1
|
Sweatman H, He Y, Lawrence R, Chai XJ. Self-referential encoding in the developing brain. Dev Cogn Neurosci 2025; 74:101581. [PMID: 40513173 DOI: 10.1016/j.dcn.2025.101581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/28/2025] [Accepted: 06/05/2025] [Indexed: 06/16/2025] Open
Abstract
Episodic memory is closely linked to the self and information related to the self tends to be better remembered. In adults, the brain's default mode network (DMN) supports self-referential thought and memory, with the medial prefrontal cortex (mPFC) being important for both functions. How the DMN supports self-referential encoding in children, and where in the mPFC the processes of self-referencing and episodic memory interact, is unknown. We investigated the neural development of self-referential encoding in 83 participants ages 7-25. While undergoing MRI, participants viewed objects and answered self-referential or semantic questions. Self-referential compared to semantic encoding resulted in better recollection across all ages. Self-referential encoding was associated with greater activation across the DMN and inferior frontal gyrus (IFG), with age-related increases in the dorsal mPFC and left IFG. Region-of-interest analyses revealed the interaction of self-referential episodic memory in the anterior mPFC and left hippocampus. The dorsal and anterior mPFC showed a counteraction effect of self-related thinking with the previously demonstrated age-related increase in DMN deactivation for subsequent memory encoding. These results suggest that self-referential facilitation matures and interacts with the episodic memory system in the brain to support the development of episodic memory from childhood to adulthood.
Collapse
Affiliation(s)
- Hilary Sweatman
- Department of Neurology and Neurosurgery, McGill University, 3801 Rue University, Montréal, QC H3A 2B4, Canada.
| | - Ying He
- Department of Neurology and Neurosurgery, McGill University, 3801 Rue University, Montréal, QC H3A 2B4, Canada
| | - Ross Lawrence
- Department of Biomedical Engineering, Johns Hopkins University, 720 Rutland Avenue, Baltimore, MD 21205, United States
| | - Xiaoqian J Chai
- Department of Neurology and Neurosurgery, McGill University, 3801 Rue University, Montréal, QC H3A 2B4, Canada
| |
Collapse
|
2
|
Koike T, Okazaki S, Sumiya M, Nakagawa E, Hirotani M, Sadato N. The neural basis of sharing information through goal-directed conversation: A hyperscanning functional magnetic resonance imaging study. Cortex 2025; 187:74-97. [PMID: 40311536 DOI: 10.1016/j.cortex.2024.11.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 09/06/2024] [Accepted: 11/27/2024] [Indexed: 05/03/2025]
Abstract
The human brain maintains internal models of physical and social environments, representing an individual's "subjectivity". Through conversation, two or more individuals share their models and modify them based on the exchange, a process that represents and is referred to as "intersubjectivity." To investigate the neural substrates of this dynamic process, hyperscanning functional magnetic resonance imaging was conducted to test the hypothesis that Inter-Brain Synchronization (IBS) in the default mode network (DMN) is involved in representing intersubjectivity. Twenty-four Japanese-speaking participant pairs played maze games over a two-day period. Each participant pair received a different maze, i.e., a maze with a different pathway to its goal. Although pairs shared a maze, each participant in a pair had only partial knowledge of the maze layout and what they knew about the layout differed. Taking turns, participants moved their pieces to their goals. Since each had only partial information about the pathway, effective communication between partners was important. Behavioral data showed participants' conversation about potential maze piece moves significantly increased as the game proceeded, implying that the exchange for such information was critical. Correspondingly, the DMN increased task-related activation, including the dorsomedial prefrontal cortex (dmPFC) and the bilateral temporoparietal junction (TPJ), extending through the superior temporal sulcus to the temporal pole and the right middle frontal gyrus. Within these areas, the dmPFC and the right TPJ showed task- and partner-specific IBS throughout all games. Thus, the DMN is likely required for representing intersubjectivity, based on internal models shared through real-time conversations.
Collapse
Affiliation(s)
- Takahiko Koike
- Department of System Neuroscience, Division of Cerebral Integration, National Institute for Physiological Sciences (NIPS), Okazaki, Aichi, Japan; Department of Physiological Sciences, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa, Japan; Inter-Individual Brain Dynamics Collaboration Unit, RIKEN CBS-TOYOTA Collaboration Center, Center for Brain Science, RIKEN, Wako, Saitama, Japan
| | - Shuntaro Okazaki
- Department of System Neuroscience, Division of Cerebral Integration, National Institute for Physiological Sciences (NIPS), Okazaki, Aichi, Japan
| | - Motofumi Sumiya
- Department of System Neuroscience, Division of Cerebral Integration, National Institute for Physiological Sciences (NIPS), Okazaki, Aichi, Japan; Research Center for Child Mental Development, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Eri Nakagawa
- Department of System Neuroscience, Division of Cerebral Integration, National Institute for Physiological Sciences (NIPS), Okazaki, Aichi, Japan; Department of Socio-Information Studies, Faculty of Informatics, Shizuoka University, Hamamatsu, Japan
| | - Masako Hirotani
- School of Linguistics and Language Studies, Carleton University, Ottawa, ON, Canada
| | - Norihiro Sadato
- Department of System Neuroscience, Division of Cerebral Integration, National Institute for Physiological Sciences (NIPS), Okazaki, Aichi, Japan; Department of Physiological Sciences, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa, Japan; Research Organization of Science and Technology, Ritsumeikan University, Kusatsu, Japan.
| |
Collapse
|
3
|
Knoff AAW, Bowles B, Andrews-Hanna JR, Grilli MD. Direct access to specific autobiographical memories is lower in healthy middle-aged to older adult Apolipoprotein E ε4 carriers compared to non-carriers. J Neuropsychol 2025; 19:15-27. [PMID: 38949213 PMCID: PMC11688509 DOI: 10.1111/jnp.12380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 06/05/2024] [Accepted: 06/10/2024] [Indexed: 07/02/2024]
Abstract
Recent research suggests that the retrieval of autobiographical memories among cognitively healthy middle-aged and older adults is sensitive to the Apolipoprotein E ε4 (APOE4) allele, a genetic marker that increases the risk of Alzheimer's disease (AD) dementia. However, whether the APOE4-associated alteration in autobiographical memory retrieval encompasses rapid (i.e. direct retrieval) or iterative (i.e. generative retrieval) processes remains unclear. In the present study, 39 APOE4 carriers and 45 non-carriers (ages 60-80) who scored within normal limits on neuropsychological testing were cued to generate specific autobiographical events. We examined group differences in direct and generative retrieval and correlated direct and generative retrieval rates with performance on neuropsychological tests. Direct retrieval rates were lower in the APOE4 carriers compared to non-carriers. Episodic memory positively correlated with direct retrieval rates across the sample, though this relationship became non-significant when factoring in age and sex. There were no significant findings related to successful generative retrieval rates and its efficiency. In summary, compared to non-carriers, cognitively unimpaired middle-aged to older adult APOE4 carriers demonstrated greater difficulty, rapidly reconstructing specific autobiographical events without the support of semantic memory, suggesting that early autobiographical memory retrieval processes demonstrate vulnerability to AD-related risk factors.
Collapse
Affiliation(s)
| | - Bailey Bowles
- Department of Psychology, University of Arizona, Tucson, Arizona, USA
| | - Jessica R. Andrews-Hanna
- Department of Psychology, University of Arizona, Tucson, Arizona, USA
- Cognitive Science, University of Arizona, Tucson, Arizona, USA
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, Arizona, USA
| | - Matthew D. Grilli
- Department of Psychology, University of Arizona, Tucson, Arizona, USA
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, Arizona, USA
- Department of Neurology, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
4
|
Zegarra-Valdivia JA, Shany-Ur T, Rijpma MG, Callahan P, Poorzand P, Grossman S, McEachen B, Kramer JH, Miller BL, Rankin KP. Validation of the Cognitive-Emotional Perspective Taking test in patients with neurodegeneration. J Alzheimers Dis 2025; 104:436-451. [PMID: 40026013 DOI: 10.1177/13872877251317683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
BackgroundTheory of mind (ToM) is crucial for socioemotional interaction. ToM deficits may explain behavioral changes in dementia, especially Alzheimer's disease (AD) and frontotemporal dementia (FTD).ObjectiveThis study examined the psychometrics of a new ToM test in healthy adults, identified ToM differences in dementia syndromes, and assessed if ToM scores predict neuropsychiatric function and real-life behavior.MethodsThe UCSF Cognitive and Emotional Perspective Taking Test (CEPT) was evaluated in 195 healthy adults (age: 42.69 ± 16.20) and in a clinic cohort of 304 participants (age: 64.07 ± 9.2). Participants included healthy controls, AD, behavioral-variant frontotemporal dementia (bvFTD), semantic variant primary progressive aphasia (svPPA), non-fluent PPA (nfvPPA), and progressive supranuclear palsy (PSP) patients. CEPT's psychometrics were assessed, and ToM differences and predictions of neuropsychiatric symptoms were analyzed using regression models.ResultsIn controls, CEPT showed good validity and reliability. In patients, CEPT scores correlated with executive and emotional measures, but not language measures, showing good construct validity. Cognitive ToM was most impaired in AD and bvFTD, with less impairment in svPPA and PSP, and all patient groups showed impaired emotional ToM. ToM performance predicted real-life neuropsychiatric behavior, including anxiety, apathy, disinhibition, and aberrant motor behaviors.ConclusionsToM deficits appear early in dementia syndromes and predict neuropsychiatric behavior. Assessing ToM and social cognition with ecologically valid tasks may help identify altered social cognition in early neurodegeneration.
Collapse
Affiliation(s)
- Jonathan Adrián Zegarra-Valdivia
- Global Brain Health Institute [GBHI], University of California San Francisco, San Francisco, CA, USA
- Achucarro Basque Center for Neuroscience, Leioa, Spain
- Universidad Señor de Sipán, Chiclayo, Perú
- Centro de Investigaciones Biomédicas en Red Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Tal Shany-Ur
- Department of Neurology, Memory and Aging Center, University of California San Francisco, San Francisco, CA, USA
| | - Myrthe Gwen Rijpma
- Department of Neurology, Memory and Aging Center, University of California San Francisco, San Francisco, CA, USA
| | - Patrick Callahan
- Department of Neurology, Memory and Aging Center, University of California San Francisco, San Francisco, CA, USA
| | - Pardis Poorzand
- Department of Neurology, Memory and Aging Center, University of California San Francisco, San Francisco, CA, USA
| | - Scott Grossman
- Department of Neurology, Memory and Aging Center, University of California San Francisco, San Francisco, CA, USA
| | - Bailey McEachen
- Department of Neurology, Memory and Aging Center, University of California San Francisco, San Francisco, CA, USA
| | - Joel H Kramer
- Global Brain Health Institute [GBHI], University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, Memory and Aging Center, University of California San Francisco, San Francisco, CA, USA
| | - Bruce L Miller
- Global Brain Health Institute [GBHI], University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, Memory and Aging Center, University of California San Francisco, San Francisco, CA, USA
| | - Katherine P Rankin
- Global Brain Health Institute [GBHI], University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, Memory and Aging Center, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
5
|
Angeli PA, DiNicola LM, Saadon-Grosman N, Eldaief MC, Buckner RL. Specialization of the human hippocampal long axis revisited. Proc Natl Acad Sci U S A 2025; 122:e2422083122. [PMID: 39808662 PMCID: PMC11760929 DOI: 10.1073/pnas.2422083122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 12/09/2024] [Indexed: 01/16/2025] Open
Abstract
The hippocampus possesses anatomical differences along its long axis. Here, we explored the functional specialization of the human hippocampal long axis using network-anchored precision functional MRI in two independent datasets (N = 11 and N = 9) paired with behavioral analysis (N = 266 and N = 238). Functional connectivity analyses demonstrated that the anterior hippocampus was preferentially correlated with a cerebral network associated with remembering, while the posterior hippocampus selectively contained a region correlated with a distinct network associated with behavioral salience. Seed regions placed within the hippocampus recapitulated the distinct cerebral networks. Functional characterization of the anterior and posterior hippocampal regions using task data identified and replicated a functional double dissociation. The anterior hippocampal region was sensitive to remembering and imagining the future, specifically tracking the process of scene construction, while the posterior hippocampal region displayed transient responses to targets in an oddball detection task and to transitions between task blocks. These findings suggest an unexpected specialization along the long axis of the human hippocampus with differential responses reflecting the functional properties of the partner cerebral networks.
Collapse
Affiliation(s)
- Peter A. Angeli
- Department of Psychology, Center for Brain Science, Harvard University, Cambridge, MA02138
| | - Lauren M. DiNicola
- Department of Psychology, Center for Brain Science, Harvard University, Cambridge, MA02138
| | - Noam Saadon-Grosman
- Department of Psychology, Center for Brain Science, Harvard University, Cambridge, MA02138
| | - Mark C. Eldaief
- Department of Psychiatry, Massachusetts General Hospital, Charlestown, MA02129
| | - Randy L. Buckner
- Department of Psychology, Center for Brain Science, Harvard University, Cambridge, MA02138
- Department of Psychiatry, Massachusetts General Hospital, Charlestown, MA02129
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA02129
| |
Collapse
|
6
|
Guo Q, Zhu R, Zhou H, Ma Z, He Y, Wang D, Zhang X. Reduced resting-state functional connectivity of default mode network subsystems in patients with obsessive-compulsive disorder. J Affect Disord 2025; 369:1108-1114. [PMID: 39447980 DOI: 10.1016/j.jad.2024.10.109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/09/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
OBJECTIVES Neuroimaging studies have reported extensive resting-state functional connectivity (rsFC) abnormalities in the default mode network (DMN) in patients with obsessive-compulsive disorder (OCD), but findings are inconsistent. DMN can be divided into three subsystems: core, dorsal medial prefrontal cortex (dMPFC), and medial temporal lobe (MTL). This study aimed to explore abnormalities in rsFC strength within and between DMN subsystems in OCD patients, and their relationship with clinical symptoms. METHODS This study recruited 39 OCD patients and 45 healthy controls (HCs). OCD symptoms were assessed using the Yale-Brown Obsessive-Compulsive Scale (YBOCS). The seed-to-seed method was used to construct rsFC matrix. The rsFC strength within and between the three DMN subsystems were calculated. RESULTS Compared to the HC group, the OCD group exhibited reduced rsFC strength within core subsystem (F = 7.799, p = 0.007, Bonferroni corrected p = 0.042). Further, this reduction was also observed in the unmedicated OCD group (n = 19), but not in the medicated OCD group (n = 18). In addition, rsFC strength within core subsystem was negatively correlated with the obsession subscale of YBOCS in the OCD group (r = -0.512, p = 0.004, Bonferroni corrected p = 0.008). Further, this correlation was also significant in the unmedicated OCD group, but not in the medicated OCD group. CONCLUSIONS Our findings suggest that reduced rsFC strength within core subsystem is a feature of OCD patients and may serve as a potential biomarker of obsession severity. Moreover, pharmacological treatments may affect rsFC strength in DMN.
