korea
| | - Subin Chung
- CHA University School of Medicine, Pocheon, Republic of Korea
| | - Sang-Hyuk Lee
- Department of Psychiatry, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Republic of Korea
| | - Minji Bang
- Department of Psychiatry, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Republic of Korea.
| |
Collapse
|
17
|
Zhang H, Yang X, Yao L, Liu Q, Lu Y, Chen X, Wang T. EEG microstates analysis after TMS in patients with subacute stroke during the resting state. Cereb Cortex 2024; 34:bhad480. [PMID: 38112223 PMCID: PMC10793572 DOI: 10.1093/cercor/bhad480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/21/2023] Open
Abstract
To investigate whether intermittent theta burst stimulation over the cerebellum induces changes in resting-state electroencephalography microstates in patients with subacute stroke and its correlation with cognitive and emotional function. Twenty-four stroke patients and 17 healthy controls were included in this study. Patients and healthy controls were assessed at baseline, including resting-state electroencephalography and neuropsychological scales. Fifteen patients received lateral cerebellar intermittent theta burst stimulation as well as routine rehabilitation training (intermittent theta burst stimulation-RRT group), whereas 9 patients received only conventional rehabilitation training (routine rehabilitation training group). After 2 wk, baseline data were recorded again in both groups. Stroke patients exhibited reduced parameters in microstate D and increased parameters in microstate C compared with healthy controls. However, after the administration of intermittent theta burst stimulation over the lateral cerebellum, significant alterations were observed in the majority of metrics for both microstates D and C. Lateral cerebellar intermittent theta burst stimulation combined with conventional rehabilitation has a stronger tendency to improve emotional and cognitive function in patients with subacute stroke than conventional rehabilitation. The improvement of mood and cognitive function was significantly associated with microstates C and D. We identified electroencephalography microstate spatiotemporal dynamics associated with clinical improvement following a course of intermittent theta burst stimulation therapy.
Collapse
Affiliation(s)
- Hongmei Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, Yunnan, China
| | - Xue Yang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, Yunnan, China
| | - Liqing Yao
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, Yunnan, China
| | - Qian Liu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, Yunnan, China
| | - Yihuan Lu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, Yunnan, China
| | - Xueting Chen
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, Yunnan, China
| | - Tianling Wang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, Yunnan, China
| |
Collapse
|
18
|
Wang H, Yan X, Zhang Q, Wu Q, Qiu L, Zhou J, Guo P. Altered small-world and disrupted topological properties of functional connectivity networks in patients with nonarteritic anterior ischemic optic neuropathy. Clin Neurol Neurosurg 2024; 236:108101. [PMID: 38176218 DOI: 10.1016/j.clineuro.2023.108101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 12/22/2023] [Indexed: 01/06/2024]
Abstract
BACKGROUND Nonarteritic anterior ischemic optic neuropathy (NAION) is a disease of the optic nerve, but its effect on brain network topology is still unclear.This study aimed to investigate brain network alterations in NAION patients and to explore their relationship with functional impairment. METHODS Resting-state functional MRI data were collected from 23 NAION patients and 23 matched healthy control subjects.We used graph theory analysis to investigate the global and nodal network topological properties,and network-based statistical (NBS) methods were used to explore intergroup differences in functional connectivity (FC) strength. RESULTS Compared to the control group, NAION patients had lower global efficiency, normalized clustering coefficient and small-world values and higher characteristic path length (P < 0.05). In the hub distributions of functional networks, the NAION group had one hub region disappearing and four hub regions appearing in nodal degree centrality (Dc), and two hubs disappearing and one hub region appearing in nodal betweenness centrality (Bc). The NAION group also had enhanced brain FC primarily associated with the frontal, prefrontal, parietal lobes and cerebellum. Furthermore, the right temporal pole, superior temporal gyrus (r = -0.424), the right inferior temporal gyrus (r = -0.414), the right cerebellar lobule Ⅵ (r = 0.450), and the left cerebellar lobule crus Ⅰ (r = 0.584) were significantly correlated with clinical severity. CONCLUSION NAION patients show disruption and redistribution of FC in specific regions of the brain network, which may be associated with visual impairment.
Collapse
Affiliation(s)
- Hui Wang
- Department of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University; Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing 100730, China
| | - Xiaoling Yan
- Department of Ophthalmology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100078, China
| | - Qiuhuan Zhang
- Department of Radiology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100078, China
| | - Qiong Wu
- Department of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University; Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing 100730, China
| | - Lixin Qiu
- Department of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University; Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing 100730, China
| | - Jian Zhou
- Department of Ophthalmology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100078, China.
| | - Pengde Guo
- Department of Radiology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100078, China.
| |
Collapse
|
19
|
Zhao P, Wang X, Wang Q, Yan R, Chattun MR, Yao Z, Lu Q. Altered fractional amplitude of low-frequency fluctuations in the superior temporal gyrus: a resting-state fMRI study in anxious depression. BMC Psychiatry 2023; 23:847. [PMID: 37974113 PMCID: PMC10655435 DOI: 10.1186/s12888-023-05364-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 11/08/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Anxious depression, which is a common subtype of major depressive disorder, has distinct clinical features from nonanxious depression. However, little is known about the neurobiological characteristics of anxious depression. In this study, we explored resting-state regional brain activity changes between anxious depression and nonanxious depression. METHOD Resting-state functional magnetic resonance (rs-fMRI) imaging data were collected from 60 patients with anxious depression, 38 patients with nonanxious depression, and 60 matched healthy controls (HCs). One-way analysis of variance was performed to compare the whole-brain fractional amplitude of low-frequency fluctuation (fALFF) in the three groups. The correlation between the fALFF values and the clinical measures was examined. RESULTS Compared with those of HCs, the fALFF values in the left superior temporal gyrus (STG) in patients with anxious depression were significantly increased, while the fALFF values in the left middle temporal gyrus (MTG), left STG, and right STG in patients with nonanxious depression were significantly increased. Patients with anxious depression showed reduced fALFF values in the right STG compared with patients with nonanxious depression (p < 0.001, corrected). Within the anxious depression group, fALFF value in the right STG was positively correlated with the cognitive disturbance score (r = 0.36, p = 0.005 corrected). CONCLUSION The bilateral STG and left MTG, which are related to the default mode network, appear to be key brain regions in nonanxious depression, while the right STG plays an essential role in the neuropathological mechanism of anxious depression.
Collapse
Affiliation(s)
- Peng Zhao
- Department of Medical Psychology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Department of Psychiatry, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Xinyi Wang
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, China
- Child Development and Learning Science, Key Laboratory of Ministry of Education, Southeast University, Nanjing, China
| | - Qiang Wang
- Department of Medical Psychology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Rui Yan
- Department of Psychiatry, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Mohammad Ridwan Chattun
- Department of Psychiatry, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Zhijian Yao
- Department of Psychiatry, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.
- Nanjing Brain Hospital, Medical School of Nanjing University, Nanjing, China.
| | - Qing Lu
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, China.
- Child Development and Learning Science, Key Laboratory of Ministry of Education, Southeast University, Nanjing, China.
| |
Collapse
|
20
|
Huo H, Lesage E, Dong W, Verguts T, Seger CA, Diao S, Feng T, Chen Q. The neural substrates of how model-based learning affects risk taking: Functional coupling between right cerebellum and left caudate. Brain Cogn 2023; 172:106088. [PMID: 37783018 DOI: 10.1016/j.bandc.2023.106088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/04/2023]
Abstract
Higher executive control capacity allows people to appropriately evaluate risk and avoid both excessive risk aversion and excessive risk-taking. The neural mechanisms underlying this relationship between executive function and risk taking are still unknown. We used voxel-based morphometry (VBM) analysis combined with resting-state functional connectivity (rs-FC) to evaluate how one component of executive function, model-based learning, relates to risk taking. We measured individuals' use of the model-based learning system with the two-step task, and risk taking with the Balloon Analogue Risk Task. Behavioral results indicated that risk taking was positively correlated with the model-based weighting parameter ω. The VBM results showed a positive association between model-based learning and gray matter volume in the right cerebellum (RCere) and left inferior parietal lobule (LIPL). Functional connectivity results suggested that the coupling between RCere and the left caudate (LCAU) was correlated with both model-based learning and risk taking. Mediation analysis indicated that RCere-LCAU functional connectivity completely mediated the effect of model-based learning on risk taking. These results indicate that learners who favor model-based strategies also engage in more appropriate risky behaviors through interactions between reward-based learning, error-based learning and executive control subserved by a caudate, cerebellar and parietal network.
Collapse
Affiliation(s)
- Hangfeng Huo
- Department of Psychology, Faculty of Education, Guangxi Normal University, Guilin, China; School of Psychology, South China Normal University, 510631 Guangzhou, China; Center for Studies of Psychological Application, South China Normal University, 510631 Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, 510631 Guangzhou, China
| | - Elise Lesage
- Department of Experimental Psychology, Ghent University, Ghent, Belgium
| | - Wenshan Dong
- School of Psychology, South China Normal University, 510631 Guangzhou, China; Center for Studies of Psychological Application, South China Normal University, 510631 Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, 510631 Guangzhou, China
| | - Tom Verguts
- Department of Experimental Psychology, Ghent University, Ghent, Belgium
| | - Carol A Seger
- School of Psychology, South China Normal University, 510631 Guangzhou, China; Center for Studies of Psychological Application, South China Normal University, 510631 Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, 510631 Guangzhou, China; Department of Psychology and Program in Molecular, Cellular, and Integrative Neurosciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Sitong Diao
- School of Psychology, Shenzhen University, 518060 Shenzhen, China
| | - Tingyong Feng
- Research Center of Psychology and Social Development, Faculty of Psychology, Southwest University, Chongqing, China; Key Laboratory of Cognition and Personality, Ministry of Education, Chongqing, China.
| | - Qi Chen
- School of Psychology, Shenzhen University, 518060 Shenzhen, China.
