1
|
Li B, Tong L, Zhang C, Chen P, Wang L, Yan B. Prediction of image interpretation cognitive ability under different mental workloads: a task-state fMRI study. Cereb Cortex 2024; 34:bhae100. [PMID: 38494891 DOI: 10.1093/cercor/bhae100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/19/2024] Open
Abstract
Visual imaging experts play an important role in multiple fields, and studies have shown that the combination of functional magnetic resonance imaging and machine learning techniques can predict cognitive abilities, which provides a possible method for selecting individuals with excellent image interpretation skills. We recorded behavioral data and neural activity of 64 participants during image interpretation tasks under different workloads. Based on the comprehensive image interpretation ability, participants were divided into two groups. general linear model analysis showed that during image interpretation tasks, the high-ability group exhibited higher activation in middle frontal gyrus (MFG), fusiform gyrus, inferior occipital gyrus, superior parietal gyrus, inferior parietal gyrus, and insula compared to the low-ability group. The radial basis function Support Vector Machine (SVM) algorithm shows the most excellent performance in predicting participants' image interpretation abilities (Pearson correlation coefficient = 0.54, R2 = 0.31, MSE = 0.039, RMSE = 0.002). Variable importance analysis indicated that the activation features of the fusiform gyrus and MFG played an important role in predicting this ability. Our study revealed the neural basis related to image interpretation ability when exposed to different mental workloads. Additionally, our results demonstrated the efficacy of machine learning algorithms in extracting neural activation features to predict such ability.
Collapse
Affiliation(s)
- Bao Li
- Henan Key Laboratory of Imaging and Intelligent Processing, PLA Strategic Support Force Information Engineering University, Science Avenue 62, Zhengzhou, 450001, China
| | - Li Tong
- Henan Key Laboratory of Imaging and Intelligent Processing, PLA Strategic Support Force Information Engineering University, Science Avenue 62, Zhengzhou, 450001, China
| | - Chi Zhang
- Henan Key Laboratory of Imaging and Intelligent Processing, PLA Strategic Support Force Information Engineering University, Science Avenue 62, Zhengzhou, 450001, China
| | - Panpan Chen
- Henan Key Laboratory of Imaging and Intelligent Processing, PLA Strategic Support Force Information Engineering University, Science Avenue 62, Zhengzhou, 450001, China
| | - Linyuan Wang
- Henan Key Laboratory of Imaging and Intelligent Processing, PLA Strategic Support Force Information Engineering University, Science Avenue 62, Zhengzhou, 450001, China
| | - Bin Yan
- Henan Key Laboratory of Imaging and Intelligent Processing, PLA Strategic Support Force Information Engineering University, Science Avenue 62, Zhengzhou, 450001, China
| |
Collapse
|
2
|
Zhou H, Yao Y, Geng F, Chen F, Hu Y. Right Fusiform Gray Matter Volume in Children with Long-Term Abacus Training Positively Correlates with Arithmetic Ability. Neuroscience 2022; 507:28-35. [PMID: 36400323 DOI: 10.1016/j.neuroscience.2022.11.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 10/02/2022] [Accepted: 11/07/2022] [Indexed: 11/17/2022]
Abstract
Abacus-based mental calculation (AMC) training has a positive effect on number-related cognitive abilities. While visuospatial strategy may distinguish AMC from conventional calculation method, the underlying neural mechanism is still elusive. The current study aimed to address this question by examining the plasticity of fusiform induced by AMC training and whether this training affects the association between the volume of fusiform and behavioral performance in numerical cognitive tasks using voxel-based morphometry analysis. The results showed that gray matter volumes of bilateral fusiform were significantly smaller in the AMC group relative to the control group. In addition, the volume of right fusiform was positively correlated with digit memory span and negatively correlated with reaction time of an arithmetic operation task only within the AMC group. These results indicate that bilateral fusiform may be the essential neural substrate for AMC experts to recognize and reconstruct abacus-based representations for numbers. These results may advance our understanding of the neural mechanisms of AMC and shield some lights to potential interactions between brain development and cognitive training in children.