Collapse
Affiliation(s)
- Qihui Guo
- Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Rongrong Zhu
- Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Huixia Zhou
- Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Zheng Ma
- Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Ying He
- Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Dongmei Wang
- Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.
| | - Xiangyang Zhang
- Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
7
|
Reznik D, Margulies DS, Witter MP, Doeller CF. Evidence for convergence of distributed cortical processing in band-like functional zones in human entorhinal cortex. Curr Biol 2024; 34:5457-5469.e2. [PMID: 39488200 DOI: 10.1016/j.cub.2024.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/04/2024] [Accepted: 10/05/2024] [Indexed: 11/04/2024]
Abstract
The wide array of cognitive functions associated with the hippocampus is supported through interactions with the cerebral cortex. However, most of the direct cortical input to the hippocampus originates in the entorhinal cortex, forming the hippocampal-entorhinal system. In humans, the role of the entorhinal cortex in mediating hippocampal-cortical interactions remains unknown. In this study, we used precision neuroimaging to examine the distributed cortical anatomy associated with the human hippocampal-entorhinal system. Consistent with animal anatomy, our results associate different subregions of the entorhinal cortex with different parts of the hippocampus long axis. Furthermore, we find that the entorhinal cortex comprises three band-like zones that are associated with functionally distinct cortical networks. Importantly, the entorhinal cortex bands traverse the proposed human homologs of rodent lateral and medial entorhinal cortices. Finally, we show that the entorhinal cortex is a major convergence area of distributed cortical processing and that the topography of cortical networks associated with the anterior medial temporal lobe mirrors the macroscale structure of high-order cortical processing.
Collapse
Affiliation(s)
- Daniel Reznik
- Department of Psychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany.
| | - Daniel S Margulies
- Integrative Neuroscience and Cognition Center, Centre National de la Recherche Scientifique (CNRS) and Université de Paris, 75016 Paris, France; Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Menno P Witter
- Kavli Institute for Systems Neuroscience, the Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, Jebsen Centre for Alzheimer's Disease, NTNU Norwegian University of Science and Technology, 7034 Trondheim, Norway
| | - Christian F Doeller
- Department of Psychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany; Kavli Institute for Systems Neuroscience, the Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, Jebsen Centre for Alzheimer's Disease, NTNU Norwegian University of Science and Technology, 7034 Trondheim, Norway
| |
Collapse
|
8
|
Sambuco N. Cognition, emotion, and the default mode network. Brain Cogn 2024; 182:106229. [PMID: 39481259 DOI: 10.1016/j.bandc.2024.106229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 10/18/2024] [Indexed: 11/02/2024]
Abstract
The Default Mode Network (DMN) is increasingly recognized as a key hub where cognitive and emotional processes converge, particularly through its role in integrating episodic memory and emotional experiences. The current mini-review highlights three distinct patterns of brain activity within the DMN associated with emotional processing. The first pattern indicates that, while the ventromedial prefrontal cortex (vmPFC) encodes the pleasantness of memories, other DMN regions support episodic content construction. The second pattern suggests the interaction between the DMN and regions outside of it, such as the amygdala and anterior insula, which contribute to the emotional significance of memories. The third pattern shows widespread activation across the DMN for both pleasant and unpleasant events, challenging the notion of a modular organization of cognition and emotion. The first two patterns appear to result from methodological choices in some studies, while a non-modular view of cognition and emotion in the DMN has recently emerged as the most plausible. These findings support the integration of cognitive and emotional processes within the DMN, suggesting that it plays a fundamental role in constructing coherent and emotionally charged narratives.
Collapse
Affiliation(s)
- Nicola Sambuco
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124 Bari, Italy.
| |
Collapse
|
9
|
Andrade MÂ, Raposo A, Andrade A. Exploring the late maturation of an intrinsic episodic memory network: A resting-state fMRI study. Dev Cogn Neurosci 2024; 70:101453. [PMID: 39368283 PMCID: PMC11490684 DOI: 10.1016/j.dcn.2024.101453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/26/2024] [Accepted: 09/13/2024] [Indexed: 10/07/2024] Open
Abstract
Previous research suggests that episodic memory relies on functional neural networks,which are present even in the absence of an explicit task. The regions that integrate.these networks and the developmental changes in intrinsic functional connectivity.remain elusive. In the present study, we outlined an intrinsic episodic memory network.(iEMN) based on a systematic selection of functional connectivity studies, and.inspected network differences in resting-state fMRI between adolescents (13-17 years.old) and adults (23-27 years old) from the publicly available NKI-Rockland Sample.Through a review of brain regions commonly associated with episodic memory.networks, we identified a potential iEMN composed by 14 bilateral ROIs, distributed.across temporal, frontal and parietal lobes. Within this network, we found an increase.in resting-state connectivity from adolescents to adults between the right temporal pole.and two regions in the right lateral prefrontal cortex. We argue that the coordination of.these brain regions, connecting areas of semantic processing and areas of controlled.retrieval, arises as an important feature towards the full maturation of the episodic.memory system. The findings add to evidence suggesting that adolescence is a key.period in memory development and highlights the role of intrinsic functional.connectivity in such development.
Collapse
Affiliation(s)
| | - Ana Raposo
- CICPSI, Faculdade de Psicologia, Universidade de Lisboa, Portugal
| | - Alexandre Andrade
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Portugal
| |
Collapse
|
10
|
Abstract
The posterior cerebellum has a critical role in human social and emotional learning. Three systems and related neural networks support this cerebellar function: a biological action observation system as part of an extended sensorimotor integration network, a mentalizing system for understanding a person's mental and emotional state subserved by a mentalizing network, and a limbic network supporting core emotional (dis)pleasure and arousal processes. In this Review, I describe how these systems and networks support social and emotional learning via functional reciprocal connections initiating and terminating in the posterior cerebellum and cerebral neocortex. It is hypothesized that a major function of the posterior cerebellum is to identify and encode temporal sequences of events, which might help to fine-tune and automatize social and emotional learning. I discuss research using neuroimaging and non-invasive stimulation that provides converging evidence for this hypothesized function of cerebellar sequencing, but also other potential functional accounts of the posterior cerebellum's role in these social and emotional processes.
Collapse
Affiliation(s)
- Frank Van Overwalle
- Faculty of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
11
|
Nakatani C, Bernhard H, van Leeuwen C. Prior EEG marks focused and mind-wandering mental states across trials. Cereb Cortex 2024; 34:bhae403. [PMID: 39415424 DOI: 10.1093/cercor/bhae403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/14/2024] [Accepted: 09/19/2024] [Indexed: 10/18/2024] Open
Abstract
Whether spontaneous or induced by a tedious task, the transition from a focused mental state to mind wandering is a complex one, possibly involving adjacent mental states and extending over minutes or even hours. This complexity cannot be captured by relying solely on subjective reports of mind wandering. To characterize the transition in a mind-wandering-inducing tone counting task, in addition we collected subjective reports of thought generation along with task performance as a measure of cognitive control and EEG measures, namely auditory probe evoked potentials (AEP) and ongoing 8-12 Hz alpha-band amplitude. We analyzed the cross-correlations between timeseries of these observations to reveal their contributions over time to the occurrence of task-focused and mind-wandering states. Thought generation and cognitive control showed overall a yoked dynamics, in which thought production increased when cognitive control decreased. Prior to mind wandering however, they became decoupled after transient increases in cognitive control-related alpha amplitude. The decoupling allows transitory mental states beyond the unidimensional focused/wandering continuum. Time lags of these effects were on the order of several minutes, with 4-10 min for that of alpha amplitude. We discuss the implications for mind wandering and related mental states, and for mind-wandering prediction applications.
Collapse
Affiliation(s)
- Chie Nakatani
- Brain and Cognition Research Unit, KU Leuven, Tiensestraat 102, Box 3711, 3000 Leuven, Belgium
| | - Hannah Bernhard
- Brain and Cognition Research Unit, KU Leuven, Tiensestraat 102, Box 3711, 3000 Leuven, Belgium
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Minderbroedersberg 4-6 6211 LK, Maastricht, The Netherlands
| | - Cees van Leeuwen
- Brain and Cognition Research Unit, KU Leuven, Tiensestraat 102, Box 3711, 3000 Leuven, Belgium
- Center for Cognitive Science, RPTU Kaiserslautern, Erwin-Schrödinger-StraßeBuilding 5767663 Kaiserslautern, Germany
| |
Collapse
|
12
|
Gosch S, Puhlmann LMC, Lauckner ME, Förster K, Kanske P, Wiesmann CG, Preckel K. An fMRI study on alexithymia and affective state recognition in the Reading the Mind in the Eyes Test. Soc Cogn Affect Neurosci 2024; 19:nsae058. [PMID: 39219511 PMCID: PMC11429527 DOI: 10.1093/scan/nsae058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 07/20/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024] Open
Abstract
Recognizing others' affective states is essential for successful social interactions. Alexithymia, characterized by difficulties in identifying and describing one's own emotions, has been linked to deficits in recognizing emotions and mental states in others. To investigate how neural correlates of affective state recognition are affected by different facets of alexithymia, we conducted a functional magnetic resonance imaging study with 53 healthy participants (aged 19-36 years, 51% female) using the Reading the Mind in the Eyes Test (RMET) and three different measures of alexithymia [Toronto Structured Interview for Alexithymia (TSIA), Toronto Alexithymia Scale (TAS-20), and Bermond-Vorst Alexithymia Questionnaire]. In addition, we examined brain activity during the RMET and replicated previous findings with task-related brain activation in the inferior frontal and temporal gyri, as well as the insula. No association was found between alexithymia and behavioral performance in the RMET, possibly due to the low number of participants with high alexithymia levels. Region of interest based analyses revealed no associations between alexithymia and amygdala or insula activity during the RMET. At the whole-brain level, both a composite alexithymia score and the unique variance of the alexithymia interview (TSIA) were associated with greater activity in visual processing areas during the RMET. This may indicate that affective state recognition performance in alexithymia relies on a higher compensatory activation in visual areas.
Collapse
Affiliation(s)
- Sophie Gosch
- Clinical Psychology and Behavioral Neuroscience, Faculty of Psychology, Technische Universität Dresden, Dresden 01187, Germany
- Former Research Group Social Stress and Family Health, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany
| | - Lara M C Puhlmann
- Former Research Group Social Stress and Family Health, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany
- Research area Systemic mechanisms of resilience, Leibniz Institute for Resilience Research (LIR), Mainz 55122, Germany
| | - Mark E Lauckner
- Research Group Adaptive Memory, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany
| | - Katharina Förster
- Clinical Psychology and Behavioral Neuroscience, Faculty of Psychology, Technische Universität Dresden, Dresden 01187, Germany
| | - Philipp Kanske
- Clinical Psychology and Behavioral Neuroscience, Faculty of Psychology, Technische Universität Dresden, Dresden 01187, Germany
- Former Research Group Social Stress and Family Health, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany
| | - Charlotte Grosse Wiesmann
- Minerva Fast Track Group Milestones of Early Cognitive Development, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany
| | - Katrin Preckel
- Former Research Group Social Stress and Family Health, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany
| |
Collapse
|
13
|
Hughes C, Setton R, Mwilambwe-Tshilobo L, Baracchini G, Turner GR, Spreng RN. Precision mapping of the default network reveals common and distinct (inter) activity for autobiographical memory and theory of mind. J Neurophysiol 2024; 132:375-388. [PMID: 38958281 PMCID: PMC11427040 DOI: 10.1152/jn.00427.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 06/16/2024] [Accepted: 06/17/2024] [Indexed: 07/04/2024] Open
Abstract
The default network is widely implicated as a common neural substrate for self-generated thought, such as remembering one's past (autobiographical memory) and imagining the thoughts and feelings of others (theory of mind). Findings that the default network comprises subnetworks of regions, some commonly and some distinctly involved across processes, suggest that one's own experiences inform their understanding of others. With the advent of precision functional MRI (fMRI) methods, however, it is unclear if this shared substrate is observed instead due to traditional group analysis methods. We investigated this possibility using a novel combination of methodological strategies. Twenty-three participants underwent multi-echo resting-state and task fMRI. We used their resting-state scans to conduct cortical parcellation sensitive to individual variation while preserving our ability to conduct group analysis. Using multivariate analyses, we assessed the functional activation and connectivity profiles of default network regions while participants engaged in autobiographical memory, theory of mind, or a sensorimotor control condition. Across the default network, we observed stronger activity associated with both autobiographical memory and theory of mind compared to the control condition. Nonetheless, we also observed that some regions showed preferential activity to either experimental condition, in line with past work. The connectivity results similarly indicated shared and distinct functional profiles. Our results support that autobiographical memory and theory of mind, two theoretically important and widely studied domains of social cognition, evoke common and distinct aspects of the default network even when ensuring high fidelity to individual-specific characteristics.NEW & NOTEWORTHY We used cutting-edge precision functional MRI (fMRI) methods such as multi-echo fMRI acquisition and denoising, a robust experimental paradigm, and individualized cortical parcellation across 23 participants to provide evidence that remembering one's past experiences and imagining the thoughts and feelings of others share a common neural substrate. Evidence from activation and connectivity analyses indicate overlapping and distinct functional profiles of these widely studied episodic and social processes.
