1
|
Hssain-Khalladi S, Giron A, Huneau C, Gitton C, Schwartz D, George N, Le Van Quyen M, Marrelec G, Marchand-Pauvert V. Further characterisation of late somatosensory evoked potentials using electroencephalogram and magnetoencephalogram source imaging. Eur J Neurosci 2024; 60:3772-3794. [PMID: 38726801 DOI: 10.1111/ejn.16379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 09/27/2023] [Accepted: 04/18/2024] [Indexed: 07/06/2024]
Abstract
Beside the well-documented involvement of secondary somatosensory area, the cortical network underlying late somatosensory evoked potentials (P60/N60 and P100/N100) is still unknown. Electroencephalogram and magnetoencephalogram source imaging were performed to further investigate the origin of the brain cortical areas involved in late somatosensory evoked potentials, using sensory inputs of different strengths and by testing the correlation between cortical sources. Simultaneous high-density electroencephalograms and magnetoencephalograms were performed in 19 participants, and electrical stimulation was applied to the median nerve (wrist level) at intensity between 1.5 and 9 times the perceptual threshold. Source imaging was undertaken to map the stimulus-induced brain cortical activity according to each individual brain magnetic resonance imaging, during three windows of analysis covering early and late somatosensory evoked potentials. Results for P60/N60 and P100/N100 were compared with those for P20/N20 (early response). According to literature, maximal activity during P20/N20 was found in central sulcus contralateral to stimulation site. During P60/N60 and P100/N100, activity was observed in contralateral primary sensorimotor area, secondary somatosensory area (on both hemispheres) and premotor and multisensory associative cortices. Late responses exhibited similar characteristics but different from P20/N20, and no significant correlation was found between early and late generated activities. Specific clusters of cortical activities were activated with specific input/output relationships underlying early and late somatosensory evoked potentials. Cortical networks, partly common to and distinct from early somatosensory responses, contribute to late responses, all participating in the complex somatosensory brain processing.
Collapse
Affiliation(s)
- Sahar Hssain-Khalladi
- Sorbonne Université, Inserm, CNRS, Laboratoire d'Imagerie Biomédicale, LIB, Paris, France
- Sorbonne Université, Laboratoire d'Excellence SMART, Paris, France
| | - Alain Giron
- Sorbonne Université, Inserm, CNRS, Laboratoire d'Imagerie Biomédicale, LIB, Paris, France
| | - Clément Huneau
- Université de Nantes, CNRS, Laboratoire des Sciences du Numérique de Nantes, LS2N, Nantes, France
| | - Christophe Gitton
- Sorbonne Université, Inserm, CNRS, Institut du Cerveau, ICM, Paris, France
| | - Denis Schwartz
- Sorbonne Université, Inserm, CNRS, Institut du Cerveau, ICM, Paris, France
| | - Nathalie George
- Sorbonne Université, Inserm, CNRS, Institut du Cerveau, ICM, Paris, France
| | - Michel Le Van Quyen
- Sorbonne Université, Inserm, CNRS, Laboratoire d'Imagerie Biomédicale, LIB, Paris, France
| | - Guillaume Marrelec
- Sorbonne Université, Inserm, CNRS, Laboratoire d'Imagerie Biomédicale, LIB, Paris, France
| | | |
Collapse
|
2
|
Zuppichini MD, Sivakolundu DK, West KL, Okuda DT, Rypma B. Investigating the link between regional oxygen metabolism and cognitive speed in multiple sclerosis: Implications for fatigue. Mult Scler Relat Disord 2023; 80:105074. [PMID: 37866021 DOI: 10.1016/j.msard.2023.105074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/24/2023]
Abstract
BACKGROUND Most multiple sclerosis (MS) patients experience fatigue and cognitive decline but the underlying mechanisms remain unknown. Previous work has shown whole brain resting cerebral metabolic rate of oxygen (CMRO2) is associated with the extent of these symptoms. However, it is not known if the association between global CMRO2 and MS-related cognitive speed and fatigue can be localized to specific brain regions. Based upon previous research suggesting prefrontal involvement in MS-related changes in cognitive speed and fatigue, we hypothesized that oxygen metabolic changes within prefrontal cortex (PFC) might form the pathophysiologic basis of cognitive performance and fatigue in MS patients. OBJECTIVE Investigate whether PFC ΔCMRO2 is associated with cognitive speed and fatigue in MS. METHODS MS and healthy control (HC) participants were scanned using a dual--echo fMRI sequence and underwent a hypercapnia calibration experiment that permitted estimation of ΔCMRO2 while performing a scanner version of symbol-digit modalities task, a measure of information processing speed and utilized in the clinic as a reliable sentinel biomarker for global cognitive impairment in MS. Participants then completed the Modified Fatigue Impact Scale (MFIS) to measure fatigue. RESULTS MS patients exhibited significant reductions in cognitive performance relative to HCs (p < 0.04). Prefrontal ΔCMRO2 explained significant variability (ΔR2 = 0.11) in cognitive speed, over and above disease and demographic variables, for the MS group only. Prefrontal ΔCMRO2 was not associated with fatigue across groups. ΔCMRO2 in visual and motor areas were not associated with cognitive performance or fatigue for either group. CONCLUSION Prefrontal oxygen metabolism may be a sensitive measure of MS-related cognitive decline.