Collapse
Affiliation(s)
- Hui Zhou
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou 310007, China
| | - Yuan Yao
- Bio-X Laboratory, Department of Physics, Zhejiang University, Hangzhou 310027, China; Department of Psychology, Suzhou University of Science and Technology, Suzhou, China
| | - Fengji Geng
- Department of Curriculum and Learning Sciences, College of Education, Zhejiang University, Hangzhou 310007, China
| | - Feiyan Chen
- Bio-X Laboratory, Department of Physics, Zhejiang University, Hangzhou 310027, China.
| | - Yuzheng Hu
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou 310007, China; Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Zhejiang University City College, Hangzhou, China.
| |
Collapse
|
3
|
Functional imaging analyses reveal prototype and exemplar representations in a perceptual single-category task. Commun Biol 2022; 5:896. [PMID: 36050393 PMCID: PMC9437087 DOI: 10.1038/s42003-022-03858-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
Similarity-based categorization can be performed by memorizing category members as exemplars or by abstracting the central tendency of the category – the prototype. In similarity-based categorization of stimuli with clearly identifiable dimensions from two categories, prototype representations were previously located in the hippocampus and the ventromedial prefrontal cortex (vmPFC) and exemplar representations in areas supporting visual memory. However, the neural implementation of exemplar and prototype representations in perceptual similarity-based categorization of single categories is unclear. To investigate these representations, we applied model-based univariate and multivariate analyses of functional imaging data from a dot-pattern paradigm-based task. Univariate prototype and exemplar representations occurred bilaterally in visual areas. Multivariate analyses additionally identified prototype representations in parietal areas and exemplar representations in the hippocampus. Bayesian analyses supported the non-presence of prototype representations in the hippocampus and the vmPFC. We additionally demonstrate that some individuals form both representation types simultaneously, probably granting flexibility in categorization strategies. Model-based univariate and multivariate analyses of fMRI data from 62 healthy participants in a dot-pattern paradigm-based task provide further insight into the neural basis of similarity-based categorization.
Collapse
|
4
|
Qu J, Pang Y, Liu X, Cao Y, Huang C, Mei L. Task modulates the orthographic and phonological representations in the bilateral ventral Occipitotemporal cortex. Brain Imaging Behav 2022; 16:1695-1707. [PMID: 35247162 DOI: 10.1007/s11682-022-00641-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2022] [Indexed: 11/25/2022]
Abstract
As a key area in word reading, the left ventral occipitotemporal cortex is proposed for abstract orthographic processing, and its middle part has even been labeled as the visual word form area. Because the definition of the VWFA largely varies and the reading task differs across studies, the function of the left ventral occipitotemporal cortex in word reading is continuingly debated on whether this region is specific for orthographic processing or be involved in an interactive framework. By using representational similarity analysis (RSA), this study examined information representation in the VWFA at the individual level and the modulatory effect of reading task. Twenty-four subjects were scanned while performing the explicit (i.e., the naming task) and implicit (i.e., the perceptual task) reading tasks. Activation analysis showed that the naming task elicited greater activation in regions related to phonological processing (e.g., the bilateral prefrontal cortex and temporoparietal cortex), while the perceptual task recruited greater activation in visual cortex and default mode network (e.g., the bilateral middle frontal gyrus, angular gyrus, and the right middle temporal gyrus). More importantly, RSA also showed that task modulated information representation in the bilateral anterior occipitotemporal cortex and VWFA. Specifically, ROI-based RSA revealed enhanced orthographic and phonological representations in the bilateral anterior fusiform cortex and VWFA in the naming task relative to the perceptual task. These results suggest that lexical representation in the VWFA is influenced by the demand of phonological processing, which supports the interactive account of the VWFA.