Collapse
Affiliation(s)
- Colleen Hughes
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Roni Setton
- Psychology Department, Harvard University, Cambridge, Massachusetts, United States
| | - Laetitia Mwilambwe-Tshilobo
- Psychology Department, Princeton University, Princeton, New Jersey, United States
- Annenberg School for Communication, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Giulia Baracchini
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Gary R Turner
- Department of Psychology, York University, Toronto, Ontario, Canada
| | - R Nathan Spreng
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
- McConnell Brain Imaging Centre, McGill University, Montreal, Quebec, Canada
- Douglas Mental Health University Institute, Verdun, Quebec, Canada
- Department of Psychology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
14
|
Monsa R, Dafni-Merom A, Arzy S. What makes an event significant: an fMRI study on self-defining memories. Cereb Cortex 2024; 34:bhae303. [PMID: 39073379 DOI: 10.1093/cercor/bhae303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/30/2024] [Accepted: 07/10/2024] [Indexed: 07/30/2024] Open
Abstract
Self-defining memories are highly significant personal memories that contribute to an individual's life story and identity. Previous research has identified 4 key subcomponents of self-defining memories: content, affect, specificity, and self-reflection. However, these components were not tested under functional neuroimaging. In this study, we first explored how self-defining memories distinguish themselves from everyday memories (non-self-defining) through their associated brain activity. Next, we evaluated the different self-defining memory subcomponents through their activity in the underlying brain system. Participants recalled both self-defining and non-self-defining memories under functional MRI and evaluated the 4 subcomponents for each memory. Multivoxel pattern analysis uncovered a brain system closely related to the default mode network to discriminate between self-defining and non-self-defining memories. Representational similarity analysis revealed the neural coding of each subcomponent. Self-reflection was coded mainly in the precuneus, middle and inferior frontal gyri, and cingulate, lateral occipital, and insular cortices. To a much lesser extent, content coding was primarily in the left angular gyrus and fusiform gyrus. No region was found to represent information on affect and specificity. Our findings highlight the marked difference in brain processing between significant and non-significant memories, and underscore self-reflection as a predominant factor in the formation and maintenance of self-defining memories, inviting a reassessment of what constitutes significant memories.
Collapse
Affiliation(s)
- Rotem Monsa
- Neuropsychiatry Laboratory, Department of Medical Neurosciences, Faculty of Medicine, Hadassah Ein Kerem Campus, Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Amnon Dafni-Merom
- Neuropsychiatry Laboratory, Department of Medical Neurosciences, Faculty of Medicine, Hadassah Ein Kerem Campus, Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Shahar Arzy
- Neuropsychiatry Laboratory, Department of Medical Neurosciences, Faculty of Medicine, Hadassah Ein Kerem Campus, Hebrew University of Jerusalem, Jerusalem 9112001, Israel
- Department of Neurology, Hadassah Hebrew University Medical School, Jerusalem 9112001, Israel
- Department of Cognitive and Brain Sciences, Hebrew University of Jerusalem, Jerusalem 9190501, Israel
| |
Collapse
|
15
|
Katsumi A, Iwata S, Tsukiura T. Roles of the Default Mode Network in Different Aspects of Self-representation When Remembering Social Autobiographical Memories. J Cogn Neurosci 2024; 36:1021-1036. [PMID: 38527069 DOI: 10.1162/jocn_a_02143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Autobiographical memory (AM) is episodic memory for personally experienced events, in which self-representation is more important than that in laboratory-based memory. Theoretically, self-representation in a social context is categorized as the interpersonal self (IS) referred to in a social interaction with a person or the social-valued self (SS) based on the reputation of the self in the surrounding society. Although functional neuroimaging studies have demonstrated the involvement of the default mode network (DMN) in self-representation, little is known about how the DMN subsystems contribute differentially to IS-related and SS-related AMs. To elucidate this issue, we used fMRI to scan healthy young adults during the recollection of AMs. We performed multivariate pattern analysis (MVPA) and assessed functional connectivity in the DMN subsystems: the midline core, medial temporal lobe (MTL), and dorsomedial pFC (dmPFC) subsystems. The study yielded two main sets of findings. First, MVPA revealed that all DMN subsystems showed significant classification accuracy between IS-related and nonsocial-self-related AMs, and IS-related functional connectivity of the midline core regions with the retrosplenial cortex of the MTL subsystem and the dmPFC of the dmPFC subsystem was significant. Second, MVPA significantly distinguished between SS-related and nonsocial-self-related AMs in the midline core and dmPFC subsystems but not in the MTL subsystem, and SS-related functional connectivity with the midline core regions was significant in the temporal pole and TPJ of the dmPFC subsystem. Thus, dissociable neural mechanisms in the DMN could contribute to different aspects of self-representation in social AMs.
Collapse
Affiliation(s)
| | - Saeko Iwata
- Kyoto University
- Japan Society for the Promotion of Science
| | | |
Collapse
|
16
|
Du J, DiNicola LM, Angeli PA, Saadon-Grosman N, Sun W, Kaiser S, Ladopoulou J, Xue A, Yeo BTT, Eldaief MC, Buckner RL. Organization of the human cerebral cortex estimated within individuals: networks, global topography, and function. J Neurophysiol 2024; 131:1014-1082. [PMID: 38489238 PMCID: PMC11383390 DOI: 10.1152/jn.00308.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 01/18/2024] [Accepted: 02/16/2024] [Indexed: 03/17/2024] Open
Abstract
The cerebral cortex is populated by specialized regions that are organized into networks. Here we estimated networks from functional MRI (fMRI) data in intensively sampled participants. The procedure was developed in two participants (scanned 31 times) and then prospectively applied to 15 participants (scanned 8-11 times). Analysis of the networks revealed a global organization. Locally organized first-order sensory and motor networks were surrounded by spatially adjacent second-order networks that linked to distant regions. Third-order networks possessed regions distributed widely throughout association cortex. Regions of distinct third-order networks displayed side-by-side juxtapositions with a pattern that repeated across multiple cortical zones. We refer to these as supra-areal association megaclusters (SAAMs). Within each SAAM, two candidate control regions were adjacent to three separate domain-specialized regions. Response properties were explored with task data. The somatomotor and visual networks responded to body movements and visual stimulation, respectively. Second-order networks responded to transients in an oddball detection task, consistent with a role in orienting to salient events. The third-order networks, including distinct regions within each SAAM, showed two levels of functional specialization. Regions linked to candidate control networks responded to working memory load across multiple stimulus domains. The remaining regions dissociated across language, social, and spatial/episodic processing domains. These results suggest that progressively higher-order networks nest outward from primary sensory and motor cortices. Within the apex zones of association cortex, there is specialization that repeatedly divides domain-flexible from domain-specialized regions. We discuss implications of these findings, including how repeating organizational motifs may emerge during development.NEW & NOTEWORTHY The organization of cerebral networks was estimated within individuals with intensive, repeat sampling of fMRI data. A hierarchical organization emerged in each individual that delineated first-, second-, and third-order cortical networks. Regions of distinct third-order association networks consistently exhibited side-by-side juxtapositions that repeated across multiple cortical zones, with clear and robust functional specialization among the embedded regions.
Collapse
Affiliation(s)
- Jingnan Du
- Department of Psychology, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States
| | - Lauren M DiNicola
- Department of Psychology, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States
| | - Peter A Angeli
- Department of Psychology, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States
| | - Noam Saadon-Grosman
- Department of Psychology, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States
| | - Wendy Sun
- Department of Psychology, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States
| | - Stephanie Kaiser
- Department of Psychology, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States
| | - Joanna Ladopoulou
- Department of Psychology, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States
| | - Aihuiping Xue
- Centre for Sleep & Cognition and Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore
| | - B T Thomas Yeo
- Centre for Sleep & Cognition and Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore
| | - Mark C Eldaief
- Department of Psychiatry, Massachusetts General Hospital, Charlestown, Massachusetts, United States
| | - Randy L Buckner
- Department of Psychology, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States
- Department of Psychiatry, Massachusetts General Hospital, Charlestown, Massachusetts, United States
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, United States
| |
Collapse
|
17
|
Koslov SR, Kable JW, Foster BL. Dissociable Contributions of the Medial Parietal Cortex to Recognition Memory. J Neurosci 2024; 44:e2220232024. [PMID: 38527809 PMCID: PMC11063824 DOI: 10.1523/jneurosci.2220-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/04/2024] [Accepted: 03/15/2024] [Indexed: 03/27/2024] Open
Abstract
Human neuroimaging studies of episodic memory retrieval routinely observe the engagement of specific cortical regions beyond the medial temporal lobe. Of these, medial parietal cortex (MPC) is of particular interest given its distinct functional characteristics during different retrieval tasks. Specifically, while recognition and autobiographical recall tasks are both used to probe episodic retrieval, these paradigms consistently drive distinct spatial patterns of response within MPC. However, other studies have emphasized alternate MPC functional dissociations in terms of brain network connectivity profiles or stimulus category selectivity. As the unique contributions of MPC to episodic memory remain unclear, adjudicating between these different accounts can provide better consensus regarding MPC function. Therefore, we used a precision-neuroimaging dataset (7T functional magnetic resonance imaging) to examine how MPC regions are differentially engaged during recognition memory and how these task-related dissociations may also reflect distinct connectivity and stimulus category functional profiles. We observed interleaved, though spatially distinct, subregions of MPC where responses were sensitive to either recognition decisions or the semantic representation of stimuli. In addition, this dissociation was further accentuated by functional subregions displaying distinct profiles of connectivity with the hippocampus during task and rest. Finally, we show that recent observations of dissociable person and place selectivity within the MPC reflect category-specific responses from within identified semantic regions that are sensitive to mnemonic demands. Together, by examining precision functional mapping within individuals, these data suggest that previously distinct observations of functional dissociation within MPC conform to a common principle of organization throughout hippocampal-neocortical memory systems.
Collapse
Affiliation(s)
- Seth R Koslov
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Joseph W Kable
- Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Brett L Foster
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
18
|
Bogler C, Zangrossi A, Miller C, Sartori G, Haynes J. Have you been there before? Decoding recognition of spatial scenes from fMRI signals in precuneus. Hum Brain Mapp 2024; 45:e26690. [PMID: 38703117 PMCID: PMC11069338 DOI: 10.1002/hbm.26690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 01/23/2024] [Accepted: 04/08/2024] [Indexed: 05/06/2024] Open
Abstract
One potential application of forensic "brain reading" is to test whether a suspect has previously experienced a crime scene. Here, we investigated whether it is possible to decode real life autobiographic exposure to spatial locations using fMRI. In the first session, participants visited four out of eight possible rooms on a university campus. During a subsequent scanning session, subjects passively viewed pictures and videos from these eight possible rooms (four old, four novel) without giving any responses. A multivariate searchlight analysis was employed that trained a classifier to distinguish between "seen" versus "unseen" stimuli from a subset of six rooms. We found that bilateral precuneus encoded information that can be used to distinguish between previously seen and unseen rooms and that also generalized to the two stimuli left out from training. We conclude that activity in bilateral precuneus is associated with the memory of previously visited rooms, irrespective of the identity of the room, thus supporting a parietal contribution to episodic memory for spatial locations. Importantly, we could decode whether a room was visited in real life without the need of explicit judgments about the rooms. This suggests that recognition is an automatic response that can be decoded from fMRI data, thus potentially supporting forensic applications of concealed information tests for crime scene recognition.
Collapse
Affiliation(s)
- Carsten Bogler
- Bernstein Center for Computational NeuroscienceCharité‐Universitätsmedizin BerlinBerlinGermany
| | - Andrea Zangrossi
- Department of General PsychologyUniversity of PadovaPadovaItaly
- Padova Neuroscience Center (PNC)University of PadovaPadovaItaly
| | - Chantal Miller
- Berlin School of Mind and BrainHumboldt‐Universität zu BerlinBerlinGermany
| | | | - John‐Dylan Haynes
- Bernstein Center for Computational NeuroscienceCharité‐Universitätsmedizin BerlinBerlinGermany
- Berlin School of Mind and BrainHumboldt‐Universität zu BerlinBerlinGermany
- Max Planck School of CognitionLeipzigGermany
- Berlin Center for Advanced NeuroimagingCharité‐Universitätsmedizin BerlinBerlinGermany
- Clinic of NeurologyCharité‐Universitätsmedizin BerlinBerlinGermany
- Institute of PsychologyHumboldt‐Universität zu BerlinBerlinGermany
- Cluster of Excellence “Science of Intelligence”Berlin Institute of TechnologyBerlinGermany
| |
Collapse
|
19
|
Fernandino L, Binder JR. How does the "default mode" network contribute to semantic cognition? BRAIN AND LANGUAGE 2024; 252:105405. [PMID: 38579461 PMCID: PMC11135161 DOI: 10.1016/j.bandl.2024.105405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 02/26/2024] [Accepted: 03/23/2024] [Indexed: 04/07/2024]
Abstract
This review examines whether and how the "default mode" network (DMN) contributes to semantic processing. We review evidence implicating the DMN in the processing of individual word meanings and in sentence- and discourse-level semantics. Next, we argue that the areas comprising the DMN contribute to semantic processing by coordinating and integrating the simultaneous activity of local neuronal ensembles across multiple unimodal and multimodal cortical regions, creating a transient, global neuronal ensemble. The resulting ensemble implements an integrated simulation of phenomenological experience - that is, an embodied situation model - constructed from various modalities of experiential memory traces. These situation models, we argue, are necessary not only for semantic processing but also for aspects of cognition that are not traditionally considered semantic. Although many aspects of this proposal remain provisional, we believe it provides new insights into the relationships between semantic and non-semantic cognition and into the functions of the DMN.