| |
Collapse
|
21
|
George AB, Beniwal RP, Singh S, Bhatia T, Khushu S, Deshpande SN. Association between thyroid functions, cognition, and functional connectivity of the brain in early-course schizophrenia: A preliminary study. Ind Psychiatry J 2023; 32:S76-S82. [PMID: 38370920 PMCID: PMC10871410 DOI: 10.4103/ipj.ipj_198_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/28/2023] [Accepted: 07/16/2023] [Indexed: 02/20/2024] Open
Abstract
Background The functional outcome of the debilitating mental illness schizophrenia (SZ) has an integral role in cognition. The thyroid hormone has a vital role in the developmental stages and functioning of the human brain. Aim This study aimed to evaluate the relationship between thyroid functions, cognition, and functional imaging of the brain in persons with SZ. Materials and Methods Sixty SZ (Diagnostic and Statistical Manual (DSM-5)) persons, aged 18-50 years of both genders, were recruited in this cross-sectional observational study. Positive and Negative Syndrome Scale (PANSS) and Trail Making Tests (TMTs) A and B were administered to all patients. To assess the level of thyroid hormone, a test was conducted. Functional connectivity of the brain was assessed using resting-state functional magnetic resonance imaging (rs-fMRI). Data analysis was performed by descriptive and analytical statistical methods. FSL version 5.9 (FMRIB's) software was used for analyses of fMRI neuroimages. Results There were no significant differences between the two populations on sociodemographic factors. The average value for thyroid-stimulating hormone (TSH) in the hypothyroid group (n = 12) and the euthyroid group (n = 47) was 8.38 mIU/l and 2.44 mIU/l, respectively. The average time in seconds for TMT-A and TMT-B was 87.27 and 218.27 in the hypothyroid group and 97.07 and 293.27 in the euthyroid group, respectively. Similarly, in the sample matched on age, gender, and age at onset of illness, there were no significant differences in demographic and clinical factors and resting-state network (RSN) between the hypothyroid (N = 10) and euthyroid (N = 10) groups. Conclusion No differences were found in the functional brain network between the hypothyroid and euthyroid groups as the study sample did not include clinically hypothyroid persons with SZ.
Collapse
Affiliation(s)
- Aishwariya B George
- Department of Psychiatry, Malabar Medical College Hospital and Research Centre, Kozhikode, Kerala, India
| | - Ram P Beniwal
- Department of Psychiatry, Centre of Excellence in Mental Health, Atal Bihari Vajpayee Institute of Medical Sciences and Dr. Ram Manohar Lohia Hospital, New Delhi, India
| | - Sadhana Singh
- Centre for Brain Research, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Triptish Bhatia
- Department of Psychiatry, Centre of Excellence in Mental Health, Atal Bihari Vajpayee Institute of Medical Sciences and Dr. Ram Manohar Lohia Hospital, New Delhi, India
| | - Subhash Khushu
- Division of Radiological Imaging, and Bio-Medical Imaging, The University of Trans-Disciplinary Health Sciences and Technology, Bengaluru, Karnataka, India
| | - Smita N Deshpande
- Department of Psychiatry, St John's Medical College Hospital, Bengaluru, Karnataka, India
| |
Collapse
|
22
|
Stanca S, Rossetti M, Bongioanni P. The Cerebellum's Role in Affective Disorders: The Onset of Its Social Dimension. Metabolites 2023; 13:1113. [PMID: 37999209 PMCID: PMC10672979 DOI: 10.3390/metabo13111113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/22/2023] [Accepted: 10/26/2023] [Indexed: 11/25/2023] Open
Abstract
Major Depressive Disorder (MDD) and Bipolar Disorder (BD) are the most frequent mental disorders whose indeterminate etiopathogenesis spurs to explore new aetiologic scenarios. In light of the neuropsychiatric symptoms characterizing Cerebellar Cognitive Affective Syndrome (CCAS), the objective of this narrative review is to analyze the involvement of the cerebellum (Cbm) in the onset of these conditions. It aims at detecting the repercussions of the Cbm activities on mood disorders based on its functional subdivision in vestibulocerebellum (vCbm), pontocerebellum (pCbm) and spinocerebellum (sCbm). Despite the Cbm having been, for decades, associated with somato-motor functions, the described intercellular pathways, without forgiving the molecular impairment and the alteration in the volumetric relationships, make the Cbm a new important therapeutic target for MDD and BD. Given that numerous studies have showed its activation during mnestic activities and socio-emotional events, this review highlights in the Cbm, in which the altered external space perception (vCbm) is strictly linked to the cognitive-limbic Cbm (pCbm and sCbm), a crucial role in the MDD and BD pathogenesis. Finally, by the analysis of the cerebellar activity, this study aims at underlying not only the Cbm involvement in affective disorders, but also its role in social relationship building.
Collapse
Affiliation(s)
- Stefano Stanca
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, Via Savi 10, 56126 Pisa, Italy
- NeuroCare Onlus, 56100 Pisa, Italy
| | - Martina Rossetti
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, Via Savi 10, 56126 Pisa, Italy
- NeuroCare Onlus, 56100 Pisa, Italy
| | - Paolo Bongioanni
- NeuroCare Onlus, 56100 Pisa, Italy
- Medical Specialties Department, Azienda Ospedaliero-Universitaria Pisana, 56100 Pisa, Italy
| |
Collapse
|
23
|
Guo L, Zhao Z, Yang X, Shi W, Wang P, Qin D, Wang J, Yin Y. Alterations of dynamic and static brain functional activities and integration in stroke patients. Front Neurosci 2023; 17:1228645. [PMID: 37965216 PMCID: PMC10641467 DOI: 10.3389/fnins.2023.1228645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 10/05/2023] [Indexed: 11/16/2023] Open
Abstract
Objective The study aimed to investigate the comprehensive characteristics of brain functional activity and integration in patients with subcortical stroke using dynamic and static analysis methods and to examine whether alterations in brain functional activity and integration were associated with clinical symptoms of patients. Methods Dynamic amplitude of low-frequency fluctuation (dALFF), static amplitude of low-frequency fluctuation (sALFF), dynamic degree centrality (dDC), and static degree centrality (sDC) were calculated for 19 patients with right subcortical stroke, 16 patients with left subcortical stroke, and 25 healthy controls (HC). Furthermore, correlation analysis was performed to investigate the relationships between changes in brain functional measurements of patients and clinical variables. Results Group comparison results showed that significantly decreased dALFF in the left angular (ANG_L) and right inferior parietal gyrus (IPG_R), decreased sALFF in the left precuneus (PCUN_L), and decreased sDC in the left crus II of cerebellar hemisphere (CERCRU2_L) and IPG_R, while significantly increased sDC in the right lobule X of cerebellar hemisphere (CER10_R) were detected in patients with right subcortical stroke relative to HC. Patients with left subcortical stroke showed significantly decreased sALFF in the left precuneus (PCUN_L) but increased sDC in the right hippocampus (HIP_R) compared with HC. Additionally, the altered sDC values in the CER10_R of patients with right subcortical stroke and in the HIP_R of patients with left subcortical stroke were associated with the severity of stroke and lower extremities motor function. A correlation was also found between the altered sALFF values in the PCUN_L of patients with left subcortical stroke and lower extremities motor function. Conclusion These findings suggest that time-varying brain activity analysis may supply complementary information for static brain activity analysis. Dynamic and static brain functional activity and integration analysis may contribute to a more comprehensive understanding of the underlying neuropathology of dysfunction in stroke patients.
Collapse
Affiliation(s)
- Li Guo
- Graduate School of Kunming Medical University, Kunming, China
- Department of Rehabilitation Medicine, The Affiliated Hospital of Yunnan University, Kunming, China
| | - Zixuan Zhao
- Graduate School of Kunming Medical University, Kunming, China
- Department of Rehabilitation Medicine, The Affiliated Hospital of Yunnan University, Kunming, China
| | - Xu Yang
- Department of Rehabilitation Medicine, The Affiliated Hospital of Yunnan University, Kunming, China
| | - Weiyang Shi
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Peng Wang
- Department of Radiology, The Affiliated Hospital of Yunnan University, Kunming, China
| | - Dongdong Qin
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming, China
| | - Jiaojian Wang
- Yunnan Key Laboratory of Primate Biomedicine Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | - Yong Yin
- Department of Rehabilitation Medicine, The Affiliated Hospital of Yunnan University, Kunming, China
| |
Collapse
|
24
|
Ruan Z, Gao L, Li S, Yu M, Rao B, Sun W, Zhou X, Li Y, Song X, Xu H. Functional abnormalities of the cerebellum in vascular mild cognitive impairment. Brain Imaging Behav 2023; 17:530-540. [PMID: 37433970 DOI: 10.1007/s11682-023-00783-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2023] [Indexed: 07/13/2023]
Abstract
OBJECTIVES The alterations in cerebellar activity that occur in vascular mild cognitive impairment remain largely unexplored. This study aimed to investigate potential associations between abnormal cerebellar functional connectivity (FC) and changes in cognitive function by examining intracerebellar and cerebellar-cerebral FC. METHODS MRI data were collected from seventy-two patients with vascular mild cognitive impairment (VMCI), comprising 38 patients with small vessel mild cognitive impairment (SVMCI) and 34 with poststroke mild cognitive impairment (PSMCI), and from 43 demographically matched healthy controls (HCs). Changes in FC between subregions within the cerebellum and from each cerebellar subregion to the selected cerebral seed points in VMCI patients were calculated, and the association of these changes with cognitive function was examined. RESULTS Compared with HCs, we found that VMCI patients had 11 cerebellar subregions showing significant differences (mainly decreases) in FC with brain regions in the default-mode network (DMN), sensory-motor network (SMN), and frontoparietal network (FPN). In the intracerebellar FC analysis, 47 (8%) cerebellar connections had significant intergroup differences, mainly a reduced magnitude of FC in VMCI patients. In the correlation analysis, higher Montreal Cognitive Assessment (MoCA) scores were correlated with stronger intracerebellar FC (left crus II-right lobule VI, left crus II-right lobule VIIb) and cerebellar-cerebral FC (right lobule X-left precuneus, vermal lobule IX-right inferior parietal lobule) in both the SVMCI and PSMCI groups. CONCLUSION These findings suggest prominent intracerebellar and cerebellar-cerebral FC abnormalities in VMCI patients, contributing evidence for a possible role of the cerebellum in cognitive processes.