Collapse
Affiliation(s)
- Jing Qu
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, China
- School of Psychology, South China Normal University, Guangzhou, 510631, China
- Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, China
| | - Yingdan Pang
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, China
- School of Psychology, South China Normal University, Guangzhou, 510631, China
- Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, China
| | - Xiaoyu Liu
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, China
- School of Psychology, South China Normal University, Guangzhou, 510631, China
- Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, China
| | - Ying Cao
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, China
- School of Psychology, South China Normal University, Guangzhou, 510631, China
- Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, China
| | - Chengmei Huang
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, China
- School of Psychology, South China Normal University, Guangzhou, 510631, China
- Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, China
| | - Leilei Mei
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, China.
| |
Collapse
|
5
|
Liuzzi AG, Bruffaerts R, Vandenberghe R. The medial temporal written word processing system. Cortex 2019; 119:287-300. [DOI: 10.1016/j.cortex.2019.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 03/14/2019] [Accepted: 05/08/2019] [Indexed: 10/26/2022]
|
6
|
Bruffaerts R, De Deyne S, Meersmans K, Liuzzi AG, Storms G, Vandenberghe R. Redefining the resolution of semantic knowledge in the brain: Advances made by the introduction of models of semantics in neuroimaging. Neurosci Biobehav Rev 2019; 103:3-13. [PMID: 31132379 DOI: 10.1016/j.neubiorev.2019.05.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/15/2019] [Accepted: 05/17/2019] [Indexed: 12/12/2022]
Abstract
The boundaries of our understanding of conceptual representation in the brain have been redrawn since the introduction of explicit models of semantics. These models are grounded in vast behavioural datasets acquired in healthy volunteers. Here, we review the most important techniques which have been applied to detect semantic information in neuroimaging data and argue why semantic models are possibly the most valuable addition to the research of semantics in recent years. Using multivariate analysis, predictions based on patient lesion data have been confirmed during semantic processing in healthy controls. Secondly, this new method has given rise to new research avenues, e.g. the detection of semantic processing outside of the temporal cortex. As a future line of work, the same research strategy could be useful to study neurological conditions such as the semantic variant of primary progressive aphasia, which is characterized by pathological semantic processing.
Collapse
Affiliation(s)
- Rose Bruffaerts
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Belgium; Neurology Department, University Hospitals Leuven, 3000 Leuven, Belgium.
| | - Simon De Deyne
- Laboratory of Experimental Psychology, Humanities and Social Sciences Group, KU Leuven, Belgium
| | - Karen Meersmans
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Belgium
| | | | - Gert Storms
- Laboratory of Experimental Psychology, Humanities and Social Sciences Group, KU Leuven, Belgium
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Belgium; Neurology Department, University Hospitals Leuven, 3000 Leuven, Belgium
| |
Collapse
|
7
|
Caputi N, Matrella A, Totaro R, Raparelli C, Pontecorvo S, Di Giacomo D, Passafiume D. Object decision and multiple sclerosis: a preliminary study. FUNCTIONAL NEUROLOGY 2018; 32:69-75. [PMID: 28676139 DOI: 10.11138/fneur/2017.32.2.069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The aim of this research was to study cognitive dysfunctions in multiple sclerosis (MS) by exploring subtle cognitive tasks, usually not included in the standard neuropsychological assessment. We wished to investigate whether it is possible to identify object decision deficits in MS patients without evident cognitive impairment; secondary objectives were to understand whether these deficits can be detected in the early stages of the disease and whether there are differences related to different phenotypes. Participants were divided into four groups: (a) 12 patients with early relapsing-remitting MS [ERR]; (b) 14 with late relapsing-remitting MS [LRR]; (c) 10 with secondary progressive MS [SP]; (d) 36 healthy controls [HCs]. All participants performed a series of experimental tasks: an object decision task (recognition of chimeric and real figures) and naming and visual discrimination tasks. Our results suggest that object decision disorders are detectable in patients without overt cognitive impairments and that performances on these tasks are related to phenotypes. On the other hand, the Chimeric Figures task is not appropriate for identifying cognitive dysfunctions in early MS.