Collapse
Affiliation(s)
- Leonardo Fernandino
- Department of Neurology, Medical College of Wisconsin, USA; Department of Biomedical Engineering, Medical College of Wisconsin, USA.
| | - Jeffrey R Binder
- Department of Neurology, Medical College of Wisconsin, USA; Department of Biophysics, Medical College of Wisconsin, USA
| |
Collapse
|
20
|
Yeo D, Lee S, Choi H, Park MH, Park B. Emotional abuse mediated by negative automatic thoughts impacts functional connectivity during adolescence. Neurobiol Stress 2024; 30:100623. [PMID: 38572483 PMCID: PMC10987907 DOI: 10.1016/j.ynstr.2024.100623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/15/2024] [Accepted: 03/09/2024] [Indexed: 04/05/2024] Open
Abstract
Background Emotional abuse during childhood and adolescence is thought to be associated with the brain; however, the neural mechanism underlying the cognitive process remains unknown. Therefore, we aimed to investigate the mediating effect of negative automatic thoughts on the relationship between emotional abuse and resting-state functional connectivity (rsFC) during adolescence. Method Our community sample included 54 adolescents aged 13-17 years in the statistical analysis. Resting-state functional and structural magnetic resonance imaging (MRI) was performed, while emotional abuse and negative automatic thoughts were assessed using self-reported scales. A mediation analysis was used to assess the contributions of early traumatic events and negative automatic thoughts to resting functional connectivity. Result Higher negative automatic thoughts were associated with lower connectivity in the context of greater emotional abuse (i.e., suppression effect). Thus, the relationships between emotional abuse and connectivity in the precuneus (pCun)-medial prefrontal cortex, parahippocampal cortex-extrastriate cortex, and temporal cortex-temporal pole were decreased by negative automatic thoughts. In contrast, functional connections in the pCun-pCun, pCun-precuneus/posterior cingulate cortex, and nucleus accumbens-somatomotor areas were strongly mediated when emotionally abused adolescents reported a high tendency for negative automatic thoughts. Conclusion Negative automatic thoughts strengthened the relationship between emotional abuse and rsFC. These findings highlight the underlying cognitive processing of the traumatic event-neural system, supporting the use of cognitive therapy for post-traumatic symptoms.
Collapse
Affiliation(s)
- Dageon Yeo
- Department of Biomedical Informatics, Ajou University School of Medicine, Suwon, Republic of Korea
- Department of Biomedical Sciences, Graduate School of Ajou University, Suwon, Republic of Korea
| | - Seulgi Lee
- Department of Biomedical Informatics, Ajou University School of Medicine, Suwon, Republic of Korea
- Department of Biomedical Sciences, Graduate School of Ajou University, Suwon, Republic of Korea
| | - Haemi Choi
- Department of Psychiatry, College of Medicine, Eunpyeong St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Min-Hyeon Park
- Department of Psychiatry, College of Medicine, Eunpyeong St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Bumhee Park
- Department of Biomedical Informatics, Ajou University School of Medicine, Suwon, Republic of Korea
- Office of Biostatistics, Medical Research Collaborating Center, Ajou Research Institute for Innovative Medicine, Ajou University Medical Center, Suwon, Republic of Korea
| |
Collapse
|
21
|
Grecucci A, Monachesi B, Messina I. Reduced GM-WM concentration inside the Default Mode Network in individuals with high emotional intelligence and low anxiety: a data fusion mCCA+jICA approach. Soc Cogn Affect Neurosci 2024; 19:nsae018. [PMID: 38451879 PMCID: PMC10919484 DOI: 10.1093/scan/nsae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/05/2024] [Accepted: 02/16/2024] [Indexed: 03/09/2024] Open
Abstract
The concept of emotional intelligence (EI) refers to the ability to recognize and regulate emotions to appropriately guide cognition and behaviour. Unfortunately, studies on the neural bases of EI are scant, and no study so far has exhaustively investigated grey matter (GM) and white matter (WM) contributions to it. To fill this gap, we analysed trait measure of EI and structural MRI data from 128 healthy participants to shed new light on where and how EI is encoded in the brain. In addition, we explored the relationship between the neural substrates of trait EI and trait anxiety. A data fusion unsupervised machine learning approach (mCCA + jICA) was used to decompose the brain into covarying GM-WM networks and to assess their association with trait-EI. Results showed that high levels trait-EI are associated with decrease in GM-WM concentration in a network spanning from frontal to parietal and temporal regions, among which insula, cingulate, parahippocampal gyrus, cuneus and precuneus. Interestingly, we also found that the higher the GM-WM concentration in the same network, the higher the trait anxiety. These findings encouragingly highlight the neural substrates of trait EI and their relationship with anxiety. The network is discussed considering its overlaps with the Default Mode Network.
Collapse
Affiliation(s)
- Alessandro Grecucci
- Department of Psychology and Cognitive Sciences (DiPSCo), University of Trento, Rovereto (TN), Italy 38068, Italy
- Centre for Medical Sciences, CISMed, University of Trento, Trento, Italy 38122, Italy
| | - Bianca Monachesi
- Department of Psychology and Cognitive Sciences (DiPSCo), University of Trento, Rovereto (TN), Italy 38068, Italy
| | - Irene Messina
- Department of Psychology and Cognitive Sciences (DiPSCo), University of Trento, Rovereto (TN), Italy 38068, Italy
- Faculty of Social and Communication Sciences, Universitas Mercatorum, Rome, Italy
| |
Collapse
|
22
|
Reed LS, Evans LH. The positive dimension of schizotypy is associated with self-report measures of autobiographical memory and future thinking but not experimenter-scored indices. Memory 2024; 32:383-395. [PMID: 38466582 DOI: 10.1080/09658211.2024.2325525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 02/19/2024] [Indexed: 03/13/2024]
Abstract
ABSTRACTThe ability to remember our past and to imagine the future are critical to our sense of self. Previous research has indicated that they are disrupted in schizophrenia. However, it is unclear (i) whether this is found when examining experimenter-scored indices of content and/or participants' self-report of phenomenological characteristics, and (ii) how these abilities might be related to symptoms. This study sought to address these questions by taking a dimensional approach and measuring positive and negative schizotypal experiences in healthy people (n = 90). Participants were given cue words. For some, they remembered an event from the past and for others they generated an event in the future. No significant relationships were found with any aspect of schizotypy when participants' descriptions were scored by the experimenter according to a standardised episodic content measure. In contrast, several significant positive correlations were observed for past memory and future thinking when examining the positive dimension of schizotypy and participants' ratings, particularly to sensory characteristics of the experience and mental pre- or reliving. These results indicate enhanced subjective experiences of autobiographical memory and future thinking in those who report delusional and hallucinatory-like occurrences, which might be linked to mental imagery or metacognitive alterations.
Collapse
Affiliation(s)
- Lucie S Reed
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
| | - Lisa H Evans
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
| |
Collapse
|
23
|
Agron AM, Martin A, Gilmore AW. Scene construction and autobiographical memory retrieval in autism spectrum disorder. Autism Res 2024; 17:204-214. [PMID: 38037250 PMCID: PMC10922094 DOI: 10.1002/aur.3066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 11/06/2023] [Indexed: 12/02/2023]
Abstract
Individuals with autism spectrum disorder (ASD) frequently exhibit difficulties in retrieving autobiographical memories (AMs) of specific events from their life. Such memory deficits are frequently attributed to underlying disruptions in self-referential or social cognition processes. This makes intuitive sense as these are hallmarks of ASD. However, an emerging literature suggests that parallel deficits also exist in ASD individuals' ability to reconstruct the rich spatial contexts in which events occur. This is a capacity known as scene construction, and in typically developing individuals is considered a core process in retrieving AMs. In this review, we discuss evidence of difficulties with scene construction in ASD, drawing upon experiments that involve AM retrieval, other forms of mental time travel, and spatial navigation. We also highlight aspects of extant data that cannot be accounted for using purely social explanations of memory deficits in ASD. We conclude by identifying key questions raised by our framework and suggest how they might be addressed in future research.
Collapse
Affiliation(s)
- Anna M. Agron
- Section on Cognitive Neuropsychology, Laboratory of Brain and Cognition, NIMH/NIH, Bethesda, MD 20892
| | - Alex Martin
- Section on Cognitive Neuropsychology, Laboratory of Brain and Cognition, NIMH/NIH, Bethesda, MD 20892
| | - Adrian W. Gilmore
- Section on Cognitive Neuropsychology, Laboratory of Brain and Cognition, NIMH/NIH, Bethesda, MD 20892
| |
Collapse
|
24
|
Suo X, Lan H, Zuo C, Chen L, Qin K, Li L, Kemp GJ, Wang S, Gong Q. Multilayer analysis of dynamic network reconfiguration in pediatric posttraumatic stress disorder. Cereb Cortex 2024; 34:bhad436. [PMID: 37991275 DOI: 10.1093/cercor/bhad436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 11/23/2023] Open
Abstract
Neuroimage studies have reported functional connectome abnormalities in posttraumatic stress disorder (PTSD), especially in adults. However, these studies often treated the brain as a static network, and time-variance of connectome topology in pediatric posttraumatic stress disorder remain unclear. To explore case-control differences in dynamic connectome topology, resting-state functional magnetic resonance imaging data were acquired from 24 treatment-naïve non-comorbid pediatric posttraumatic stress disorder patients and 24 demographically matched trauma-exposed non-posttraumatic stress disorder controls. A graph-theoretic analysis was applied to construct time-varying modular structure of whole-brain networks by maximizing the multilayer modularity. Network switching rate at the global, subnetwork, and nodal levels were calculated and compared between posttraumatic stress disorder and trauma-exposed non-posttraumatic stress disorder groups, and their associations with posttraumatic stress disorder symptom severity and sex interactions were explored. At the global level, individuals with posttraumatic stress disorder exhibited significantly lower network switching rates compared to trauma-exposed non-posttraumatic stress disorder controls. This difference was mainly involved in default-mode and dorsal attention subnetworks, as well as in inferior temporal and parietal brain nodes. Posttraumatic stress disorder symptom severity was negatively correlated with switching rate in the global network and default mode network. No significant differences were observed in the interaction between diagnosis and sex/age. Pediatric posttraumatic stress disorder is associated with dynamic reconfiguration of brain networks, which may provide insights into the biological basis of this disorder.
Collapse
Affiliation(s)
- Xueling Suo
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China
| | - Huan Lan
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China
| | - Chao Zuo
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China
| | - Li Chen
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China
| | - Kun Qin
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH 45219, United States
| | - Lingjiang Li
- Mental Health Institute, the Second Xiangya Hospital of Central South University, Changsha 410008, China
| | - Graham J Kemp
- Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L69 3BX, United Kingdom
| | - Song Wang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China
| | - Qiyong Gong
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen 361000, China
| |
Collapse
|
25
|
Leonards CA, Harrison BJ, Jamieson AJ, Agathos J, Steward T, Davey CG. Altered task-related decoupling of the rostral anterior cingulate cortex in depression. Neuroimage Clin 2024; 41:103564. [PMID: 38218081 PMCID: PMC10821626 DOI: 10.1016/j.nicl.2024.103564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/08/2023] [Accepted: 01/07/2024] [Indexed: 01/15/2024]
Abstract
Dysfunctional activity of the rostral anterior cingulate cortex (rACC) - an extensively connected hub region of the default mode network - has been broadly linked to cognitive and affective impairments in depression. However, the nature of aberrant task-related rACC suppression in depression is incompletely understood. In this study, we sought to characterize functional connectivity of rACC activity suppression ('deactivation') - an essential feature of rACC function - during external task engagement in depression. Specifically, we aimed to explore neural patterns of functional decoupling and coupling with the rACC during its task-driven suppression. We enrolled 81 15- to 25-year-old young people with moderate-to-severe major depressive disorder (MDD) before they commenced a 12-week clinical trial that assessed the effectiveness of cognitive behavioral therapy plus either fluoxetine or placebo. Ninety-four matched healthy controls were also recruited. Participants completed a functional magnetic resonance imaging face matching task known to elicit rACC suppression. To identify brain regions associated with the rACC during its task-driven suppression, we employed a seed-based functional connectivity analysis. We found MDD participants, compared to controls, showed significantly reduced 'decoupling' of the rACC with extended task-specific regions during task performance. Specifically, less decoupling was observed in the occipital and fusiform gyrus, dorsal ACC, medial prefrontal cortex, cuneus, amygdala, thalamus, and hippocampus. Notably, impaired decoupling was apparent in participants who did not remit to treatment, but not treatment remitters. Further, we found MDD participants showed significant increased coupling with the anterior insula cortex during task engagement. Our findings indicate that aberrant task-related rACC suppression is associated with disruptions in adaptive neural communication and dynamic switching between internal and external cognitive modes that may underpin maladaptive cognitions and biased emotional processing in depression.
Collapse
Affiliation(s)
- Christine A Leonards
- Department of Psychiatry, The University of Melbourne, Parkville, Victoria, Australia
| | - Ben J Harrison
- Department of Psychiatry, The University of Melbourne, Parkville, Victoria, Australia
| | - Alec J Jamieson
- Department of Psychiatry, The University of Melbourne, Parkville, Victoria, Australia
| | - James Agathos
- Department of Psychiatry, The University of Melbourne, Parkville, Victoria, Australia
| | - Trevor Steward
- Department of Psychiatry, The University of Melbourne, Parkville, Victoria, Australia; Melbourne School of Psychological Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Christopher G Davey
- Department of Psychiatry, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
26
|
Wang C, Wang C, Ren Y, Zhang R, Ai L, Wu Y, Ran X, Wang M, Hu H, Shen J, Zhao Z, Yang Y, Ren W, Yu Y. Multi feature fusion network for schizophrenia classification and abnormal brain network recognition. Brain Res Bull 2024; 206:110848. [PMID: 38104673 DOI: 10.1016/j.brainresbull.2023.110848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/06/2023] [Accepted: 12/13/2023] [Indexed: 12/19/2023]
Abstract
Schizophrenia classification and abnormal brain network recognition have an important research significance. Researchers have proposed many classification methods based on machine learning and deep learning. However, fewer studies utilized the advantages of complementary information from multi feature to learn the best representation of schizophrenia. In this study, we proposed a multi-feature fusion network (MFFN) using functional network connectivity (FNC) and time courses (TC) to distinguish schizophrenia patients from healthy controls. DNN backbone was adopted to learn the feature map of functional network connectivity, C-RNNAM backbone was designed to learn the feature map of time courses, and Deep SHAP was applied to obtain the most discriminative brain networks. We proved the effectiveness of this proposed model using the combining two public datasets and evaluated this model quantitatively using the evaluation indexes. The results showed that the functional network connectivity generated by independent component analysis has advantage in schizophrenia classification by comparing static and dynamic functional connections. This method obtained the best classification accuracy (ACC=87.30%, SPE=89.28%, SEN=85.71%, F1 =88.23%, and AUC=0.9081), and it demonstrated the superiority of this proposed model by comparing state-of-the-art methods. Ablation experiment also demonstrated that multi feature fusion and attention module can improve classification accuracy. The most discriminative brain networks showed that default mode network and visual network of schizophrenia patients have aberrant connections in brain networks. In conclusion, this method can identify schizophrenia effectively and visualize the abnormal brain network, and it has important clinical application value.