Collapse
Affiliation(s)
- Zhao Ruan
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuchang District, Wuhan City, Hubei Province, 430071, China
| | - Lei Gao
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuchang District, Wuhan City, Hubei Province, 430071, China
| | - Sirui Li
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuchang District, Wuhan City, Hubei Province, 430071, China
| | - Minhua Yu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuchang District, Wuhan City, Hubei Province, 430071, China
| | - Bo Rao
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuchang District, Wuhan City, Hubei Province, 430071, China
| | - Wenbo Sun
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuchang District, Wuhan City, Hubei Province, 430071, China
| | - Xiaoli Zhou
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuchang District, Wuhan City, Hubei Province, 430071, China
| | - Yidan Li
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuchang District, Wuhan City, Hubei Province, 430071, China
| | - Xiaopeng Song
- Department of Biomedical Engineering, College of Engineering, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing, 100871, China.
| | - Haibo Xu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuchang District, Wuhan City, Hubei Province, 430071, China.
| |
Collapse
|
25
|
Dai P, Zhou X, Xiong T, Ou Y, Chen Z, Zou B, Li W, Huang Z. Altered Effective Connectivity Among the Cerebellum and Cerebrum in Patients with Major Depressive Disorder Using Multisite Resting-State fMRI. CEREBELLUM (LONDON, ENGLAND) 2023; 22:781-789. [PMID: 35933493 DOI: 10.1007/s12311-022-01454-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/30/2022] [Indexed: 06/15/2023]
Abstract
Major depressive disorder (MDD) is a serious and widespread psychiatric disorder. Previous studies mainly focused on cerebrum functional connectivity, and the sample size was relatively small. However, functional connectivity is undirected. And, there is increasing evidence that the cerebellum is also involved in emotion and cognitive processing and makes outstanding contributions to the symptomology and pathology of depression. Therefore, we used a large sample size of resting-state functional magnetic resonance imaging (rs-fMRI) data to investigate the altered effective connectivity (EC) among the cerebellum and other cerebral cortex in patients with MDD. Here, from the perspective of data-driven analysis, we used two different atlases to divide the whole brain into different regions and analyzed the alterations of EC and EC networks in the MDD group compared with healthy controls group (HCs). The results showed that compared with HCs, there were significantly altered EC in the cerebellum-neocortex and cerebellum-basal ganglia circuits in MDD patients, which implied that the cerebellum may be a potential biomarker of depressive disorders. And, the alterations of EC brain networks in MDD patients may provide new insights into the pathophysiological mechanisms of depression.
Collapse
Affiliation(s)
- Peishan Dai
- School of Computer Science and Engineering, Central South University, Changsha, Hunan, China.
| | - Xiaoyan Zhou
- School of Computer Science and Engineering, Central South University, Changsha, Hunan, China
| | - Tong Xiong
- School of Computer Science and Engineering, Central South University, Changsha, Hunan, China
| | - Yilin Ou
- School of Computer Science and Engineering, Central South University, Changsha, Hunan, China
| | - Zailiang Chen
- School of Computer Science and Engineering, Central South University, Changsha, Hunan, China
| | - Beiji Zou
- School of Computer Science and Engineering, Central South University, Changsha, Hunan, China
| | - Weihui Li
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zhongchao Huang
- Department of Biomedical Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| |
Collapse
|
26
|
Ma Y, Fu S, Ye X, Yang Y, Yin Y, Xu G, Liu M, Jiang G. Aberrant single-subject morphological cerebellar connectome in chronic insomnia. Neuroimage Clin 2023; 39:103492. [PMID: 37603949 PMCID: PMC10458694 DOI: 10.1016/j.nicl.2023.103492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/24/2023] [Accepted: 08/06/2023] [Indexed: 08/23/2023]
Abstract
BACKGROUND To systematically investigate the topological organisation of morphological networks of the cerebellum using structural MRI and examine their clinical relevance in chronic insomnia (CI). METHODS One hundred and one patients with CI and 102 healthy controls (HCs) were recruited in this study. Individual morphological networks of the cerebellum were constructed based on regional grey matter volume, and topologically characterised using weighted graph theory-based network approaches. Between-group comparisons were performed using permutation tests, and Spearman's correlation was used to examine the relationships between topological alterations and clinical variables. RESULTS Compared with HCs, patients with CI exhibited a lower normalised clustering coefficient. Locally, CI patients exhibited lower nodal efficiency in the cerebellar lobule VIIb and vermis regions, but higher nodal efficiency in the right cerebellar lobule VIIIa regions. No correlations were observed between network alterations and clinical variables. CONCLUSIONS Individual morphological network analysis provides a new strategy for investigating cerebellar morphometric changes in CI, and our findings may have important implications in establishing diagnostic and categorical biomarkers.
Collapse
Affiliation(s)
- Yuqin Ma
- Guangzhou Medical University, Guangzhou 51495, PR China
| | - Shishun Fu
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou 510317, PR China
| | - Xi Ye
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou 510317, PR China
| | - Yuping Yang
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510317, PR China
| | - Yi Yin
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou 510317, PR China
| | - Guang Xu
- Department of Neurology, Guangdong Second Provincial General Hospital, Guangzhou 510317, PR China
| | - Mengchen Liu
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou 510317, PR China
| | - Guihua Jiang
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou 510317, PR China.
| |
Collapse
|
27
|
Wang G, Liu X, Zhang M, Wang K, Liu C, Chen Y, Wu W, Zhao H, Xiao B, Wan L, Long L. Structural and functional changes of the cerebellum in temporal lobe epilepsy. Front Neurol 2023; 14:1213224. [PMID: 37602268 PMCID: PMC10435757 DOI: 10.3389/fneur.2023.1213224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/18/2023] [Indexed: 08/22/2023] Open
Abstract
Aims This study aimed to comprehensively explore the cerebellar structural and functional changes in temporal lobe epilepsy (TLE) and its association with clinical information. Methods The SUIT toolbox was utilized to perform cerebellar volume and diffusion analysis. In addition, we extracted the average diffusion values of cerebellar peduncle tracts to investigate microstructure alterations. Seed-based whole-brain analysis was used to investigate cerebellar-cerebral functional connectivity (FC). Subgroup analyses were performed to identify the cerebellar participation in TLE with/without hippocampal sclerosis (HS)/focal-to-bilateral tonic-clonic seizure (FBTCS) and TLE with different lateralization. Results TLE showed widespread gray matter atrophy in bilateral crusII, VIIb, VIIIb, left crusI, and left VIIIa. Both voxel and tract analysis observed diffusion abnormalities in cerebellar afferent peduncles. Reduced FC between the right crus II and the left parahippocampal cortex was found in TLE. Additionally, TLE showed increased FCs between left lobules VI-VIII and cortical nodes of the dorsal attention and visual networks. Across all patients, decreased FC was associated with poorer cognitive function, while increased FCs appeared to reflect compensatory effects. The cerebellar structural changes were mainly observed in HS and FBTCS subgroups and were regardless of seizure lateralization, while cerebellar-cerebral FC alterations were similar in all subgroups. Conclusion TLE exhibited microstructural changes in the cerebellum, mainly related to HS and FBTCS. In addition, altered cerebellar-cerebral functional connectivity is associated with common cognitive alterations in TLE.
Collapse
Affiliation(s)
- Ge Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Center for Epileptic Disease of Hunan Province, Central South University, Changsha, China
| | - Xianghe Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Center for Epileptic Disease of Hunan Province, Central South University, Changsha, China
| | - Min Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Center for Epileptic Disease of Hunan Province, Central South University, Changsha, China
| | - Kangrun Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Center for Epileptic Disease of Hunan Province, Central South University, Changsha, China
| | - Chaorong Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Center for Epileptic Disease of Hunan Province, Central South University, Changsha, China
| | - Yayu Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, China
| | - Wenyue Wu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Haiting Zhao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Center for Epileptic Disease of Hunan Province, Central South University, Changsha, China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Center for Epileptic Disease of Hunan Province, Central South University, Changsha, China
| | - Lily Wan
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan, China
| | - Lili Long
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Center for Epileptic Disease of Hunan Province, Central South University, Changsha, China
| |
Collapse
|
28
|
Wu SCJ, Hsu JW, Huang KL, Bai YM, Tu PC, Chen MH. Functional dysconnectivity of cerebellum and attention networks in emotional dysregulation shared between attention deficit hyperactivity disorder and major depressive disorder: a multimodal imaging study. CNS Spectr 2023; 28:470-477. [PMID: 35761511 DOI: 10.1017/s1092852922000876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Emotional dysregulation (ED) is a common characteristic of both attention deficit hyperactivity disorder (ADHD) and major depressive disorder (MDD), especially in adolescents. However, whether ADHD and MDD may share the specific ED-related neural networks remains unknown. METHODS In total, 43 adolescents with clinical ED (22 adolescents with ADHD and 21 with MDD) were recruited; in addition, 29 sex- and age-matched healthy controls (HCs) were included. Resting-state functional connectivity (RSFC) analysis, voxel-based morphometry, and diffusion tensor imaging analysis were performed for each patient. In addition, we determined the significant regions of interest in patients with ED due to ADHD and MDD as compared with HCs and tested their correlations with clinical rating scale scores. RESULTS Compared with HCs, patients with ED had greater RSFC in the cerebellum and supramarginal gyrus (SMG), especially between vermis VI and the SMG in the attention networks, and lower RSFC between the right supplementary motor area and right lateral parietal area. Lower gray matter (GM) volume in the SMG was also found. RSFC was significantly correlated with clinical rating scale scores for all patients with ED due to ADHD or MDD. GM change was correlated with ED and MDD rating scale scores. DISCUSSION The cerebellum and attention networks might play major roles in ED pathophysiology in adolescents with ADHD and MDD. Increased connectivity of the vermis to the SMG serves as a possible underlying neural network.