Collapse
|
8
|
Neyens V, Bruffaerts R, Liuzzi AG, Kalfas I, Peeters R, Keuleers E, Vogels R, De Deyne S, Storms G, Dupont P, Vandenberghe R. Representation of Semantic Similarity in the Left Intraparietal Sulcus: Functional Magnetic Resonance Imaging Evidence. Front Hum Neurosci 2017; 11:402. [PMID: 28824405 PMCID: PMC5543089 DOI: 10.3389/fnhum.2017.00402] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 07/20/2017] [Indexed: 11/13/2022] Open
Abstract
According to a recent study, semantic similarity between concrete entities correlates with the similarity of activity patterns in left middle IPS during category naming. We examined the replicability of this effect under passive viewing conditions, the potential role of visuoperceptual similarity, where the effect is situated compared to regions that have been previously implicated in visuospatial attention, and how it compares to effects of object identity and location. Forty-six subjects participated. Subjects passively viewed pictures from two categories, musical instruments and vehicles. Semantic similarity between entities was estimated based on a concept-feature matrix obtained in more than 1,000 subjects. Visuoperceptual similarity was modeled based on the HMAX model, the AlexNet deep convolutional learning model, and thirdly, based on subjective visuoperceptual similarity ratings. Among the IPS regions examined, only left middle IPS showed a semantic similarity effect. The effect was significant in hIP1, hIP2, and hIP3. Visuoperceptual similarity did not correlate with similarity of activity patterns in left middle IPS. The semantic similarity effect in left middle IPS was significantly stronger than in the right middle IPS and also stronger than in the left or right posterior IPS. The semantic similarity effect was similar to that seen in the angular gyrus. Object identity effects were much more widespread across nearly all parietal areas examined. Location effects were relatively specific for posterior IPS and area 7 bilaterally. To conclude, the current findings replicate the semantic similarity effect in left middle IPS under passive viewing conditions, and demonstrate its anatomical specificity within a cytoarchitectonic reference frame. We propose that the semantic similarity effect in left middle IPS reflects the transient uploading of semantic representations in working memory.
Collapse
Affiliation(s)
- Veerle Neyens
- Laboratory for Cognitive Neurology, Department of Neurosciences, University of LeuvenLeuven, Belgium
| | - Rose Bruffaerts
- Laboratory for Cognitive Neurology, Department of Neurosciences, University of LeuvenLeuven, Belgium.,Neurology Department, University Hospitals LeuvenLeuven, Belgium.,Department of Psychology, Centre for Speech, Language, and the Brain, University of CambridgeCambridge, United Kingdom
| | - Antonietta G Liuzzi
- Laboratory for Cognitive Neurology, Department of Neurosciences, University of LeuvenLeuven, Belgium
| | - Ioannis Kalfas
- Laboratory of Neurophysiology, Department of Neurosciences, University of LeuvenLeuven, Belgium
| | - Ronald Peeters
- Radiology Department, University Hospitals LeuvenLeuven, Belgium
| | - Emmanuel Keuleers
- Department of Communication and Information Sciences, Tilburg UniversityNetherlands
| | - Rufin Vogels
- Laboratory of Neurophysiology, Department of Neurosciences, University of LeuvenLeuven, Belgium
| | - Simon De Deyne
- Humanities and Social Sciences Group, Laboratory of Experimental Psychology, University of LeuvenLeuven, Belgium.,Computational Cognitive Science Laboratory, University of AdelaideAdelaide, SA, Australia
| | - Gert Storms
- Humanities and Social Sciences Group, Laboratory of Experimental Psychology, University of LeuvenLeuven, Belgium
| | - Patrick Dupont
- Laboratory for Cognitive Neurology, Department of Neurosciences, University of LeuvenLeuven, Belgium
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurosciences, University of LeuvenLeuven, Belgium.,Neurology Department, University Hospitals LeuvenLeuven, Belgium
| |
Collapse
|
9
|
Liuzzi AG, Bruffaerts R, Peeters R, Adamczuk K, Keuleers E, De Deyne S, Storms G, Dupont P, Vandenberghe R. Cross-modal representation of spoken and written word meaning in left pars triangularis. Neuroimage 2017; 150:292-307. [DOI: 10.1016/j.neuroimage.2017.02.032] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 02/08/2017] [Accepted: 02/13/2017] [Indexed: 11/25/2022] Open
|
10
|
Chen Y, Shimotake A, Matsumoto R, Kunieda T, Kikuchi T, Miyamoto S, Fukuyama H, Takahashi R, Ikeda A, Lambon Ralph MA. The 'when' and 'where' of semantic coding in the anterior temporal lobe: Temporal representational similarity analysis of electrocorticogram data. Cortex 2016; 79:1-13. [PMID: 27085891 PMCID: PMC4884671 DOI: 10.1016/j.cortex.2016.02.015] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 12/18/2015] [Accepted: 03/01/2016] [Indexed: 10/28/2022]
Abstract
Electrocorticograms (ECoG) provide a unique opportunity to monitor neural activity directly at the cortical surface. Ten patients with subdural electrodes covering ventral and lateral anterior temporal regions (ATL) performed a picture naming task. Temporal representational similarity analysis (RSA) was used, for the first time, to compare spatio-temporal neural patterns from the ATL surface with pre-defined theoretical models. The results indicate that the neural activity in the ventral subregion of the ATL codes semantic representations from 250 msec after picture onset. The observed activation similarity was not related to the visual similarity of the pictures or the phonological similarity of their names. In keeping with convergent evidence for the importance of the ATL in semantic processing, these results provide the first direct evidence of semantic coding from the surface of the ventral ATL and its time-course.