Collapse
Affiliation(s)
- Chang Wang
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Laboratory of Biological Psychiatry, Xinxiang, China; School of Medical Engineering, Xinxiang Medical University, Xinxiang, China; Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China; Xinxiang Engineering Technology Research Center of Intelligent Medical Imaging Diagnosis, Xinxiang, China
| | - Chen Wang
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Laboratory of Biological Psychiatry, Xinxiang, China; School of Medical Engineering, Xinxiang Medical University, Xinxiang, China; Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China; Xinxiang Engineering Technology Research Center of Intelligent Medical Imaging Diagnosis, Xinxiang, China
| | - Yaning Ren
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Laboratory of Biological Psychiatry, Xinxiang, China; School of Medical Engineering, Xinxiang Medical University, Xinxiang, China; Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China; Xinxiang Engineering Technology Research Center of Intelligent Medical Imaging Diagnosis, Xinxiang, China
| | - Rui Zhang
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Laboratory of Biological Psychiatry, Xinxiang, China; School of Medical Engineering, Xinxiang Medical University, Xinxiang, China; Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China; Xinxiang Engineering Technology Research Center of Intelligent Medical Imaging Diagnosis, Xinxiang, China
| | - Lunpu Ai
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Laboratory of Biological Psychiatry, Xinxiang, China; School of Medical Engineering, Xinxiang Medical University, Xinxiang, China; Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China
| | - Yang Wu
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Laboratory of Biological Psychiatry, Xinxiang, China; School of Medical Engineering, Xinxiang Medical University, Xinxiang, China; Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China; Xinxiang Engineering Technology Research Center of Intelligent Medical Imaging Diagnosis, Xinxiang, China
| | - Xiangying Ran
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Laboratory of Biological Psychiatry, Xinxiang, China; School of Medical Engineering, Xinxiang Medical University, Xinxiang, China; Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China
| | - Mengke Wang
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Laboratory of Biological Psychiatry, Xinxiang, China; School of Medical Engineering, Xinxiang Medical University, Xinxiang, China; Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China
| | - Heshun Hu
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Laboratory of Biological Psychiatry, Xinxiang, China; School of Medical Engineering, Xinxiang Medical University, Xinxiang, China; Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China
| | - Jiefen Shen
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, China; Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China; Xinxiang Engineering Technology Research Center of Intelligent Medical Imaging Diagnosis, Xinxiang, China
| | - Zongya Zhao
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Laboratory of Biological Psychiatry, Xinxiang, China; School of Medical Engineering, Xinxiang Medical University, Xinxiang, China; Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China
| | - Yongfeng Yang
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Laboratory of Biological Psychiatry, Xinxiang, China
| | - Wenjie Ren
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China
| | - Yi Yu
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Laboratory of Biological Psychiatry, Xinxiang, China; School of Medical Engineering, Xinxiang Medical University, Xinxiang, China; Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China.
| |
Collapse
|
27
|
Gerin MI, Viding E, Puetz VB, Armbruster-Genc DJ, Rankin G, McCrory EJ. Atypical Interpersonal Problem-Solving and Resting-state Functional Connectivity in Adolescents with Maltreatment Experience. Curr Neuropharmacol 2024; 22:290-301. [PMID: 37818587 PMCID: PMC10788892 DOI: 10.2174/1570159x22666231002145440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 10/12/2023] Open
Abstract
BACKGROUND Childhood maltreatment is associated with altered neurocognitive functioning, which is thought to reflect, in part, adaptation to early adverse environmental experiences. However, we continue to lack a precise mechanistic understanding linking atypical neurocognitive processing with social functioning and psychiatric outcomes following early adversity. OBJECTIVE The present work investigated interpersonal problem-solving, resting-state functional connectivity (rsFC), and mental health symptoms in adolescents with documented maltreatment experience and explored whether altered neural function contributes in part to poorer social functioning. METHODS Forty adolescents (aged 12-17) with documented experiences of abuse or neglect and a carefully matched group of 42 non-maltreated peers participated in this study that measured task-based interpersonal problem-solving skills and rsFC. RESULTS Adolescents with maltreatment experience showed poorer interpersonal problem-solving performance, which partly accounted for their elevated mental health symptoms. Resting-state seed-based analyses revealed that adolescents with maltreatment experience showed a significant increase in rsFC between medial Default Mode Network (DMN) hubs, the medial prefrontal cortex (mPFC), with a posterior cluster, including the posterior cingulate cortex (PCC), precuneus (PCu), retrosplenial cortex (RSC), and lingual gyrus (LG). Moderation analyses revealed that maltreatment-related increased DMN rsFC partly accounted for poorer performance in interpersonal problem-solving. CONCLUSION Poorer interpersonal problem-solving, partly accounted for by atypical coupling between DMN medial hubs, was associated with maltreatment exposure. Interventions tailored to enhance interpersonal problem-solving represents a promising avenue to promote resilience and reduce the likelihood of mental health disorder following maltreatment experience.
Collapse
Affiliation(s)
- Mattia I. Gerin
- Division of Psychology and Language Sciences, University College London, London, UK
- Anna Freud National Centre for Children and Families, London, UK
| | - Essi Viding
- Division of Psychology and Language Sciences, University College London, London, UK
| | - Vanessa B. Puetz
- Division of Psychology and Language Sciences, University College London, London, UK
- Anna Freud National Centre for Children and Families, London, UK
| | | | - Georgia Rankin
- Division of Psychology and Language Sciences, University College London, London, UK
| | - Eamon J. McCrory
- Division of Psychology and Language Sciences, University College London, London, UK
- Anna Freud National Centre for Children and Families, London, UK
| |
Collapse
|
28
|
Wei JM, Xia LX. Neural Correlates of Positive Outcome Expectancy for Aggression: Evidence from Voxel-Based Morphometry and Resting-State Functional Connectivity Analysis. Brain Sci 2023; 14:43. [PMID: 38248258 PMCID: PMC10813425 DOI: 10.3390/brainsci14010043] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/23/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
Positive outcome expectancy is a crucial cognitive factor influencing aggression, yet its neural basis remains unclear. Therefore, the present study combined voxel-based morphometry (VBM) with a resting-state functional connectivity (RSFC) analysis to investigate the brain correlates of positive outcome expectancy in aggression in young people. In the VBM analysis, multiple linear regression was conducted to explore the relationship between individual differences in aggressive positive outcome expectancy and regional gray matter volume (GMV) among 325 undergraduate students. For the RSFC analysis, seed regions were selected based on the results of the VBM analysis. Subsequently, multiple linear regression was employed to examine whether a significant correlation existed between individual differences in aggressive positive outcome expectancy and the RSFC of seed regions with other brain regions in 304 undergraduate students. The findings indicated that aggressive positive outcome expectancy was positively correlated with GMV in the posterior cingulate cortex (PCC), right temporoparietal junction (TPJ), and medial prefrontal cortex (MPFC). Moreover, it was also positively associated with RSFC between the PCC and the left dorsolateral prefrontal cortex (DLPFC). The prediction analysis indicated robust relationships between aggressive positive outcome expectancy and the GMV in the PCC, right TPJ, as well as the RSFC between the PCC and the left DLPFC. Our research provides the initial evidence for the neural basis of positive outcome expectancy in aggression, suggesting the potential role of the PCC as a hub in its neural network.
Collapse
Affiliation(s)
- Jia-Ming Wei
- Research Center of Psychology and Social Development, Faculty of Psychology, Southwest University, Chongqing 400715, China;
- Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, Chongqing 400715, China
| | - Ling-Xiang Xia
- Research Center of Psychology and Social Development, Faculty of Psychology, Southwest University, Chongqing 400715, China;
- Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, Chongqing 400715, China
| |
Collapse
|
29
|
Angeli PA, DiNicola LM, Saadon-Grosman N, Eldaief MC, Buckner RL. Specialization of the Human Hippocampal Long Axis Revisited. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.19.572264. [PMID: 38187548 PMCID: PMC10769203 DOI: 10.1101/2023.12.19.572264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
The hippocampus possesses anatomical differences along its long axis. Here the functional specialization of the human hippocampal long axis was explored using network-anchored precision functional MRI (N = 11) paired with behavioral analyses (N=266). Functional connectivity analyses demonstrated that the anterior hippocampus was preferentially correlated with a cerebral network associated with remembering, while the posterior hippocampus was correlated with a distinct network associated with behavioral salience. Seed regions placed within the hippocampus recapitulated the distinct cerebral networks. Functional characterization using task data within the same intensively sampled individuals discovered a functional double dissociation between the anterior and posterior hippocampal regions. The anterior hippocampal region was sensitive to remembering and imagining the future, specifically tracking the process of scene construction, while the posterior hippocampal region displayed transient responses to targets in an oddball detection task and to transitions between task blocks. These findings suggest specialization along the long axis of the hippocampus with differential responses reflecting the functional properties of the partner cerebral networks.
Collapse
Affiliation(s)
- Peter A Angeli
- Department of Psychology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Lauren M DiNicola
- Department of Psychology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Noam Saadon-Grosman
- Department of Psychology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Mark C Eldaief
- Department of Psychiatry, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Randy L Buckner
- Department of Psychology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
- Department of Psychiatry, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA
| |
Collapse
|
30
|
Perl O, Duek O, Kulkarni KR, Gordon C, Krystal JH, Levy I, Harpaz-Rotem I, Schiller D. Neural patterns differentiate traumatic from sad autobiographical memories in PTSD. Nat Neurosci 2023; 26:2226-2236. [PMID: 38036701 DOI: 10.1038/s41593-023-01483-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/05/2023] [Indexed: 12/02/2023]
Abstract
For people with post-traumatic stress disorder (PTSD), recall of traumatic memories often displays as intrusions that differ profoundly from processing of 'regular' negative memories. These mnemonic features fueled theories speculating a unique cognitive state linked with traumatic memories. Yet, to date, little empirical evidence supports this view. Here we examined neural activity of patients with PTSD who were listening to narratives depicting their own memories. An intersubject representational similarity analysis of cross-subject semantic content and neural patterns revealed a differentiation in hippocampal representation by narrative type: semantically similar, sad autobiographical memories elicited similar neural representations across participants. By contrast, within the same individuals, semantically similar trauma memories were not represented similarly. Furthermore, we were able to decode memory type from hippocampal multivoxel patterns. Finally, individual symptom severity modulated semantic representation of the traumatic narratives in the posterior cingulate cortex. Taken together, these findings suggest that traumatic memories are an alternative cognitive entity that deviates from memory per se.
Collapse
Affiliation(s)
- Ofer Perl
- Center for Computational Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Or Duek
- Department of Epidemiology, Biostatistics and Community Health Sciences, School of Public Health, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- The National Center for PTSD, VA CT Healthcare System, West Haven, CT, USA
| | - Kaustubh R Kulkarni
- Center for Computational Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Charles Gordon
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- The National Center for PTSD, VA CT Healthcare System, West Haven, CT, USA
| | - John H Krystal
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- The National Center for PTSD, VA CT Healthcare System, West Haven, CT, USA
| | - Ifat Levy
- Departments of Comparative Medicine and Neuroscience, Yale University, New Haven, CT, USA
- Department of Psychology and the Wu Tsai Institute, Yale University, New Haven, CT, USA
| | - Ilan Harpaz-Rotem
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA.
- The National Center for PTSD, VA CT Healthcare System, West Haven, CT, USA.
- Department of Psychology and the Wu Tsai Institute, Yale University, New Haven, CT, USA.
| | - Daniela Schiller
- Center for Computational Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
31
|
Gerin MI, Viding E, Herringa RJ, Russell JD, McCrory EJ. A systematic review of childhood maltreatment and resting state functional connectivity. Dev Cogn Neurosci 2023; 64:101322. [PMID: 37952287 PMCID: PMC10665826 DOI: 10.1016/j.dcn.2023.101322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/13/2023] [Accepted: 11/08/2023] [Indexed: 11/14/2023] Open
Abstract
Resting-state functional connectivity (rsFC) has the potential to shed light on how childhood abuse and neglect relates to negative psychiatric outcomes. However, a comprehensive review of the impact of childhood maltreatment on the brain's resting state functional organization has not yet been undertaken. We systematically searched rsFC studies in children and youth exposed to maltreatment. Nineteen studies (total n = 3079) met our inclusion criteria. Two consistent findings were observed. Childhood maltreatment was linked to reduced connectivity between the anterior insula and dorsal anterior cingulate cortex, and with widespread heightened amygdala connectivity with key structures in the salience, default mode, and prefrontal regulatory networks. Other brain regions showing altered connectivity included the ventral anterior cingulate cortex, dorsolateral prefrontal cortex, and hippocampus. These patterns of altered functional connectivity associated with maltreatment exposure were independent of symptoms, yet comparable to those seen in individuals with overt clinical disorder. Summative findings indicate that rsFC alterations associated with maltreatment experience are related to poor cognitive and social functioning and are prognostic of future symptoms. In conclusion, maltreatment is associated with altered rsFC in emotional reactivity, regulation, learning, and salience detection brain circuits. This indicates patterns of recalibration of putative mechanisms implicated in maladaptive developmental outcomes.