Collapse
Affiliation(s)
- Shun-Chin J Wu
- Department of Medical Education, Taipei Veterans General Hospital, Taipei, Taiwan
- Graduate School of Neural and Behavioral Sciences, University of Tübingen, Tübingen, Germany
- Graduate Training Centre of Neuroscience, University of Tübingen, Tübingen, Germany
| | - Ju-Wei Hsu
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- Division of Psychiatry, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Kai-Lin Huang
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- Division of Psychiatry, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ya-Mei Bai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- Division of Psychiatry, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Pei-Chi Tu
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- Division of Psychiatry, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Mu-Hong Chen
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- Division of Psychiatry, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
29
|
Ciapponi C, Li Y, Osorio Becerra DA, Rodarie D, Casellato C, Mapelli L, D’Angelo E. Variations on the theme: focus on cerebellum and emotional processing. Front Syst Neurosci 2023; 17:1185752. [PMID: 37234065 PMCID: PMC10206087 DOI: 10.3389/fnsys.2023.1185752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/18/2023] [Indexed: 05/27/2023] Open
Abstract
The cerebellum operates exploiting a complex modular organization and a unified computational algorithm adapted to different behavioral contexts. Recent observations suggest that the cerebellum is involved not just in motor but also in emotional and cognitive processing. It is therefore critical to identify the specific regional connectivity and microcircuit properties of the emotional cerebellum. Recent studies are highlighting the differential regional localization of genes, molecules, and synaptic mechanisms and microcircuit wiring. However, the impact of these regional differences is not fully understood and will require experimental investigation and computational modeling. This review focuses on the cellular and circuit underpinnings of the cerebellar role in emotion. And since emotion involves an integration of cognitive, somatomotor, and autonomic activity, we elaborate on the tradeoff between segregation and distribution of these three main functions in the cerebellum.
Collapse
Affiliation(s)
- Camilla Ciapponi
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Yuhe Li
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | | | - Dimitri Rodarie
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Centro Ricerche Enrico Fermi, Rome, Italy
| | - Claudia Casellato
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Lisa Mapelli
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Egidio D’Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Brain Connectivity Center, IRCCS Mondino Foundation, Pavia, Italy
| |
Collapse
|
30
|
Kruithof ES, Klaus J, Schutter DJLG. The human cerebellum in reward anticipation and reward outcome processing: An activation likelihood estimation meta-analysis. Neurosci Biobehav Rev 2023; 149:105171. [PMID: 37060968 DOI: 10.1016/j.neubiorev.2023.105171] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 03/10/2023] [Accepted: 04/11/2023] [Indexed: 04/17/2023]
Abstract
The cerebellum generates internal prediction models and actively compares anticipated and actual outcomes in order to reach a desired end state. In this process, reward can serve as a reinforcer that shapes internal prediction models, enabling context-appropriate behavior. While the involvement of the cerebellum in reward processing has been established in animals, there is no detailed account of which cerebellar regions are involved in reward anticipation and reward outcome processing in humans. To this end, an activation likelihood estimation meta-analysis of functional neuroimaging studies was performed to investigate cerebellar functional activity patterns associated with reward anticipation and reward outcome processing in healthy adults. Results showed that reward anticipation (k=31) was associated with regional activity in the bilateral anterior lobe, bilateral lobule VI, left Crus I and the posterior vermis, while reward outcome (k=16) was associated with regional activity in the declive and left lobule VI. The findings of this meta-analysis show distinct involvement of the cerebellum in reward anticipation and reward outcome processing as part of a predictive coding routine.
Collapse
Affiliation(s)
- Eline S Kruithof
- Department of Experimental Psychology, Helmholtz Institute, Utrecht University, Heidelberglaan 1, 3584 CS, Utrecht, the Netherlands.
| | - Jana Klaus
- Department of Experimental Psychology, Helmholtz Institute, Utrecht University, Heidelberglaan 1, 3584 CS, Utrecht, the Netherlands
| | - Dennis J L G Schutter
- Department of Experimental Psychology, Helmholtz Institute, Utrecht University, Heidelberglaan 1, 3584 CS, Utrecht, the Netherlands
| |
Collapse
|
31
|
Wolfs EML, Klaus J, Schutter DJLG. Cerebellar Grey Matter Volumes in Reactive Aggression and Impulsivity in Healthy Volunteers. CEREBELLUM (LONDON, ENGLAND) 2023; 22:223-233. [PMID: 35247193 PMCID: PMC9985584 DOI: 10.1007/s12311-021-01337-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/16/2021] [Indexed: 01/06/2023]
Abstract
Several lines of evidence point towards the involvement of the cerebellum in reactive aggression. In addition to the posterior cerebellar hemisphere, the vermis has been suggested to play a prominent role in impulse regulation. In the present study, we set out to further examine the relationships between cerebellar grey matter volumes, aggression, and impulsivity in 201 healthy volunteers. 3 T structural magnetic resonance imaging scans were acquired to investigate grey matter volumes of the cerebellar vermis and the anterior and posterior lobules. Aggression was assessed with the Buss-Perry Aggression Questionnaire and impulsivity was measured with the Barratt Impulsiveness Scale-11. Results showed that impulsivity was positively associated with grey matter volumes of the cerebellar vermis and inversely correlated with grey matter volumes of the right posterior lobule. In addition, smaller volumes of the right posterior lobules were associated with higher physical aggression. Exploratory analyses indicated that for the right hemisphere, this association was driven by grey matter volumes of lobules VIIb and VIIIa. Our findings provide correlational evidence in healthy volunteers for the involvement of the cerebellar vermis and posterior lobules in a cortico-limbic-cerebellar circuit of aggression.
Collapse
Affiliation(s)
- Elze M L Wolfs
- Department of Experimental Psychology, Helmholtz Institute, Utrecht University, Heidelberglaan 1, 3584 CS, Utrecht, The Netherlands.
| | - Jana Klaus
- Department of Experimental Psychology, Helmholtz Institute, Utrecht University, Heidelberglaan 1, 3584 CS, Utrecht, The Netherlands
| | - Dennis J L G Schutter
- Department of Experimental Psychology, Helmholtz Institute, Utrecht University, Heidelberglaan 1, 3584 CS, Utrecht, The Netherlands
| |
Collapse
|
32
|
Wingrove J, Makaronidis J, Prados F, Kanber B, Yiannakas MC, Magee C, Castellazzi G, Grandjean L, Golay X, Tur C, Ciccarelli O, D'Angelo E, Gandini Wheeler-Kingshott CA, Batterham RL. Aberrant olfactory network functional connectivity in people with olfactory dysfunction following COVID-19 infection: an exploratory, observational study. EClinicalMedicine 2023; 58:101883. [PMID: 36883140 PMCID: PMC9980836 DOI: 10.1016/j.eclinm.2023.101883] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 03/06/2023] Open
Abstract
BACKGROUND Olfactory impairments and anosmia from COVID-19 infection typically resolve within 2-4 weeks, although in some cases, symptoms persist longer. COVID-19-related anosmia is associated with olfactory bulb atrophy, however, the impact on cortical structures is relatively unknown, particularly in those with long-term symptoms. METHODS In this exploratory, observational study, we studied individuals who experienced COVID-19-related anosmia, with or without recovered sense of smell, and compared against individuals with no prior COVID-19 infection (confirmed by antibody testing, all vaccine naïve). MRI Imaging was carried out between the 15th July and 17th November 2020 at the Queen Square House Clinical Scanning Facility, UCL, United Kingdom. Using functional magnetic resonance imaging (fMRI) and structural imaging, we assessed differences in functional connectivity (FC) between olfactory regions, whole brain grey matter (GM) cerebral blood flow (CBF) and GM density. FINDINGS Individuals with anosmia showed increased FC between the left orbitofrontal cortex (OFC), visual association cortex and cerebellum and FC reductions between the right OFC and dorsal anterior cingulate cortex compared to those with no prior COVID-19 infection (p < 0.05, from whole brain statistical parametric map analysis). Individuals with anosmia also showed greater CBF in the left insula, hippocampus and ventral posterior cingulate when compared to those with resolved anosmia (p < 0.05, from whole brain statistical parametric map analysis). INTERPRETATION This work describes, for the first time to our knowledge, functional differences within olfactory areas and regions involved in sensory processing and cognitive functioning. This work identifies key areas for further research and potential target sites for therapeutic strategies. FUNDING This study was funded by the National Institute for Health and Care Research and supported by the Queen Square Scanner business case.
Collapse
Affiliation(s)
- Jed Wingrove
- Centre for Obesity Research, Department of Medicine, University College London, London, UK
- National Institute for Health and Care Research, Biomedical Research Centre at UCLH and UCL, London, UK
| | - Janine Makaronidis
- Centre for Obesity Research, Department of Medicine, University College London, London, UK
- National Institute for Health and Care Research, Biomedical Research Centre at UCLH and UCL, London, UK
| | - Ferran Prados
- National Institute for Health and Care Research, Biomedical Research Centre at UCLH and UCL, London, UK
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London, London, UK
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Baris Kanber
- National Institute for Health and Care Research, Biomedical Research Centre at UCLH and UCL, London, UK
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London, London, UK
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Marios C. Yiannakas
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Cormac Magee
- Centre for Obesity Research, Department of Medicine, University College London, London, UK
- National Institute for Health and Care Research, Biomedical Research Centre at UCLH and UCL, London, UK
| | - Gloria Castellazzi
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London, London, UK
- Brain Connectivity Research Centre, IRCCS Mondino Foundation, Pavia, Italy
| | - Louis Grandjean
- Department of Infection, Immunity & Inflammation, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Xavier Golay
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London, London, UK
- Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Carmen Tur
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Olga Ciccarelli
- National Institute for Health and Care Research, Biomedical Research Centre at UCLH and UCL, London, UK
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Egidio D'Angelo
- Brain Connectivity Research Centre, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| | - Claudia A.M. Gandini Wheeler-Kingshott
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London, London, UK
- Brain Connectivity Research Centre, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| | - Rachel L. Batterham
- Centre for Obesity Research, Department of Medicine, University College London, London, UK
- National Institute for Health and Care Research, Biomedical Research Centre at UCLH and UCL, London, UK
- Corresponding author. Division of Medicine, University College London, Rayne Building, 5 University Street, London, WC1E 6JF, UK.