Collapse
Affiliation(s)
- Y Chen
- Neuroscience and Aphasia Research Unit, School of Psychological Sciences, University of Manchester, Manchester, UK
| | - A Shimotake
- Department of Neurology, Graduate School of Medicine, Kyoto University, Japan
| | - R Matsumoto
- Department of Epilepsy, Movement Disorders and Physiology, Graduate School of Medicine, Kyoto University, Japan.
| | - T Kunieda
- Department of Neurosurgery, Graduate School of Medicine, Kyoto University, Japan
| | - T Kikuchi
- Department of Neurosurgery, Graduate School of Medicine, Kyoto University, Japan
| | - S Miyamoto
- Department of Neurosurgery, Graduate School of Medicine, Kyoto University, Japan
| | - H Fukuyama
- Human Brain Research Center, Graduate School of Medicine, Kyoto University, Japan
| | - R Takahashi
- Department of Neurology, Graduate School of Medicine, Kyoto University, Japan
| | - A Ikeda
- Department of Epilepsy, Movement Disorders and Physiology, Graduate School of Medicine, Kyoto University, Japan
| | - M A Lambon Ralph
- Neuroscience and Aphasia Research Unit, School of Psychological Sciences, University of Manchester, Manchester, UK.
| |
Collapse
|
11
|
Left perirhinal cortex codes for similarity in meaning between written words: Comparison with auditory word input. Neuropsychologia 2015; 76:4-16. [DOI: 10.1016/j.neuropsychologia.2015.03.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 03/15/2015] [Accepted: 03/16/2015] [Indexed: 11/19/2022]
|
12
|
Gender differences in cerebral regional homogeneity of adult healthy volunteers: a resting-state FMRI study. BIOMED RESEARCH INTERNATIONAL 2015; 2015:183074. [PMID: 25629038 PMCID: PMC4299532 DOI: 10.1155/2015/183074] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 09/07/2014] [Accepted: 09/30/2014] [Indexed: 02/06/2023]
Abstract
Objective. We sought to use the regional homogeneity (ReHo) approach as an index in the resting-state functional MRI to investigate the gender differences of spontaneous brain activity within cerebral cortex and resting-state networks (RSNs) in young adult healthy volunteers. Methods. One hundred and twelve healthy volunteers (56 males, 56 females) participated in the resting-state fMRI scan. The ReHo mappings in the cerebral cortex and twelve RSNs of the male and female groups were compared. Results. We found statistically significant gender differences in the primary visual network (PVN) (P < 0.004, with Bonferroni correction) and left attention network (LAtN), default mode network (DMN), sensorimotor network (SMN), executive network (EN), and dorsal medial prefrontal network (DMPFC) as well (P < 0.05, uncorrected). The male group showed higher ReHo in the left precuneus, while the female group showed higher ReHo in the right middle cingulate gyrus, fusiform gyrus, left inferior parietal lobule, precentral gyrus, supramarginal gyrus, and postcentral gyrus. Conclusions. Our results suggested that men and women had regional specific differences during the resting-state. The findings may improve our understanding of the gender differences in behavior and cognition from the perspective of resting-state brain function.