Collapse
Affiliation(s)
- Mattia I Gerin
- Division of Psychology and Language Sciences, University College London, London, UK; Anna Freud National Centre for Children and Families, London, UK.
| | - Essi Viding
- Division of Psychology and Language Sciences, University College London, London, UK
| | - Ryan J Herringa
- Department of Psychiatry, University of Wisconsin School of Medicine & Public Health, Madison, WI, UK
| | - Justin D Russell
- Department of Psychiatry, University of Wisconsin School of Medicine & Public Health, Madison, WI, UK
| | - Eamon J McCrory
- Division of Psychology and Language Sciences, University College London, London, UK; Anna Freud National Centre for Children and Families, London, UK
| |
Collapse
|
32
|
van Houtum LAEM, van Schie CC, Wever MCM, Janssen LHC, Wentholt WGM, Tailby C, Grenyer BFS, Will GJ, Tollenaar MS, Elzinga BM. Aberrant neural network activation during reliving of autobiographical memories in adolescent depression. Cortex 2023; 168:14-26. [PMID: 37639906 DOI: 10.1016/j.cortex.2023.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/31/2023] [Accepted: 06/15/2023] [Indexed: 08/31/2023]
Abstract
BACKGROUND Adolescents with depression exhibit negative biases in autobiographical memory with detrimental consequences for their self-concept and well-being. Investigating how adolescents relive positive autobiographical memories and activate the underlying neural networks could reveal mechanisms that drive such biases. This study investigated neural networks when reliving positive and neutral memories, and how neural activity is modulated by valence and vividness in adolescents with and without depression. METHODS Adolescents (N = 69; n = 17 with depression) retrieved positive and neutral autobiographical memories. On a separate day, they relived these memories during fMRI scanning, and reported on pleasantness and vividness after reliving each memory. We used a multivariate, data-driven approach - event-related independent component analysis (eICA) - to characterize neural networks supporting autobiographical recollection. RESULTS Adolescents with depression reported their positive memories as significantly less pleasant compared to healthy controls, while subjective vividness was unaffected. Using eICA, we identified a broad autobiographical memory network, and subnetworks related to reliving positive vs neutral memories. These subnetworks comprised a 'self-referential processing network' including medial prefrontal cortex, posterior cingulate cortex/precuneus, and temporoparietal junction, anti-correlating with parts of the central executive network and salience network. Adolescents with depression exhibited aberrant activation in this self-referential network, but only when reliving relatively 'low' pleasant memories. CONCLUSIONS Our findings provide first insights into how the quality of reliving autobiographical memories in adolescents with depression may relate to aberrant self-referential neural network activation, and underscore the potential of targeting memory reliving in therapeutic interventions to foster self-esteem and diminish depressive symptoms.
Collapse
Affiliation(s)
- Lisanne A E M van Houtum
- Department of Clinical Psychology, Institute of Psychology, Leiden University, Leiden, the Netherlands; Leiden Institute for Brain and Cognition (LIBC), Leiden, the Netherlands.
| | - Charlotte C van Schie
- Department of Clinical Psychology, Institute of Psychology, Leiden University, Leiden, the Netherlands; Leiden Institute for Brain and Cognition (LIBC), Leiden, the Netherlands; Illawarra Health and Medical Research Institute and School of Psychology, University of Wollongong, Wollongong, Australia
| | - Mirjam C M Wever
- Department of Clinical Psychology, Institute of Psychology, Leiden University, Leiden, the Netherlands; Leiden Institute for Brain and Cognition (LIBC), Leiden, the Netherlands
| | - Loes H C Janssen
- Department of Clinical Psychology, Institute of Psychology, Leiden University, Leiden, the Netherlands; Leiden Institute for Brain and Cognition (LIBC), Leiden, the Netherlands
| | - Wilma G M Wentholt
- Department of Clinical Psychology, Institute of Psychology, Leiden University, Leiden, the Netherlands; Leiden Institute for Brain and Cognition (LIBC), Leiden, the Netherlands
| | - Chris Tailby
- Florey Institute of Neuroscience and Mental Health, Heidelberg, Australia
| | - Brin F S Grenyer
- Illawarra Health and Medical Research Institute and School of Psychology, University of Wollongong, Wollongong, Australia
| | - Geert-Jan Will
- Department of Clinical Psychology, Utrecht University, Utrecht, the Netherlands
| | - Marieke S Tollenaar
- Department of Clinical Psychology, Institute of Psychology, Leiden University, Leiden, the Netherlands; Leiden Institute for Brain and Cognition (LIBC), Leiden, the Netherlands
| | - Bernet M Elzinga
- Department of Clinical Psychology, Institute of Psychology, Leiden University, Leiden, the Netherlands; Leiden Institute for Brain and Cognition (LIBC), Leiden, the Netherlands
| |
Collapse
|
33
|
Koslov SR, Kable JW, Foster BL. Dissociable contributions of the medial parietal cortex to recognition memory. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.12.557048. [PMID: 37745317 PMCID: PMC10515876 DOI: 10.1101/2023.09.12.557048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Human neuroimaging studies of episodic memory retrieval routinely observe the engagement of specific cortical regions beyond the medial temporal lobe. Of these, medial parietal cortex (MPC) is of particular interest given its ubiquitous, and yet distinct, functional characteristics during different types of retrieval tasks. Specifically, while recognition memory and autobiographical recall tasks are both used to probe episodic retrieval, these paradigms consistently drive distinct patterns of response within MPC. This dissociation adds to growing evidence suggesting a common principle of functional organization across memory related brain structures, specifically regarding the control or content demands of memory-based decisions. To carefully examine this putative organization, we used a high-resolution fMRI dataset collected at ultra-high field (7T) while subjects performed thousands of recognition-memory trials to identify MPC regions responsive to recognition-decisions or semantic content of stimuli within and across individuals. We observed interleaving, though distinct, functional subregions of MPC where responses were sensitive to either recognition decisions or the semantic representation of stimuli, but rarely both. In addition, this functional dissociation within MPC was further accentuated by distinct profiles of connectivity bias with the hippocampus during task and rest. Finally, we show that recent observations of person and place selectivity within MPC reflect category specific responses from within identified semantic regions that are sensitive to mnemonic demands. Together, these data better account for how distinct patterns of MPC responses can occur as a result of task demands during episodic retrieval and may reflect a common principle of organization throughout hippocampal-neocortical memory systems.
Collapse
Affiliation(s)
- Seth R. Koslov
- Department of Neurosurgery, Perelman School of Medicine; University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Joseph W. Kable
- Department of Psychology; University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Brett L. Foster
- Department of Neurosurgery, Perelman School of Medicine; University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| |
Collapse
|
34
|
Reznik D, Trampel R, Weiskopf N, Witter MP, Doeller CF. Dissociating distinct cortical networks associated with subregions of the human medial temporal lobe using precision neuroimaging. Neuron 2023; 111:2756-2772.e7. [PMID: 37390820 DOI: 10.1016/j.neuron.2023.05.029] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 05/26/2023] [Accepted: 05/27/2023] [Indexed: 07/02/2023]
Abstract
Tract-tracing studies in primates indicate that different subregions of the medial temporal lobe (MTL) are connected with multiple brain regions. However, no clear framework defining the distributed anatomy associated with the human MTL exists. This gap in knowledge originates in notoriously low MRI data quality in the anterior human MTL and in group-level blurring of idiosyncratic anatomy between adjacent brain regions, such as entorhinal and perirhinal cortices, and parahippocampal areas TH/TF. Using MRI, we intensively scanned four human individuals and collected whole-brain data with unprecedented MTL signal quality. Following detailed exploration of cortical networks associated with MTL subregions within each individual, we discovered three biologically meaningful networks associated with the entorhinal cortex, perirhinal cortex, and parahippocampal area TH, respectively. Our findings define the anatomical constraints within which human mnemonic functions must operate and are insightful for examining the evolutionary trajectory of the MTL connectivity across species.
Collapse
Affiliation(s)
- Daniel Reznik
- Department of Psychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | - Robert Trampel
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Nikolaus Weiskopf
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Felix Bloch Institute for Solid State Physics, Faculty of Physics and Earth Sciences, Leipzig University, Leipzig, Germany
| | - Menno P Witter
- Kavli Institute for Systems Neuroscience, Centre for Neural Computation, Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, Jebsen Centre for Alzheimer's Disease, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Christian F Doeller
- Department of Psychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Kavli Institute for Systems Neuroscience, Centre for Neural Computation, Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, Jebsen Centre for Alzheimer's Disease, NTNU Norwegian University of Science and Technology, Trondheim, Norway; Wilhelm Wundt Institute of Psychology, Leipzig University, Leipzig, Germany; Department of Psychology, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
35
|
Clark IA, Maguire EA. Release of cognitive and multimodal MRI data including real-world tasks and hippocampal subfield segmentations. Sci Data 2023; 10:540. [PMID: 37587129 PMCID: PMC10432478 DOI: 10.1038/s41597-023-02449-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 08/07/2023] [Indexed: 08/18/2023] Open
Abstract
We share data from N = 217 healthy adults (mean age 29 years, range 20-41; 109 females, 108 males) who underwent extensive cognitive assessment and neuroimaging to examine the neural basis of individual differences, with a particular focus on a brain structure called the hippocampus. Cognitive data were collected using a wide array of questionnaires, naturalistic tests that examined imagination, autobiographical memory recall and spatial navigation, traditional laboratory-based tests such as recalling word pairs, and comprehensive characterisation of the strategies used to perform the cognitive tests. 3 Tesla MRI data were also acquired and include multi-parameter mapping to examine tissue microstructure, diffusion-weighted MRI, T2-weighted high-resolution partial volume structural MRI scans (with the masks of hippocampal subfields manually segmented from these scans), whole brain resting state functional MRI scans and partial volume high resolution resting state functional MRI scans. This rich dataset will be of value to cognitive and clinical neuroscientists researching individual differences, real-world cognition, brain-behaviour associations, hippocampal subfields and more. All data are freely available on Dryad.
Collapse
Affiliation(s)
- Ian A Clark
- Wellcome Centre for Human Neuroimaging, Department of Imaging Neuroscience, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Eleanor A Maguire
- Wellcome Centre for Human Neuroimaging, Department of Imaging Neuroscience, UCL Queen Square Institute of Neurology, University College London, London, UK.
| |
Collapse
|
36
|
Menon V. 20 years of the default mode network: A review and synthesis. Neuron 2023; 111:2469-2487. [PMID: 37167968 PMCID: PMC10524518 DOI: 10.1016/j.neuron.2023.04.023] [Citation(s) in RCA: 220] [Impact Index Per Article: 110.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/04/2023] [Accepted: 04/20/2023] [Indexed: 05/13/2023]
Abstract
The discovery of the default mode network (DMN) has revolutionized our understanding of the workings of the human brain. Here, I review developments that led to the discovery of the DMN, offer a personal reflection, and consider how our ideas of DMN function have evolved over the past two decades. I summarize literature examining the role of the DMN in self-reference, social cognition, episodic and autobiographical memory, language and semantic memory, and mind wandering. I identify unifying themes and propose new perspectives on the DMN's role in human cognition. I argue that the DMN integrates and broadcasts memory, language, and semantic representations to create a coherent "internal narrative" reflecting our individual experiences. This narrative is central to the construction of a sense of self, shapes how we perceive ourselves and interact with others, may have ontogenetic origins in self-directed speech during childhood, and forms a vital component of human consciousness.
Collapse
Affiliation(s)
- Vinod Menon
- Department of Psychiatry & Behavioral Sciences and Department of Neurology & Neurological Sciences, Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
37
|
Du J, DiNicola LM, Angeli PA, Saadon-Grosman N, Sun W, Kaiser S, Ladopoulou J, Xue A, Yeo BTT, Eldaief MC, Buckner RL. Within-Individual Organization of the Human Cerebral Cortex: Networks, Global Topography, and Function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.08.552437. [PMID: 37609246 PMCID: PMC10441314 DOI: 10.1101/2023.08.08.552437] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
The human cerebral cortex is populated by specialized regions that are organized into networks. Here we estimated networks using a Multi-Session Hierarchical Bayesian Model (MS-HBM) applied to intensively sampled within-individual functional MRI (fMRI) data. The network estimation procedure was initially developed and tested in two participants (each scanned 31 times) and then prospectively applied to 15 new participants (each scanned 8 to 11 times). Detailed analysis of the networks revealed a global organization. Locally organized first-order sensory and motor networks were surrounded by spatially adjacent second-order networks that also linked to distant regions. Third-order networks each possessed regions distributed widely throughout association cortex. Moreover, regions of distinct third-order networks displayed side-by-side juxtapositions with a pattern that repeated similarly across multiple cortical zones. We refer to these as Supra-Areal Association Megaclusters (SAAMs). Within each SAAM, two candidate control regions were typically adjacent to three separate domain-specialized regions. Independent task data were analyzed to explore functional response properties. The somatomotor and visual first-order networks responded to body movements and visual stimulation, respectively. A subset of the second-order networks responded to transients in an oddball detection task, consistent with a role in orienting to salient or novel events. The third-order networks, including distinct regions within each SAAM, showed two levels of functional specialization. Regions linked to candidate control networks responded to working memory load across multiple stimulus domains. The remaining regions within each SAAM did not track working memory load but rather dissociated across language, social, and spatial / episodic processing domains. These results support a model of the cerebral cortex in which progressively higher-order networks nest outwards from primary sensory and motor cortices. Within the apex zones of association cortex there is specialization of large-scale networks that divides domain-flexible from domain-specialized regions repeatedly across parietal, temporal, and prefrontal cortices. We discuss implications of these findings including how repeating organizational motifs may emerge during development.