| |
Collapse
|
33
|
Zhang S, Lin J, Cheng Y, Hou Y, Shang H. Aberrant resting-state brain activity in Huntington's disease: A voxel-based meta-analysis. Front Neurol 2023; 14:1124158. [PMID: 37064205 PMCID: PMC10098104 DOI: 10.3389/fneur.2023.1124158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/07/2023] [Indexed: 04/03/2023] Open
Abstract
IntroductionFunctional neuroimaging could provide abundant information of underling pathophysiological mechanisms of the clinical triad including motor, cognitive and psychiatric impairment in Huntington's Disease (HD).MethodsWe performed a voxel-based meta-analysis using anisotropic effect size-signed differential mapping (AES-SDM) method.Results6 studies (78 symptomatic HD, 102 premanifest HD and 131 healthy controls) were included in total. Altered resting-state brain activity was primarily detected in the bilateral medial part of superior frontal gyrus, bilateral anterior cingulate/paracingulate gyrus, left insula, left striatum, right cortico-spinal projections area, right inferior temporal gyrus area, right thalamus, right cerebellum and right gyrus rectus area. Premanifest and symptomatic HD patients showed different alterative pattern in the subgroup analyses.DiscussionThe robust and consistent abnormalities in the specific brain regions identified in the current study could help to understand the pathophysiology of HD and explore reliable neuroimaging biomarkers for monitoring disease progression, or even predicting the onset of premanifest HD patients.
Collapse
Affiliation(s)
- Sirui Zhang
- Department of Neurology, West China Hospital, Rare Disease Center, Sichuan University, Chengdu, China
- Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Junyu Lin
- Department of Neurology, West China Hospital, Rare Disease Center, Sichuan University, Chengdu, China
- Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| | - Yangfan Cheng
- Department of Neurology, West China Hospital, Rare Disease Center, Sichuan University, Chengdu, China
- Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| | - Yanbin Hou
- Department of Neurology, West China Hospital, Rare Disease Center, Sichuan University, Chengdu, China
- Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| | - Huifang Shang
- Department of Neurology, West China Hospital, Rare Disease Center, Sichuan University, Chengdu, China
- Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Huifang Shang
| |
Collapse
|
34
|
Kerestes R, Cummins H, Georgiou-Karistianis N, Selvadurai LP, Corben LA, Delatycki MB, Egan GF, Harding IH. Reduced cerebello-cerebral functional connectivity correlates with disease severity and impaired white matter integrity in Friedreich ataxia. J Neurol 2023; 270:2360-2369. [PMID: 36859626 PMCID: PMC10130106 DOI: 10.1007/s00415-023-11637-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/07/2023] [Accepted: 02/19/2023] [Indexed: 03/03/2023]
Abstract
Friedreich ataxia (FRDA) is a rare, inherited neurodegenerative disease characterised in most cases by progressive and debilitating motor dysfunction. Degeneration of cerebellar white matter pathways have been previously reported, alongside indications of cerebello-cerebral functional alterations. In this work, we examine resting-state functional connectivity changes within cerebello-cerebral circuits, and their associations with disease severity (Scale for the Assessment and Rating of Ataxia [SARA]), psychomotor function (speeded and paced finger tapping), and white matter integrity (diffusion tensor imaging) in 35 adults with FRDA and 45 age and sex-matched controls. Voxel-wise seed-based functional connectivity was assessed for three cerebellar cortical regions (anterior lobe, lobules I-V; superior posterior lobe, lobules VI-VIIB; inferior posterior lobe, lobules VIIIA-IX) and two dentate nucleus seeds (dorsal and ventral). Compared to controls, people with FRDA showed significantly reduced connectivity between the anterior cerebellum and bilateral pre/postcentral gyri, and between the superior posterior cerebellum and left dorsolateral PFC. Greater disease severity correlated with lower connectivity in these circuits. Lower anterior cerebellum-motor cortex functional connectivity also correlated with slower speeded finger tapping and less fractional anisotropy in the superior cerebellar peduncles, internal capsule, and precentral white matter in the FRDA cohort. There were no significant between-group differences in inferior posterior cerebellar or dentate nucleus connectivity. This study indicates that altered cerebello-cerebral functional connectivity is associated with functional status and white matter damage in cerebellar efferent pathways in people with FRDA, particularly in motor circuits.
Collapse
Affiliation(s)
- Rebecca Kerestes
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - Hannah Cummins
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - Nellie Georgiou-Karistianis
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Australia
| | - Louisa P Selvadurai
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - Louise A Corben
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute, Melbourne, Australia
| | - Martin B Delatycki
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute, Melbourne, Australia
| | - Gary F Egan
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Australia.,Monash Biomedical Imaging, Monash University, Melbourne, VIC, 3800, Australia
| | - Ian H Harding
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia. .,Monash Biomedical Imaging, Monash University, Melbourne, VIC, 3800, Australia.
| |
Collapse
|
35
|
Zengaffinen F, Stahnke A, Furger S, Wiest R, Dierks T, Strik W, Morishima Y. Computational analysis on verbal fluency reveals heterogeneity in subjective language interests and brain structure. NEUROIMAGE. REPORTS 2023; 3:100159. [PMID: 38606311 PMCID: PMC7615821 DOI: 10.1016/j.ynirp.2023.100159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Language is an essential higher cognitive function in humans and is often affected by psychiatric and neurological disorders. Objective measures like the verbal fluency test are often used to determine language dysfunction. Recent applications of computational approaches broaden insights into language-related functions. In addition, individuals diagnosed with a psychiatric or neurological disorder also often report subjective difficulties in language-related functions. Therefore, we investigated the association between objective and subjective measures of language functioning, on the one hand, and inter-individual structural variations in language-related brain areas, on the other hand. We performed a Latent Semantic analysis (LSA) on a semantic verbal fluency task in 101 healthy adult participants. To investigate if these objective measures are associated with a subjective one, we examined assessed subjective natural tendency of interest in language-related activity with a study-specific questionnaire. Lastly, a voxel-based brain morphometry (VBM) was conducted to reveal associations between objective (LSA) measures and structural changes in language-related brain areas. We found a positive correlation between the LSA measure cosine similarity and the subjective interest in language. Furthermore, we found that higher cosine similarity corresponds to higher gray matter volume in the right cerebellum. The results suggest that people with higher interests in language access semantic knowledge in a more organized way exhibited by higher cosine similarity and have larger grey matter volume in the right cerebellum, when compared to people with lower interests. In conclusion, we demonstrate that there is inter-individual diverseness of accessing the semantic knowledge space and that it is associated with subjective language interests as well as structural differences in the right cerebellum.
Collapse
Affiliation(s)
- Francilia Zengaffinen
- Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Antje Stahnke
- Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Stephan Furger
- Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Roland Wiest
- University Institute of Diagnostic and Interventional Neuroradiology, Inselspital, University of Bern, Bern, Switzerland
| | - Thomas Dierks
- Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Werner Strik
- Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Yosuke Morishima
- Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| |
Collapse
|
36
|
Fu Z, Abbott CC, Miller J, Deng ZD, McClintock SM, Sendi MSE, Sui J, Calhoun VD. Cerebro-cerebellar functional neuroplasticity mediates the effect of electric field on electroconvulsive therapy outcomes. Transl Psychiatry 2023; 13:43. [PMID: 36746924 PMCID: PMC9902462 DOI: 10.1038/s41398-023-02312-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 02/08/2023] Open
Abstract
Electroconvulsive therapy (ECT) is the most effective treatment for severe depression and works by applying an electric current through the brain. The applied current generates an electric field (E-field) and seizure activity, changing the brain's functional organization. The E-field, which is determined by electrode placement (right unilateral or bitemporal) and pulse amplitude (600, 700, or 800 milliamperes), is associated with the ECT response. However, the neural mechanisms underlying the relationship between E-field, functional brain changes, and clinical outcomes of ECT are not well understood. Here, we investigated the relationships between whole-brain E-field (Ebrain, the 90th percentile of E-field magnitude in the brain), cerebro-cerebellar functional network connectivity (FNC), and clinical outcomes (cognitive performance and depression severity). A fully automated independent component analysis framework determined the FNC between the cerebro-cerebellar networks. We found a linear relationship between Ebrain and cognitive outcomes. The mediation analysis showed that the cerebellum to middle occipital gyrus (MOG)/posterior cingulate cortex (PCC) FNC mediated the effects of Ebrain on cognitive performance. In addition, there is a mediation effect through the cerebellum to parietal lobule FNC between Ebrain and antidepressant outcomes. The pair-wise t-tests further demonstrated that a larger Ebrain was associated with increased FNC between cerebellum and MOG and decreased FNC between cerebellum and PCC, which were linked with decreased cognitive performance. This study implies that an optimal E-field balancing the antidepressant and cognitive outcomes should be considered in relation to cerebro-cerebellar functional neuroplasticity.
Collapse
Affiliation(s)
- Zening Fu
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA.
| | | | - Jeremy Miller
- Department of Psychiatry, University of New Mexico, Albuquerque, NM, USA
| | - Zhi-De Deng
- Computational Neurostimulation Research Program, Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Shawn M McClintock
- Division of Psychology, Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX, USA
| | - Mohammad S E Sendi
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Jing Sui
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA.