Collapse
|
13
|
Pakhomov SVS, Jones DT, Knopman DS. Language networks associated with computerized semantic indices. Neuroimage 2015; 104:125-37. [PMID: 25315785 DOI: 10.1016/j.neuroimage.2014.10.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 09/25/2014] [Accepted: 10/05/2014] [Indexed: 11/25/2022] Open
Abstract
Tests of generative semantic verbal fluency are widely used to study organization and representation of concepts in the human brain. Previous studies demonstrated that clustering and switching behavior during verbal fluency tasks is supported by multiple brain mechanisms associated with semantic memory and executive control. Previous work relied on manual assessments of semantic relatedness between words and grouping of words into semantic clusters. We investigated a computational linguistic approach to measuring the strength of semantic relatedness between words based on latent semantic analysis of word co-occurrences in a subset of a large online encyclopedia. We computed semantic clustering indices and compared them to brain network connectivity measures obtained with task-free fMRI in a sample consisting of healthy participants and those differentially affected by cognitive impairment. We found that semantic clustering indices were associated with brain network connectivity in distinct areas including fronto-temporal, fronto-parietal and fusiform gyrus regions. This study shows that computerized semantic indices complement traditional assessments of verbal fluency to provide a more complete account of the relationship between brain and verbal behavior involved organization and retrieval of lexical information from memory.
Collapse
Affiliation(s)
- Serguei V S Pakhomov
- University of Minnesota Center for Clinical and Cognitive Neuropharmacology, Minneapolis, MN, USA.
| | - David T Jones
- Department of Neurology, Mayo Clinic, Rochester, MN, USA; Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
14
|
Bruffaerts R, Dupont P, Peeters R, De Deyne S, Storms G, Vandenberghe R. Similarity of fMRI activity patterns in left perirhinal cortex reflects semantic similarity between words. J Neurosci 2013; 33:18597-607. [PMID: 24259581 PMCID: PMC6618797 DOI: 10.1523/jneurosci.1548-13.2013] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 10/13/2013] [Accepted: 10/19/2013] [Indexed: 11/21/2022] Open
Abstract
How verbal and nonverbal visuoperceptual input connects to semantic knowledge is a core question in visual and cognitive neuroscience, with significant clinical ramifications. In an event-related functional magnetic resonance imaging (fMRI) experiment we determined how cosine similarity between fMRI response patterns to concrete words and pictures reflects semantic clustering and semantic distances between the represented entities within a single category. Semantic clustering and semantic distances between 24 animate entities were derived from a concept-feature matrix based on feature generation by >1000 subjects. In the main fMRI study, 19 human subjects performed a property verification task with written words and pictures and a low-level control task. The univariate contrast between the semantic and the control task yielded extensive bilateral occipitotemporal activation from posterior cingulate to anteromedial temporal cortex. Entities belonging to a same semantic cluster elicited more similar fMRI activity patterns in left occipitotemporal cortex. When words and pictures were analyzed separately, the effect reached significance only for words. The semantic similarity effect for words was localized to left perirhinal cortex. According to a representational similarity analysis of left perirhinal responses, semantic distances between entities correlated inversely with cosine similarities between fMRI response patterns to written words. An independent replication study in 16 novel subjects confirmed these novel findings. Semantic similarity is reflected by similarity of functional topography at a fine-grained level in left perirhinal cortex. The word specificity excludes perceptually driven confounds as an explanation and is likely to be task dependent.
Collapse
Affiliation(s)
- Rose Bruffaerts
- Laboratory for Cognitive Neurology, Department of Neurosciences
- Neurology Department, and
| | - Patrick Dupont
- Laboratory for Cognitive Neurology, Department of Neurosciences
| | - Ronald Peeters
- Radiology Department, University Hospitals Leuven, 3000 Leuven, Belgium, and
| | - Simon De Deyne
- Laboratory of Experimental Psychology, Humanities and Social Sciences Group, University of Leuven, 3000 Leuven, Belgium
| | - Gerrit Storms
- Laboratory of Experimental Psychology, Humanities and Social Sciences Group, University of Leuven, 3000 Leuven, Belgium
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurosciences
- Neurology Department, and
| |
Collapse
|