Collapse
Affiliation(s)
- Jingnan Du
- Department of Psychology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Lauren M DiNicola
- Department of Psychology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Peter A Angeli
- Department of Psychology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Noam Saadon-Grosman
- Department of Psychology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Wendy Sun
- Department of Psychology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Stephanie Kaiser
- Department of Psychology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Joanna Ladopoulou
- Department of Psychology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Aihuiping Xue
- Centre for Sleep & Cognition & Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore
| | - B T Thomas Yeo
- Centre for Sleep & Cognition & Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore
| | - Mark C Eldaief
- Department of Psychiatry, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Randy L Buckner
- Department of Psychology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
- Department of Psychiatry, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA
| |
Collapse
|
38
|
Jackson RL, Humphreys GF, Rice GE, Binney RJ, Lambon Ralph MA. A network-level test of the role of the co-activated default mode network in episodic recall and social cognition. Cortex 2023; 165:141-159. [PMID: 37285763 PMCID: PMC10284259 DOI: 10.1016/j.cortex.2022.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 10/10/2022] [Accepted: 12/19/2022] [Indexed: 06/09/2023]
Abstract
Resting-state network research is extremely influential, yet the functions of many networks remain unknown. In part, this is due to typical (e.g., univariate) analyses independently testing the function of individual regions and not examining the full set of regions that form a network whilst co-activated. Connectivity is dynamic and the function of a region may change based on its current connections. Therefore, determining the function of a network requires assessment at this network-level. Yet popular theories implicating the default mode network (DMN) in episodic memory and social cognition, rest principally upon analyses performed at the level of individual brain regions. Here we use independent component analysis to formally test the role of the DMN in episodic and social processing at the network level. As well as an episodic retrieval task, two independent datasets were employed to assess DMN function across the breadth of social cognition; a person knowledge judgement and a theory of mind task. Each task dataset was separated into networks of co-activated regions. In each, the co-activated DMN, was identified through comparison to an a priori template and its relation to the task model assessed. This co-activated DMN did not show greater activity in episodic or social tasks than high-level baseline conditions. Thus, no evidence was found to support hypotheses that the co-activated DMN is involved in explicit episodic or social tasks at a network-level. The networks associated with these processes are described. Implications for prior univariate findings and the functional significance of the co-activated DMN are considered.
Collapse
Affiliation(s)
- Rebecca L Jackson
- Department of Psychology & York Biomedical Research Institute, University of York, York, UK; MRC Cognition & Brain Sciences Unit, University of Cambridge, Cambridge, UK.
| | - Gina F Humphreys
- MRC Cognition & Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Grace E Rice
- MRC Cognition & Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | | | | |
Collapse
|
39
|
Daviddi S, Pedale T, St Jacques PL, Schacter DL, Santangelo V. Common and distinct correlates of construction and elaboration of episodic-autobiographical memory: An ALE meta-analysis. Cortex 2023; 163:123-138. [PMID: 37104887 PMCID: PMC10192150 DOI: 10.1016/j.cortex.2023.03.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/18/2023] [Accepted: 03/24/2023] [Indexed: 04/03/2023]
Abstract
The recollection of episodic-autobiographical memories (EAMs) entails a complex temporal dynamic, from initial "construction" to subsequent "elaboration" of memories. While there is consensus that EAM retrieval involves a distributed network of brain regions, it is still largely debated which regions specifically contribute to EAM construction and/or elaboration. To clarify this issue, we conducted an Activation Likelihood Estimation (ALE) meta-analysis based on the Preferred Reporting Items for Systematic-Reviews and Meta-Analyses (PRISMA) method. We found common recruitment of the left hippocampus and posterior cingulate cortex (PCC) during both phases. Additionally, EAM construction led to activations in the ventromedial prefrontal cortex, left angular gyrus (AG), right hippocampus, and precuneus, while the right inferior frontal gyrus was activated by EAM elaboration. Although most of these regions are distributed over the default mode network, the current findings highlight a differential contribution according to early (midline regions, left/right hippocampus, and left AG) versus later (left hippocampus, and PCC) recollection. Overall, these findings contribute to clarify the neural correlates that support the temporal dynamics of EAM recollection.
Collapse
Affiliation(s)
- Sarah Daviddi
- Department of Philosophy, Social Sciences & Education, University of Perugia, Italy.
| | - Tiziana Pedale
- Department of Physiology and Pharmacology, Sapienza University of Rome, Italy; Functional Neuroimaging Laboratory, Fondazione Santa Lucia, IRCCS, Rome, Italy
| | | | | | - Valerio Santangelo
- Department of Philosophy, Social Sciences & Education, University of Perugia, Italy; Functional Neuroimaging Laboratory, Fondazione Santa Lucia, IRCCS, Rome, Italy.
| |
Collapse
|
40
|
Amiri S, Mirfazeli FS, Grafman J, Mohammadsadeghi H, Eftekhar M, Karimzad N, Mohebbi M, Nohesara S. Alternation in functional connectivity within default mode network after psychodynamic psychotherapy in borderline personality disorder. Ann Gen Psychiatry 2023; 22:18. [PMID: 37170093 PMCID: PMC10176869 DOI: 10.1186/s12991-023-00449-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/25/2023] [Indexed: 05/13/2023] Open
Abstract
BACKGROUND Borderline personality disorder (BPD) is characterized by impairments in emotion regulation, impulse control, and interpersonal and social functioning along with a deficit in emotional awareness and empathy. In this study, we investigated whether functional connectivity (FC) within the default mode network (DMN) is affected by 1-year psychodynamic psychotherapy in patients with BPD. METHODS Nine BPD patients filled out the demography, Interpersonal Reactive Index (IRI), Toronto Alexithymia Scale 20 (TAS 20), the Alcohol, Smoking, and Substance Involvement Screening Test (ASSIST), and the Borderline Evaluation Severity over Time (BEST) questionnaire. The BPD group (9F) and the control group (9F) had a mean ± SD age of 28.2 ± 5.3 years and 30.4 ± 6.1 years, respectively. BPD subjects underwent longitudinal resting-state fMRI before psychodynamic psychotherapy and then every 4 months for a year after initiating psychotherapy. FC in DMN was characterized by calculating the nodal degree, a measure of centrality in the graph theory. RESULTS The results indicated that patients with BPD present with aberrant DMN connectivity compared to healthy controls. Over a year of psychotherapy, the patients with BPD showed both FC changes (decreasing nodal degree in the dorsal anterior cingulate cortex and increasing in other cingulate cortex regions) and behavioral improvement in their symptoms and substance use. There was also a significant positive association between the decreased nodal degree in regions of the dorsal cingulate cortex and a decrease in the score of the TAS-20 indicating difficulty in identifying feelings after psychotherapy. CONCLUSION In BPD, there is altered FC within the DMN and disruption in self-processing and emotion regulation. Psychotherapy may modify the DMN connectivity and that modification is associated with positive changes in BPD emotional symptoms.
Collapse
Affiliation(s)
- Saba Amiri
- Neuroscience Research Center, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Fatemeh Sadat Mirfazeli
- Department of Psychiatry, School of Medicine, Mental Health Research Center, Psychosocial Health Research Institute, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Jordan Grafman
- Department of Physical Medicine & Rehabilitation, Neurology, Cognitive Neurology and Alzheimer's Center, Department of Psychiatry, Feinberg School of Medicine & Department of Psychology, Weinberg College of Arts and Sciences, Northwestern University, Chicago, IL, USA
| | - Homa Mohammadsadeghi
- Department of Psychiatry, School of Medicine, Mental Health Research Center, Psychosocial Health Research Institute, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| | - Mehrdad Eftekhar
- Department of Psychiatry, School of Medicine, Mental Health Research Center, Psychosocial Health Research Institute, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Nazila Karimzad
- Iran Psychiatric Hospital, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Maryam Mohebbi
- Islamic Azad University Science and Research Branch Qazvin, Qazvin, Iran
| | - Shabnam Nohesara
- Department of Psychiatry, School of Medicine, Mental Health Research Center, Psychosocial Health Research Institute, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| |
Collapse
|
41
|
Sweatman H, Lewis-de los Angeles CP, Zhang J, de los Angeles C, Ofen N, Gabrieli JDE, Chai XJ. Development of the neural correlates of recollection. Cereb Cortex 2023; 33:6028-6037. [PMID: 36520501 PMCID: PMC10183736 DOI: 10.1093/cercor/bhac481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 12/23/2022] Open
Abstract
Recollection of past events has been associated with the core recollection network comprising the posterior medial temporal lobe and parietal regions, as well as the medial prefrontal cortex (mPFC). The development of the brain basis for recollection is understudied. In a sample of adults (n = 22; 18-25 years) and children (n = 23; 9-13 years), the present study aimed to address this knowledge gap using a cued recall paradigm, known to elicit recollection experience. Successful recall was associated with activations in regions of the core recollection network and frontoparietal network. Adults exhibited greater successful recall activations compared with children in the precuneus and right angular gyrus. In contrast, similar levels of successful recall activations were observed in both age groups in the mPFC. Group differences were also seen in the hippocampus and lateral frontal regions. These findings suggest that the engagement of the mPFC in episodic retrieval may be relatively early maturing, whereas the contribution to episodic retrieval of more posterior regions such as the precuneus and angular gyrus undergoes more protracted maturation.
Collapse
Affiliation(s)
- Hilary Sweatman
- Department of Neurology and Neurosurgery, McGill University, 3801 Rue University, Montréal, QC H3A 2B4, Canada
| | - C Paula Lewis-de los Angeles
- Department of Pediatrics, Hasbro Children’s Hospital, Alpert Medical School of Brown University, 593 Eddy St, Providence, RI 02903, United States
| | - Jiahe Zhang
- Northeastern University, 360 Huntington Ave, Boston, MA 02115, United States
| | - Carlo de los Angeles
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, 291 Campus Drive, Stanford, CA 94305, United States
| | - Noa Ofen
- Department of Psychology and the Institute of Gerontology, Wayne State University, 87 East Ferry Street, Detroit, MI 48202, United States
| | - John D E Gabrieli
- Department of Brain and Cognitive Sciences and McGovern Institute for Brain Research, Massachusetts Institute of Technology, 524 Main Street, Cambridge, MA 02139, United States
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, 45 Carleton Street, Cambridge, MA 02142, United States
| | - Xiaoqian J Chai
- Department of Neurology and Neurosurgery, McGill University, 3801 Rue University, Montréal, QC H3A 2B4, Canada
| |
Collapse
|
42
|
Xu S, Zhang Z, Li L, Zhou Y, Lin D, Zhang M, Zhang L, Huang G, Liu X, Becker B, Liang Z. Functional connectivity profiles of the default mode and visual networks reflect temporal accumulative effects of sustained naturalistic emotional experience. Neuroimage 2023; 269:119941. [PMID: 36791897 DOI: 10.1016/j.neuroimage.2023.119941] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/30/2023] [Accepted: 02/11/2023] [Indexed: 02/15/2023] Open
Abstract
Determining and decoding emotional brain processes under ecologically valid conditions remains a key challenge in affective neuroscience. The current functional Magnetic Resonance Imaging (fMRI) based emotion decoding studies are mainly based on brief and isolated episodes of emotion induction, while sustained emotional experience in naturalistic environments that mirror daily life experiences are scarce. Here we used 12 different 10-minute movie clips as ecologically valid emotion-evoking procedures in n = 52 individuals to explore emotion-specific fMRI functional connectivity (FC) profiles on the whole-brain level at high spatial resolution (432 parcellations including cortical and subcortical structures). Employing machine-learning based decoding and cross validation procedures allowed to investigate FC profiles contributing to classification that can accurately distinguish sustained happiness and sadness and that generalize across subjects, movie clips, and parcellations. Both functional brain network-based and subnetwork-based emotion classification results suggested that emotion manifests as distributed representation of multiple networks, rather than a single functional network or subnetwork. Further, the results showed that the Visual Network (VN) and Default Mode Network (DMN) associated functional networks, especially VN-DMN, exhibited a strong contribution to emotion classification. To further estimate the temporal accumulative effect of naturalistic long-term movie-based video-evoking emotions, we divided the 10-min episode into three stages: early stimulation (1∼200 s), middle stimulation (201∼400 s), and late stimulation (401∼600 s) and examined the emotion classification performance at different stimulation stages. We found that the late stimulation contributes most to the classification (accuracy=85.32%, F1-score=85.62%) compared to early and middle stimulation stages, implying that continuous exposure to emotional stimulation can lead to more intense emotions and further enhance emotion-specific distinguishable representations. The present work demonstrated that sustained happiness and sadness under naturalistic conditions are presented in emotion-specific network profiles and these expressions may play different roles in the generation and modulation of emotions. These findings elucidated the importance of network level adaptations for sustained emotional experiences during naturalistic contexts and open new venues for imaging network level contributions under naturalistic conditions.
Collapse
Affiliation(s)
- Shuyue Xu
- School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen 518060, China; Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen 518060, China
| | - Zhiguo Zhang
- Institute of Computing and Intelligence, Harbin Institute of Technology, Shenzhen, China; Peng Cheng Laboratory, Shenzhen 518055, China; Marshall Laboratory of Biomedical Engineering, Shenzhen 518060, China
| | - Linling Li
- School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen 518060, China; Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen 518060, China
| | - Yongjie Zhou
- Department of Psychiatric Rehabilitation, Shenzhen Kangning Hospital, Shenzhen, China
| | - Danyi Lin
- School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen 518060, China; Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen 518060, China
| | - Min Zhang
- Institute of Computing and Intelligence, Harbin Institute of Technology, Shenzhen, China
| | - Li Zhang
- School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen 518060, China; Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen 518060, China
| | - Gan Huang
- School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen 518060, China; Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen 518060, China
| | - Xiqin Liu
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, MOE Key Laboratory for Neuroinformation, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Benjamin Becker
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, MOE Key Laboratory for Neuroinformation, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Zhen Liang
- School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen 518060, China; Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen 518060, China; Marshall Laboratory of Biomedical Engineering, Shenzhen 518060, China.
| |
Collapse
|
43
|
Fan F, Wang Z, Fan H, Shi J, Guo H, Yang F, Tan S, Tan Y. Functional disconnection between subsystems of the default mode network in bipolar disorder. J Affect Disord 2023; 325:22-28. [PMID: 36623564 DOI: 10.1016/j.jad.2023.01.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/09/2023]
Affiliation(s)
- Fengmei Fan
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing 100096, China
| | - Zhiren Wang
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing 100096, China.
| | - Hongzhen Fan
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing 100096, China
| | - Jing Shi
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing 100096, China
| | - Hua Guo
- Zhumadian Psychiatry Hospital Henan Province, China
| | - Fude Yang
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing 100096, China
| | - Shuping Tan
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing 100096, China.
| | - Yunlong Tan
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing 100096, China
| |
Collapse
|
44
|
Atzil S, Satpute AB, Zhang J, Parrish MH, Shablack H, MacCormack JK, Leshin J, Goel S, Brooks JA, Kang J, Xu Y, Cohen M, Lindquist KA. The impact of sociality and affective valence on brain activation: A meta-analysis. Neuroimage 2023; 268:119879. [PMID: 36642154 DOI: 10.1016/j.neuroimage.2023.119879] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 01/07/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
Thirty years of neuroimaging reveal the set of brain regions consistently associated with pleasant and unpleasant affect in humans-or the neural reference space for valence. Yet some of humans' most potent affective states occur in the context of other humans. Prior work has yet to differentiate how the neural reference space for valence varies as a product of the sociality of affective stimuli. To address this question, we meta-analyzed across 614 social and non-social affective neuroimaging contrasts, summarizing the brain regions that are consistently activated for social and non-social affective information. We demonstrate that across the literature, social and non-social affective stimuli yield overlapping activations within regions associated with visceromotor control, including the amygdala, hypothalamus, anterior cingulate cortex and insula. However, we find that social processing differs from non-social affective processing in that it involves additional cortical activations in the medial prefrontal and posterior cingulum that have been associated with mentalizing and prediction. A Bayesian classifier was able to differentiate unpleasant from pleasant affect, but not social from non-social affective states. Moreover, it was not able to classify unpleasantness from pleasantness at the highest levels of sociality. These findings suggest that highly social scenarios may be equally salient to humans, regardless of their valence.