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China.
| | - Vince D Calhoun
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
- Department of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
37
|
Cerebello-cerebral Functional Connectivity Networks in Major Depressive Disorder: a CAN-BIND-1 Study Report. CEREBELLUM (LONDON, ENGLAND) 2023; 22:26-36. [PMID: 35023065 DOI: 10.1007/s12311-021-01353-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/29/2021] [Indexed: 02/01/2023]
Abstract
Neuroimaging studies have demonstrated aberrant structure and function of the "cognitive-affective cerebellum" in major depressive disorder (MDD), although the specific role of the cerebello-cerebral circuitry in this population remains largely uninvestigated. The objective of this study was to delineate the role of cerebellar functional networks in depression. A total of 308 unmedicated participants completed resting-state functional magnetic resonance imaging scans, of which 247 (148 MDD; 99 healthy controls, HC) were suitable for this study. Seed-based resting-state functional connectivity (RsFc) analysis was performed using three cerebellar regions of interest (ROIs): ROI1 corresponded to default mode network (DMN)/inattentive processing; ROI2 corresponded to attentional networks, including frontoparietal, dorsal attention, and ventral attention; ROI3 corresponded to motor processing. These ROIs were delineated based on prior functional gradient analyses of the cerebellum. A general linear model was used to perform within-group and between-group comparisons. In comparison to HC, participants with MDD displayed increased RsFc within the cerebello-cerebral DMN (ROI1) and significantly elevated RsFc between the cerebellar ROI1 and bilateral angular gyrus at a voxel threshold (p < 0.001, two-tailed) and at a cluster level (p < 0.05, FDR-corrected). Group differences were non-significant for ROI2 and ROI3. These results contribute to the development of a systems neuroscience approach to the diagnosis and treatment of MDD. Specifically, our findings confirm previously reported associations between MDD, DMN, and cerebellum, and highlight the promising role of these functional and anatomical locations for the development of novel imaging-based biomarkers and targets for neuromodulation therapies. ClinicalTrials.gov TRN: NCT01655706; Date of Registration: August 2nd, 2012.
Collapse
|
38
|
Gorelyshev S, Medvedeva O, Mazerkina N, Ryzhova M, Krotkova O, Golanov A. Medulloblastomas in Pediatric and Adults. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1405:117-152. [PMID: 37452937 DOI: 10.1007/978-3-031-23705-8_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Medulloblastoma is the primary malignant embryonic tumor of the cerebellum and the most common malignant tumor of childhood, accounting up to 25% of all CNS tumors in children, but is extremely rare in adults. Despite the fact that medulloblastomas are one of the most malignant human tumors, it is worthy to note that a great breakthrough has been achieved in our understanding of oncogenesis and the development of real methods of treatment. The main objective of surgical treatment is a maximum resection of tumor with minimal impairment of neurological functions, in order to reduce the volume, remove tumor tissue, get the biopsy, and restore the cerebrospinal fluid flow. The progress of surgical techniques (using a microscope, ultrasound suction), anesthesiology, and intensive care has significantly decreased surgical mortality and increased radicality of tumor removal. Postoperative mortality is less than one percent in most studies, while neurological complications have been reported between 5-10%. Radiotherapy is the main method of treatment in patients older than 3 years, which dramatically improved the recurrence-free survival. Nevertheless, the radiation therapy without systemic chemotherapy leads to a high risk of systemic metastases. After the role of chemotherapy was statistically proven, investigations of the optimal combination of different chemotherapy regimens continued around the world. Currently, 80% of patients can already be cured, however, the quality of life of patients in the long-term period remains quite low, which depends on many factors including endocrinological, cognitive, neurological, and otoneurologic aspects. Thus, the main strategic goal of the development of neuro-oncology is to reduce the doses of radiation therapy to the CNS and the main task of international research is to optimize existing protocols and develop fundamentally new ones based on molecular genetic research in order to improve the quality of life.
Collapse
Affiliation(s)
- Sergey Gorelyshev
- Pediatric Neurosurgical Department, N.N. Burdenko National Medical Research Centre of Neurosurgery, Moscow, Russia.
| | - Olga Medvedeva
- Pediatric Neurosurgical Department, N.N. Burdenko National Medical Research Centre of Neurosurgery, Moscow, Russia
| | - Nadezhda Mazerkina
- Pediatric Neurosurgical Department, N.N. Burdenko National Medical Research Centre of Neurosurgery, Moscow, Russia
| | - Marina Ryzhova
- Department of Neuropathology, N.N. Burdenko National Medical Research Centre of Neurosurgery, Moscow, Russia
| | - Olga Krotkova
- N.N. Burdenko National Medical Research Centre of Neurosurgery, Moscow, Russia
| | - Andrey Golanov
- Department of Radiosurgery, N.N. Burdenko National Medical Research Centre of Neurosurgery, Moscow, Russia
| |
Collapse
|
39
|
Saxena K, Simonetti A, Verrico CD, Janiri D, Di Nicola M, Catinari A, Kurian S, Saxena J, Mwangi B, Soares JC. Neurocognitive Correlates of Cerebellar Volumetric Alterations in Youth with Pediatric Bipolar Spectrum Disorders and Bipolar Offspring. Curr Neuropharmacol 2023; 21:1367-1378. [PMID: 36239717 PMCID: PMC10324334 DOI: 10.2174/1570159x21666221014120332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 10/07/2022] [Accepted: 10/09/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Emerging evidence points towards the involvement of the cerebellum in the processing of emotions and pathophysiology of mood disorders. However, cerebellar and related cognitive alterations in youth with pediatric bipolar disorder (PBD) and those at high risk to develop the disorder, such as bipolar offspring (BD-OFF) are not clearly defined. OBJECTIVE To investigate cerebellar gray and white matter volumes, cognition, and their relationship in youth with PBD and BD-OFF. METHODS Thirty youth (7 to 17 years, inclusive) with PBD, 30 BD-OFF and 40 healthy controls (HC) were recruited. Study participants underwent a computer-based cognitive battery assessing affective processing, executive function, attention, psychomotor speed, and learning. Three-tesla MRI scan was performed to assess cerebellar white and gray matter volumes. Cerebellar segmentation was performed with FreeSurfer. Statistical analyses include between-group differences in cognitive domains, cerebellar gray, and white matter volumes. Relationships between cerebellar volumes and cognitive domains were examined. RESULTS Youth with PBD showed greater cerebellar gray matter volumes than both BD-OFF and HC, whereas no differences were present between BD-OFF and HC. Both youth with PBD and BD-OFF showed altered processing of negative emotions and a bias towards positive emotions. In youth with PBD and BD-OFF, greater impairment in the processing of emotions correlated with greater cerebellar gray matter volumes. CONCLUSION The present findings corroborate hypotheses on cerebellar involvement in the processing of emotions and the pathophysiology of PBD. The presence of cerebellar dysfunction in BD-OFF is unclear.
Collapse
Affiliation(s)
- Kirti Saxena
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas, TX, USA
- Department of Psychiatry, Texas Children’s Hospital, Houston, Texas, TX, USA
| | - Alessio Simonetti
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas, TX, USA
- Department of Neuroscience, Section of Psychiatry, Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, Rome, Italy
| | - Christopher D. Verrico
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas, TX, USA
| | - Delfina Janiri
- Department of Neuroscience, Section of Psychiatry, Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, Rome, Italy
- Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy
| | - Marco Di Nicola
- Department of Neuroscience, Section of Psychiatry, Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, Rome, Italy
- Department of Neuroscience, Section of Psychiatry, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Antonello Catinari
- Department of Neuroscience, Section of Psychiatry, Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, Rome, Italy
- Department of Neuroscience, Section of Psychiatry, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Sherin Kurian
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas, TX, USA
- Department of Psychiatry, Texas Children’s Hospital, Houston, Texas, TX, USA
| | - Johanna Saxena
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas, TX, USA
- Department of Psychiatry, Texas Children’s Hospital, Houston, Texas, TX, USA
| | - Benson Mwangi
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center, Houston, Texas, TX, USA
| | - Jair C. Soares
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center, Houston, Texas, TX, USA
| |
Collapse
|
40
|
Specific and common functional connectivity deficits in drug-free generalized anxiety disorder and panic disorder: A data-driven analysis. Psychiatry Res 2023; 319:114971. [PMID: 36459805 DOI: 10.1016/j.psychres.2022.114971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 11/17/2022] [Accepted: 11/19/2022] [Indexed: 11/22/2022]
Abstract
Evidence of comparing neural network differences between anxiety disorder subtypes is limited, while it is crucial to reveal the pathogenesis of anxiety disorders. The present study aimed to investigate specific and common resting-state functional connectivity (FC) networks in generalized anxiety disorder (GAD), panic disorder (PD), and healthy controls (HC). We employed the gRAICAR algorithm to decompose the resting-state fMRI into independent components and align the components across 61 subjects (22 GAD, 18 PD and 21 HC). The default mode network and precuneus network exhibited GAD-specific aberrance, the anterior default mode network showed atypicality specific to PD, and the right fronto-parietal network showed aberrance common to GAD and PD. Between GAD-specific networks, FC between bilateral dorsolateral prefrontal cortex (DLPFC) was positively correlated with interoceptive sensitivity. In the common network, altered FCs between DLPFC and angular gyrus, and between orbitofrontal cortex and precuneus, were positively correlated with anxiety severity and interoceptive sensitivity. The pathological mechanism of PD could closely relate to the dysfunction of prefrontal cortex, while GAD could involve more extensive brain areas, which may be related to fear generalization.
Collapse
|
41
|
Yi C, Yao R, Song L, Jiang L, Si Y, Li P, Li F, Yao D, Zhang Y, Xu P. A Novel Method for Constructing EEG Large-Scale Cortical Dynamical Functional Network Connectivity (dFNC): WTCS. IEEE TRANSACTIONS ON CYBERNETICS 2022; 52:12869-12881. [PMID: 34398778 DOI: 10.1109/tcyb.2021.3090770] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
As a kind of biological network, the brain network conduces to understanding the mystery of high-efficiency information processing in the brain, which will provide instructions to develop efficient brain-like neural networks. Large-scale dynamical functional network connectivity (dFNC) provides a more context-sensitive, dynamical, and straightforward sight at a higher network level. Nevertheless, dFNC analysis needs good enough resolution in both temporal and spatial domains, and the construction of dFNC needs to capture the time-varying correlations between two multivariate time series with unmatched spatial dimensions. Effective methods still lack. With well-developed source imaging techniques, electroencephalogram (EEG) has the potential to possess both high temporal and spatial resolutions. Therefore, we proposed to construct the EEG large-scale cortical dFNC based on brain atlas to probe the subtle dynamic activities in the brain and developed a novel method, that is, wavelet coherence-S estimator (WTCS), to assess the dynamic couplings among functional subnetworks with different spatial dimensions. The simulation study demonstrated its robustness and availability of applying to dFNC. The application in real EEG data revealed the appealing "Primary peak" and "P3-like peak" in dFNC network properties and meaningful evolutions in dFNC network topology for P300. Our study brings new insights for probing brain activities at a more dynamical and higher hierarchical level and pushing forward the development of brain-inspired artificial neural networks. The proposed WTCS not only benefits the dFNC studies but also gives a new solution to capture the time-varying couplings between the multivariate time series that is often encountered in signal processing disciplines.
Collapse
|
42
|
XUE XIAO, LU RONG, ZANG DI, LI HONG, ZHANG HUI, XU HANLIN, LI QIANRU, MA TENGJIA, TANG WEIJUN, CHEN SHUANG, WANG HE, HUA YINGHUI. Low Regional Homogeneity of Intrinsic Cerebellar Activity in Ankle Instability: An Externally Validated rs-fMRI Study. Med Sci Sports Exerc 2022; 54:2037-2044. [PMID: 36377051 PMCID: PMC9671588 DOI: 10.1249/mss.0000000000002998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PURPOSE Joint deafferentation after post-ankle sprain ligament healing can disrupt sensory input from the ankle and induce maladaptive neuroplasticity, especially in the cerebellum. This study aimed to determine whether the regional homogeneity of intrinsic cerebellar activity differs between patients with ankle instability and healthy controls without a history of ankle injury. METHODS The current study used a primary data set of 18 patients and 22 healthy controls and an external UK Biobank data set of 16 patients with ankle instability and 69 healthy controls for a cross-database, cross-sectional investigation. All participants underwent resting-state functional magnetic resonance imaging to calculate their regional homogeneity (ReHo) value. Between-group comparisons of the sensorimotor-related subregions of the cerebellum were first performed in the primary data set to identify low cerebellar ReHo in patients with multiple comparison corrections, and the surviving subregions were then externally validated in the UK Biobank data set. Correlation analyses between the ReHo values and clinical features were also performed. RESULTS The ReHo value of cerebellar lobule VIIIb was significantly lower in the ankle instability group than in the controls (0.170 ± 0.016 vs 0.184 ± 0.019 in the primary data set, 0.157 ± 0.026 vs 0.180 ± 0.042 in the UK Biobank data set). The ReHo values of this subregion showed a significant positive correlation with the Cumberland Ankle Instability Tool scores in the ankle instability group (r = 0.553, P-corrected = 0.0348). CONCLUSIONS Patients with ankle instability had lower intraregional coherence in cerebellar lobule VIIIb than that of controls, which was also positively correlated with the intensity of self-reported ankle instability.
Collapse
Affiliation(s)
- XIAO’AO XUE
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, CHINA
| | - RONG LU
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, CHINA
| | - DI ZANG
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, CHINA
| | - HONG LI
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, CHINA
| | - HUI ZHANG
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, CHINA
| | - HANLIN XU
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, CHINA
| | - QIANRU LI
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, CHINA
| | - TENGJIA MA
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, CHINA
| | - WEIJUN TANG
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, CHINA
| | - SHUANG CHEN
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, CHINA
| | - HE WANG
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, CHINA
- Human Phenome Institute, Fudan University, Shanghai, CHINA
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, CHINA
| | - YINGHUI HUA
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, CHINA
- Yiwu Research Institute, Fudan University, Yiwu, CHINA
| |
Collapse
|
43
|
Integrity of cerebellar tracts associated with the risk of bipolar disorder. Transl Psychiatry 2022; 12:335. [PMID: 35977925 PMCID: PMC9385641 DOI: 10.1038/s41398-022-02097-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 07/24/2022] [Accepted: 07/26/2022] [Indexed: 11/29/2022] Open
Abstract
This study examined the structural brain differences across individuals of different BD stages and the risks of developing bipolar disorder (BD) associated with these brain differences. A total of 221 participants who were recruited from the Guangzhou Brain Hospital and the community were categorized into four groups: NC (healthy control) (N = 77), high risk (HR) (N = 42), ultra-high risk (UHR) (N = 38), and bipolar disorder (BD) (N = 64) based on a list of criteria. Their demographics, clinical characteristics, and diffusion magnetic resonance imaging (dMRI) data were collected. ANCOVA results showed that the HR group had significantly reduced mean diffusivity (MD) (p = 0.043) and radial diffusivity (RD) (p = 0.039) of the left portico-ponto-cerebellar tracts when compared with the BD group. Moreover, logistic regression results showed that the specific diffusivity measures of cerebellar tracts (e.g., cortico-ponto-cerebellar tract), particularly the RD and MD revealed differences between groups at different BD stages after controlling for the covariates. The findings suggested that specific diffusivity (RD and MD) of cerebellar tracts (e.g., cortico-ponto-cerebellar tract) revealed differences between groups at different BD stages which is helpful in detecting the trajectory changes in BD syndromes in the early stages of BD, particularly when the BD syndromes start from HR stage.
Collapse
|
44
|
Clausi S, Siciliano L, Olivito G, Leggio M. Cerebellum and Emotion in Social Behavior. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1378:235-253. [PMID: 35902475 DOI: 10.1007/978-3-030-99550-8_15] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Accumulating evidence suggests that the cerebellum plays a crucial role not only in the motor and cognitive domains but also in emotions and social behavior. In the present chapter, after a general introduction on the significance of the emotional components of social behavior, we describe recent efforts to understand the contributions of the cerebellum in social cognition focusing on the emotional and affective aspects. Specifically, starting from the description of the cerebello-cortical networks subtending the social-affective domains, we illustrate the most recent findings on the social cerebellum and the possible functional mechanisms by which the cerebellum modulate social-affective behavior. Finally, we discuss the possible consequences of cerebellar dysfunction in the social-affective domain, focusing on those neurological and psychopathological conditions in which emotional and social behavior difficulties have been described as being associated with cerebellar structural or functional alterations.
Collapse
Affiliation(s)
- Silvia Clausi
- Ataxia Laboratory, Santa Lucia Foundation IRCCS, Rome, Italy. .,Psychology Department, Sapienza University, Rome, Italy.
| | - Libera Siciliano
- Ataxia Laboratory, Santa Lucia Foundation IRCCS, Rome, Italy.,Psychology Department, Sapienza University, Rome, Italy
| | - Giusy Olivito
- Ataxia Laboratory, Santa Lucia Foundation IRCCS, Rome, Italy.,Psychology Department, Sapienza University, Rome, Italy
| | - Maria Leggio
- Ataxia Laboratory, Santa Lucia Foundation IRCCS, Rome, Italy.,Psychology Department, Sapienza University, Rome, Italy
| |
Collapse
|
45
|
McAfee SS, Zhang S, Zou P, Conklin HM, Raches D, Robinson G, Gajjar A, Khan R, Klimo P, Patay Z, Scoggins MA. Fastigial nuclei surgical damage and focal midbrain disruption implicate PAG survival circuits in cerebellar mutism syndrome. Neuro Oncol 2022; 25:375-385. [PMID: 35789275 PMCID: PMC9925705 DOI: 10.1093/neuonc/noac168] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Pediatric postoperative cerebellar mutism syndrome (CMS) is a rare but well-known complication of medulloblastoma (Mb) resection with devastating effects on expressive language, mobility, cognition, and emotional regulation that diminishes quality of life for many Mb survivors. The specific anatomical and neuronal basis of CMS remains obscure. We address this issue by identifying patterns of surgical damage and secondary axonal degeneration in Mb survivors with CMS. METHODS Children with Mb deemed high risk for CMS based on intraventricular location of the tumor had T1 images analyzed for location(s) of surgical damage using a specially developed algorithm. We used three complementary methods of spatial analysis to identify surgical damage linked to CMS diagnosis. Magnetization transfer ratio (MTR) images were analyzed for evidence of demyelination in anatomic regions downstream of the cerebellum, indicating neuronal dysfunction. RESULTS Spatial analyses highlighted damage to the fastigial nuclei and their associated cerebellar cortices as the strongest predictors of CMS. CMS-related MTR decrease was greatest in the ventral periaqueductal gray (PAG) area and highly consistent in the left red nucleus. CONCLUSION Our evidence points to disruption of output from the fastigial nuclei as a likely causal trigger for CMS. We propose that core CMS symptoms result from a disruption in the triggering of survival behaviors regulated by the PAG, including the gating of vocalization and volitional movement. The fastigial nuclei provide the densest output to the PAG from the cerebellum, thus sparing these structures may provide a greater likelihood of CMS prevention.