Collapse
Affiliation(s)
- Shir Atzil
- The Hebrew University of Jerusalem, Jerusalem, Israel.
| | | | - Jiahe Zhang
- Northeastern University, Boston, MA, United States
| | | | - Holly Shablack
- Washington and Lee University, Lexington, VA, United States
| | | | - Joseph Leshin
- University of North Carolina, Chapel Hill, NC, United States
| | | | - Jeffrey A Brooks
- Hume AI, New York, NY, United States; University of California, Berkeley, CA, United States
| | - Jian Kang
- University of Michigan, Ann Arbor, MI, United States
| | - Yuliang Xu
- University of Michigan, Ann Arbor, MI, United States
| | - Matan Cohen
- The Hebrew University of Jerusalem, Jerusalem, Israel
| | | |
Collapse
|
45
|
Benzait A, Krenz V, Wegrzyn M, Doll A, Woermann F, Labudda K, Bien CG, Kissler J. Hemodynamic correlates of emotion regulation in frontal lobe epilepsy patients and healthy participants. Hum Brain Mapp 2023; 44:1456-1475. [PMID: 36366744 PMCID: PMC9921231 DOI: 10.1002/hbm.26133] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 09/15/2022] [Accepted: 10/11/2022] [Indexed: 11/13/2022] Open
Abstract
The ability to regulate emotions is indispensable for maintaining psychological health. It heavily relies on frontal lobe functions which are disrupted in frontal lobe epilepsy. Accordingly, emotional dysregulation and use of maladaptive emotion regulation strategies have been reported in frontal lobe epilepsy patients. Therefore, it is of clinical and scientific interest to investigate emotion regulation in frontal lobe epilepsy. We studied neural correlates of upregulating and downregulating emotions toward aversive pictures through reappraisal in 18 frontal lobe epilepsy patients and 17 healthy controls using functional magnetic resonance imaging. Patients tended to report more difficulties with impulse control than controls. On the neural level, patients had diminished activity during upregulation in distributed left-sided regions, including ventrolateral and dorsomedial prefrontal cortex, angular gyrus and anterior temporal gyrus. Patients also showed less activity than controls in the left precuneus for upregulation compared to downregulation. Unlike controls, they displayed no task-related activity changes in the left amygdala, whereas the right amygdala showed task-related modulations in both groups. Upregulation-related activity changes in the left inferior frontal gyrus, insula, orbitofrontal cortex, anterior and posterior cingulate cortex, and precuneus were correlated with questionnaire data on habitual emotion regulation. Our results show that structural or functional impairments in the frontal lobes disrupt neural mechanisms underlying emotion regulation through reappraisal throughout the brain, including posterior regions involved in semantic control. Findings on the amygdala as a major target of emotion regulation are in line with the view that specifically the left amygdala is connected with semantic processing networks.
Collapse
Affiliation(s)
- Anissa Benzait
- Department of Psychology, Bielefeld University, Bielefeld, Germany
| | - Valentina Krenz
- Department of Psychology, University of Hamburg, Hamburg, Germany
| | - Martin Wegrzyn
- Department of Psychology, Bielefeld University, Bielefeld, Germany
| | - Anna Doll
- Department of Psychology, Bielefeld University, Bielefeld, Germany.,Department of Epileptology (Mara Hospital), Medical School, Bielefeld University, Bielefeld, Germany
| | - Friedrich Woermann
- Department of Epileptology (Mara Hospital), Medical School, Bielefeld University, Bielefeld, Germany
| | - Kirsten Labudda
- Department of Psychology, Bielefeld University, Bielefeld, Germany
| | - Christian G Bien
- Department of Epileptology (Mara Hospital), Medical School, Bielefeld University, Bielefeld, Germany
| | - Johanna Kissler
- Department of Psychology, Bielefeld University, Bielefeld, Germany.,Center of Excellence Cognitive Interaction Technology (CITEC), Bielefeld University, Bielefeld, Germany
| |
Collapse
|
46
|
To Do or Not to Do: The cerebellum and neocortex contribute to predicting sequences of social intentions. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2023; 23:323-339. [PMID: 36788200 PMCID: PMC10049953 DOI: 10.3758/s13415-023-01071-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Accepted: 01/25/2023] [Indexed: 02/16/2023]
Abstract
Humans read the minds of others to predict their actions and efficiently navigate social environments, a capacity called mentalizing. Accumulating evidence suggests that the cerebellum, especially Crus 1 and 2, and lobule IX are involved in identifying the sequence of others' actions. In the current study, we investigated the neural correlates that underly predicting others' intentions and how this plays out in the sequence of their actions. We developed a novel intention prediction task, which required participants to put protagonists' behaviors in the correct chronological order based on the protagonists' honest or deceitful intentions (i.e., inducing true or false beliefs in others). We found robust activation of cerebellar lobule IX and key mentalizing areas in the neocortex when participants ordered protagonists' intentional behaviors compared with not ordering behaviors or to ordering object scenarios. Unlike a previous task that involved prediction based on personality traits that recruited cerebellar Crus 1 and 2, and lobule IX (Haihambo et al., 2021), the present task recruited only the cerebellar lobule IX. These results suggest that cerebellar lobule IX may be generally involved in social action sequence prediction, and that different areas of the cerebellum are specialized for distinct mentalizing functions.
Collapse
|
47
|
Perez DC, Dworetsky A, Braga RM, Beeman M, Gratton C. Hemispheric Asymmetries of Individual Differences in Functional Connectivity. J Cogn Neurosci 2023; 35:200-225. [PMID: 36378901 PMCID: PMC10029817 DOI: 10.1162/jocn_a_01945] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Resting-state fMRI studies have revealed that individuals exhibit stable, functionally meaningful divergences in large-scale network organization. The locations with strongest deviations (called network "variants") have a characteristic spatial distribution, with qualitative evidence from prior reports suggesting that this distribution differs across hemispheres. Hemispheric asymmetries can inform us on constraints guiding the development of these idiosyncratic regions. Here, we used data from the Human Connectome Project to systematically investigate hemispheric differences in network variants. Variants were significantly larger in the right hemisphere, particularly along the frontal operculum and medial frontal cortex. Variants in the left hemisphere appeared most commonly around the TPJ. We investigated how variant asymmetries vary by functional network and how they compare with typical network distributions. For some networks, variants seemingly increase group-average network asymmetries (e.g., the group-average language network is slightly bigger in the left hemisphere and variants also appeared more frequently in that hemisphere). For other networks, variants counter the group-average network asymmetries (e.g., the default mode network is slightly bigger in the left hemisphere, but variants were more frequent in the right hemisphere). Intriguingly, left- and right-handers differed in their network variant asymmetries for the cingulo-opercular and frontoparietal networks, suggesting that variant asymmetries are connected to lateralized traits. These findings demonstrate that idiosyncratic aspects of brain organization differ systematically across the hemispheres. We discuss how these asymmetries in brain organization may inform us on developmental constraints of network variants and how they may relate to functions differentially linked to the two hemispheres.
Collapse
Affiliation(s)
| | | | | | | | - Caterina Gratton
- Northwestern University, Evanston, IL
- Florida State University, Tallahassee
| |
Collapse
|
48
|
Similarity in activity and laterality patterns in the angular gyrus during autobiographical memory retrieval and self-referential processing. Brain Struct Funct 2023; 228:219-238. [PMID: 36166073 DOI: 10.1007/s00429-022-02569-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 09/07/2022] [Indexed: 01/07/2023]
Abstract
Long-term memory is arguably one of the key cognitive functions. At the neural level, the lateral parietal cortex and the angular gyrus, particularly in the left hemisphere, exhibit strong activations during autobiographical and episodic memory retrieval. In a separate sub-field, left-lateralized activations of the angular gyrus are also found during self-referential processing, defined as higher activity when a trait term is judged by participants as being related to them vs. related to someone else. The question is whether episodic/autobiographical memory retrieval and self-referential processing effects are related. In the present study, thirty participants participated in the fMRI study with two separate experiments: autobiographical memory retrieval (Experiment 1) and self-referential processing (Experiment 2). In a series of analyses, including the most critical spatial correlation analysis between experiments, we found neural similarity between autobiographical memory retrieval and self-referential processing. Given that self-referential processing was identified in a selective way, the most plausible interpretation of our findings is that self-referential processing might partly explain the activation of the left angular gyrus during autobiographical memory retrieval. Our results are in line with the seminal view of Endel Tulving that the sense of self is a fundamental attribute of long-term memory recollection. However, it should be emphasized that: a) our results do not imply that the left angular gyrus is not involved in the retrieval of episodic memory details; and b) given that our experiment included an autobiographical memory task, generalization of our results to the episodic memory laboratory tasks has yet to be tested.
Collapse
|
49
|
DiNicola LM, Ariyo OI, Buckner RL. Functional specialization of parallel distributed networks revealed by analysis of trial-to-trial variation in processing demands. J Neurophysiol 2023; 129:17-40. [PMID: 36197013 PMCID: PMC9799157 DOI: 10.1152/jn.00211.2022] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Multiple large-scale networks populate human association cortex. Here, we explored the functional properties of these networks by exploiting trial-to-trial variation in component-processing demands. In two behavioral studies (n = 136 and n = 238), participants quantified strategies used to solve individual task trials that spanned remembering, imagining future scenarios, and various control trials. These trials were also all scanned in an independent sample of functional MRI participants (n = 10), each with sufficient data to precisely define within-individual networks. Stable latent factors varied across trials and correlated with trial-level functional responses selectively across networks. One network linked to parahippocampal cortex, labeled Default Network A (DN-A), tracked scene construction, including for control trials that possessed minimal episodic memory demands. To the degree, a trial encouraged participants to construct a mental scene with imagery and awareness about spatial locations of objects or places, the response in DN-A increased. The juxtaposed Default Network B (DN-B) showed no such response but varied in relation to social processing demands. Another adjacent network, labeled Frontoparietal Network B (FPN-B), robustly correlated with trial difficulty. These results support that DN-A and DN-B are specialized networks differentially supporting information processing within spatial and social domains. Both networks are dissociable from a closely juxtaposed domain-general control network that tracks cognitive effort.NEW & NOTEWORTHY Tasks shown to differentially recruit parallel association networks are multifaceted, leaving open questions about network processes. Here, examining trial-to-trial network response properties in relation to trial traits reveals new insights into network functions. In particular, processes linked to scene construction selectively recruit a distributed network with links to parahippocampal and retrosplenial cortices, including during trials designed not to rely on the personal past. Adjacent networks show distinct patterns, providing novel evidence of functional specialization.
Collapse
Affiliation(s)
- Lauren M. DiNicola
- 1Department of Psychology, Center for Brain Science, Harvard University, Cambridge, Massachusetts
| | - Oluwatobi I. Ariyo
- 1Department of Psychology, Center for Brain Science, Harvard University, Cambridge, Massachusetts
| | - Randy L. Buckner
- 1Department of Psychology, Center for Brain Science, Harvard University, Cambridge, Massachusetts,2Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts,3Department of Psychiatry, Massachusetts General Hospital, Charlestown, Massachusetts
| |
Collapse
|
50
|
Nashiro K, Yoo HJ, Min J, Cho C, Nasseri P, Zhang Y, Lehrer P, Thayer JF, Mather M. Effects of a randomised trial of 5-week heart rate variability biofeedback intervention on mind wandering and associated brain function. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2022; 22:1349-1357. [PMID: 35761030 PMCID: PMC11226233 DOI: 10.3758/s13415-022-01019-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/01/2022] [Indexed: 01/27/2023]
Abstract
Previous research suggests that excessive negative self-related thought during mind wandering involves the default mode network (DMN) core subsystem and the orbitofrontal cortex (OFC). Heart rate variability (HRV) biofeedback, which involves slow paced breathing to increase HRV, is known to promote emotional well-being. However, it remains unclear whether it has positive effects on mind wandering and associated brain function. We conducted a study where young adults were randomly assigned to one of two 5-week interventions involving daily biofeedback that either increased heart rate oscillations via slow paced breathing (Osc+ condition) or had little effect on heart rate oscillations (active control or Osc- condition). The two intervention conditions did not differentially affect mind wandering and DMN core-OFC functional connectivity. However, the magnitude of participants' heart rate oscillations during daily biofeedback practice was associated with pre-to-post decreases in mind wandering and in DMN core-OFC functional connectivity. Furthermore, the reduction in the DMN core-OFC connectivity was associated with a decrease in mind wandering. Our results suggested that daily sessions involving high amplitude heart rate oscillations may help reduce negative mind wandering and associated brain function.
Collapse
|