Collapse
Affiliation(s)
- Samuel S McAfee
- Corresponding Author: Samuel S. McAfee, PhD, Department of Diagnostic Imaging, St. Jude Children’s Research Hospital, 262 Danny Thomas Pl, Chili’s Care Center, Room I3210, Memphis, TN 38105, USA ()
| | - Silu Zhang
- Department of Diagnostic Imaging, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Ping Zou
- Department of Diagnostic Imaging, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Heather M Conklin
- Department of Psychology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Darcy Raches
- Department of Psychology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Giles Robinson
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Amar Gajjar
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Raja Khan
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Paul Klimo
- Department of Surgery, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Zoltan Patay
- Department of Diagnostic Imaging, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Matthew A Scoggins
- Department of Diagnostic Imaging, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
46
|
Differences in Inhibitory Control and Resting Brain Metabolism between Older Chronic Users of Tetrahydrocannabinol (THC) or Cannabidiol (CBD)—A Pilot Study. Brain Sci 2022; 12:brainsci12070819. [PMID: 35884627 PMCID: PMC9312972 DOI: 10.3390/brainsci12070819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/19/2022] [Accepted: 06/22/2022] [Indexed: 11/16/2022] Open
Abstract
Δ9-Tetrahydrocannabinol is the main psychoactive component of cannabis and cannabidiol is purportedly responsible for many of the medicinal benefits. The effects of Δ9-tetrahydrocannabinol and cannabidiol in younger populations have been well studied; however, motor function, cognitive function, and cerebral glucose metabolism in older adults have not been extensively researched. The purpose of this study was to assess differences in cognitive function, motor function, and cerebral glucose metabolism (assessed via [18F]-fluorodeoxyglucose positron emission tomography) in older adults chronically using Δ9-tetrahydrocannabinol, cannabidiol, and non-using controls. Eight Δ9-tetrahydrocannabinol users (59.3 ± 5.7 years), five cannabidiol users (54.6 ± 2.1 years), and 16 non-users (58.2 ± 16.9 years) participated. Subjects underwent resting scans and performed cognitive testing (reaction time, Flanker Inhibitory Control and Attention Test), motor testing (hand/arm function, gait), and balance testing. Δ9-tetrahydrocannabinol users performed worse than both cannabidiol users and non-users on the Flanker Test but were similar on all other cognitive and motor tasks. Δ9-tetrahydrocannabinol users also had lower global metabolism and relative hypermetabolism in the bilateral amygdala, cerebellum, and brainstem. Chronic use of Δ9-tetrahydrocannabinol in older adults might negatively influence inhibitory control and alter brain activity. Future longitudinal studies with larger sample sizes investigating multiple Δ9-tetrahydrocannabinol:cannabidiol ratios on functional outcomes and cerebral glucose metabolism in older adults are necessary.
Collapse
|
47
|
Attentional bias to threat and gray matter volume morphology in high anxious individuals. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2022; 22:600-609. [PMID: 34755317 DOI: 10.3758/s13415-021-00968-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/19/2021] [Indexed: 12/12/2022]
Abstract
In a sample of highly anxious individuals, the relationship between gray matter volume brain morphology and attentional bias to threat was assessed. Participants performed a dot-probe task of attentional bias to threat and gray matter volume was acquired from whole brain structural T1-weighted magnetic resonance imaging scans. The results replicate previous findings in unselected samples that elevated attentional bias to threat is linked to greater gray matter volume in the middle frontal gyrus and superior frontal gyrus. In addition, we provide novel evidence that elevated attentional bias to threat is associated with greater gray matter volume in the inferior frontal gyrus, insula, cerebellum, and other distributed regions. Lastly, exploratory analyses provide initial evidence that distinct subregions of the right posterior parietal cortex may contribute to attentional bias in a sex-specific manner. Our results illuminate how differences in gray matter volume morphology relate to attentional bias to threat in anxious individuals. This knowledge could inform neurocognitive models of anxiety-related attentional bias to threat.
Collapse
|
48
|
Sex-Related Left-Lateralized Development of the Crus II Region of the Ansiform Lobule in Cynomolgus Monkeys. Symmetry (Basel) 2022. [DOI: 10.3390/sym14051015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The asymmetric development of the cerebellum has been reported in several mammalian species. The current study quantitatively characterized cerebellar asymmetry and sexual dimorphism in cynomolgus macaques using magnetic resonance (MR) imaging-based volumetry. Three-dimensional T1W MR images at 7-tesla were acquired ex vivo from fixed adult male (n = 5) and female (n = 5) monkey brains. Five transverse domains of the cerebellar cortex, known as cerebellar compartmentation defined by the zebrin II/aldolase expression pattern, were segmented on MR images, and the left and right sides of their volumes were calculated. Asymmetry quotient (AQ) analysis revealed significant left-lateralization at the population level in the central zone posterior to the cerebellar transverse domains, which included lobule VII of the vermis with the crura I and II of ansiform lobules, in males but not females. Next, the volume of the cerebellar hemispherical lobules was calculated. Population-level leftward asymmetry was revealed in the crus II regions in males using AQ analysis. The AQ values of the other hemispherical lobules showed no left/right side differences at the population level in either sex. The present findings suggest a sexually dimorphic asymmetric aspect of the cerebellum in cynomolgus macaques, characterized by a leftward lateralization of the crus II region in males, but no left/right bias in females.
Collapse
|
49
|
Wang L, Huang G, Zhang L, Yang J, Ren C, Liang C, Shen Y, Su B. Effects of the Intermittent Theta Burst Stimulation of the Cerebellar Vermis on Balance Recovery After Stroke: A Study Protocol for a Randomized Controlled Trial. Front Aging Neurosci 2022; 14:881311. [PMID: 35572148 PMCID: PMC9099377 DOI: 10.3389/fnagi.2022.881311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/28/2022] [Indexed: 12/04/2022] Open
Abstract
Background The recovery of balance function is a critical segment in the rehabilitation treatment of stroke. The cerebellum is considered as the key structure involved in balance and motor control. The cerebellar vermis plays an important role in integrating vision, proprioception, and sensory skin input and may be a candidate stimulation target for regulating the motor network related with balance. However, evidence that the intermittent theta burst stimulation (iTBS) of cerebellar vermis can promote the recovery of balance function after stroke remains insufficient. Therefore, this study aims to explore the efficacy of the cerebellar vermis iTBS for the treatment of balance function in patients with stroke. Methods and Analysis Forty patients with stroke will be recruited in this prospective, randomized, sham-controlled trial. Participants will be randomized in a 1:1 ratio to receive either 15 sessions of cerebellar vermis iTBS (600 pulses) or sham stimulation. Additionally, a routine rehabilitation therapy follows the intervention. The primary outcome is the Berg Balance Scale, and the secondary outcomes are the Fugl–Meyer assessment of the lower extremity and modified Barthel index. The above outcomes will be assessed before intervention and at the end of each week. Pre- and post-iTBS resting-state functional magnetic resonance imaging (rs-fMRI) will be acquired, and the regional homogeneity, fractional amplitude of low-frequency fluctuation and functional connectivity will be calculated and analyzed. Discussion This protocol holds promise as a potential method to improve balance function in patients with stroke. If the outcomes of patients improve after the intervention, the study will provide new insights into improving balance function. Ethics and Dissemination This study has been approved by the Medical Research Ethics Committee of Wuxi Mental Health Center (Wuxi Tongren Rehabilitation Hospital). Results will be disseminated through (open-access) peer-reviewed publications, networks of scientists, professionals, and the public and presented at conferences. Clinical Trial Registration Number www.chictr.org.cn, identifier ChiCTR2100052590.
Collapse
Affiliation(s)
- Lin Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Guilan Huang
- Department of Rehabilitation, Wuxi Tongren Rehabilitation Hospital, Wuxi, China
| | - Li Zhang
- Department of Rehabilitation, Wuxi Tongren Rehabilitation Hospital, Wuxi, China
| | - Jinyu Yang
- Department of Rehabilitation, Wuxi Tongren Rehabilitation Hospital, Wuxi, China
| | - Caili Ren
- Department of Neurorehabilitation, Wuxi Tongren Rehabilitation Hospital, Wuxi, China
| | - Chengpan Liang
- Department of Rehabilitation, Wuxi Tongren Rehabilitation Hospital, Wuxi, China
| | - Ying Shen
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Ying Shen,
| | - Bin Su
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
- Department of Rehabilitation, Wuxi Tongren Rehabilitation Hospital, Wuxi, China
- Bin Su,
| |
Collapse
|
50
|
Wu Y, Zhang C, Li Y, Feng J, Zhang M, Li H, Wang T, Zhang Y, Jin Z, Zhang C, Zhang Y, Li D, Wu Y, Wei H, Sun B. Imaging Insights of Isolated Idiopathic Dystonia: Voxel-Based Morphometry and Activation Likelihood Estimation Studies. Front Neurol 2022; 13:823882. [PMID: 35557619 PMCID: PMC9087834 DOI: 10.3389/fneur.2022.823882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 03/25/2022] [Indexed: 11/13/2022] Open
Abstract
The understanding of brain structural abnormalities across different clinical forms of dystonia and their contribution to clinical characteristics remains unclear. The objective of this study is to investigate shared and specific gray matter volume (GMV) abnormalities in various forms of isolated idiopathic dystonia. We collected imaging data from 73 isolated idiopathic dystonia patients and matched them with healthy controls to explore the GMV alterations in patients and their correlations with clinical characteristics using the voxel-based morphometry (VBM) technique. In addition, we conducted an activation likelihood estimation (ALE) meta-analysis of previous VBM studies. Our study demonstrated widespread morphometry alterations in patients with idiopathic dystonia. Multiple systems were affected, which mainly included basal ganglia, sensorimotor, executive control, and visual networks. As the result of the ALE meta-analysis, a convergent cluster with increased GMV was found in the left globus pallidus. In subgroup VBM analyses, decreased putamen GMV was observed in all clinic forms, while the increased GMV was observed in parahippocampal, lingual, and temporal gyrus. GD demonstrated the most extensive GMV abnormalities in cortical regions, and the aberrant GMV of the posterior cerebellar lobe was prominent in CD. Moreover, trends of increased GMV regions of the left precuneus and right superior frontal gyrus were demonstrated in the moderate-outcome group compared with the superior-outcome group. Results of our study indicated shared pathophysiology of the disease-centered on the dysfunction of the basal ganglia-thalamo-cortical circuit, impairing sensorimotor integration, high-level motor execution, and cognition of patients. Dysfunction of the cerebello-thalamo-cortical circuit could also be involved in CD especially. Finally, the frontal-parietal pathway may act as a potential marker for predicting treatment outcomes such as deep brain stimulation.
Collapse
Affiliation(s)
- Yunhao Wu
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chao Zhang
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yufei Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Feng
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Ming Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Hongxia Li
- Department of Neurology and Institute of Neurology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tao Wang
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingying Zhang
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhijia Jin
- Department of Radiology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chencheng Zhang
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuyao Zhang
- School of Information Science and Technology, ShanghaiTech University, Shanghai, China
| | - Dianyou Li
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiwen Wu
- Department of Neurology and Institute of Neurology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongjiang Wei
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- Hongjiang Wei
| | - Bomin Sun
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Bomin Sun
| |
Collapse
|