Collapse
Affiliation(s)
- Mark D Zuppichini
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | - Dinesh K Sivakolundu
- Department of Neurology, Yale School of Medicine and Yale New-Haven Hospital, New Haven, CT, USA
| | - Kathryn L West
- Center for BrainHealth, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, TX, USA
| | - Darin T Okuda
- Clinical Center for Multiple Sclerosis, Neuroinnovation Program, Multiple Sclerosis & Neuroimmunology Imaging Program, Department of Neurology & Neurotherapeutics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Bart Rypma
- Center for BrainHealth, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, TX, USA; Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
3
|
Månsson KNT, Cortes DS, Manzouri A, Li TQ, Hau S, Fischer H. Viewing Pictures Triggers Rapid Morphological Enlargement in the Human Visual Cortex. Cereb Cortex 2021; 30:851-857. [PMID: 31408088 PMCID: PMC7132946 DOI: 10.1093/cercor/bhz131] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 05/03/2019] [Accepted: 05/29/2019] [Indexed: 12/21/2022] Open
Abstract
Measuring brain morphology with non-invasive structural magnetic resonance imaging is common practice, and can be used to investigate neuroplasticity. Brain morphology changes have been reported over the course of weeks, days, and hours in both animals and humans. If such short-term changes occur even faster, rapid morphological changes while being scanned could have important implications. In a randomized within-subject study on 47 healthy individuals, two high-resolution T1-weighted anatomical images were acquired (á 263 s) per individual. The images were acquired during passive viewing of pictures or a fixation cross. Two common pipelines for analyzing brain images were used: voxel-based morphometry on gray matter (GM) volume and surface-based cortical thickness. We found that the measures of both GM volume and cortical thickness showed increases in the visual cortex while viewing pictures relative to a fixation cross. The increase was distributed across the two hemispheres and significant at a corrected level. Thus, brain morphology enlargements were detected in less than 263 s. Neuroplasticity is a far more dynamic process than previously shown, suggesting that individuals’ current mental state affects indices of brain morphology. This needs to be taken into account in future morphology studies and in everyday clinical practice.
Collapse
Affiliation(s)
- Kristoffer N T Månsson
- Department of Psychology, Stockholm University, SE-10691 Stockholm, Sweden.,Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Stockholm County Council, SE-17177 Stockholm, Sweden.,Department of Psychology, Uppsala University, SE-75142 Uppsala, Sweden
| | - Diana S Cortes
- Department of Psychology, Stockholm University, SE-10691 Stockholm, Sweden
| | - Amir Manzouri
- Department of Psychology, Stockholm University, SE-10691 Stockholm, Sweden
| | - Tie-Qiang Li
- Department of Clinical Science, Intervention and Technology, Division of Functional Imaging and Technology, Karolinska Institutet, SE-141 86 Stockholm, Sweden.,Department of Medical Radiation and Nuclear Medicine, C2-76, Karolinska University Hospital, S-141 86 Stockholm, Sweden
| | - Stephan Hau
- Department of Psychology, Stockholm University, SE-10691 Stockholm, Sweden
| | - Håkan Fischer
- Department of Psychology, Stockholm University, SE-10691 Stockholm, Sweden
| |
Collapse
|
4
|
Sivakolundu DK, West KL, Zuppichini M, Turner MP, Abdelkarim D, Zhao Y, Spence JS, Lu H, Okuda DT, Rypma B. The neurovascular basis of processing speed differences in humans: A model-systems approach using multiple sclerosis. Neuroimage 2020; 215:116812. [PMID: 32276075 DOI: 10.1016/j.neuroimage.2020.116812] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 03/16/2020] [Accepted: 03/21/2020] [Indexed: 12/29/2022] Open
Abstract
Behavioral studies investigating fundamental cognitive abilities provide evidence that processing speed accounts for large proportions of performance variability between individuals. Processing speed decline is a hallmark feature of the cognitive disruption observed in healthy aging and in demyelinating diseases such as multiple sclerosis (MS), neuromyelitis optica, and Wilson's disease. Despite the wealth of evidence suggesting a central role for processing speed in cognitive decline, the neural mechanisms of this fundamental ability remain unknown. Intact neurovascular coupling, acute localized blood flow increases following neural activity, is essential for optimal neural function. We hypothesized that efficient coupling forms the neural basis of processing speed. Because MS features neural-glial-vascular system disruption, we used it as a model to test this hypothesis. To assess the integrity of the coupling system, we measured blood-oxygen-level-dependent (BOLD) signal in healthy controls (HCs) and MS patients using a 3T MRI scanner while they viewed radial checkerboards that flickered periodically at 8 Hz. To assess processing speed and cognitive function, we administered a battery of neuropsychological tests. While MS patients exhibited reduced ΔBOLD with reductions in processing speed, no such relationships were observed in HCs. To further investigate the mechanisms that underlie ΔBOLD-processing speed relationships, we assessed the physiologic components that constitute ΔBOLD signal (i.e., cerebral blood flow, ΔCBF; cerebral metabolic rate of oxygen, ΔCMRO2; neurovascular coupling ratio) in speed-preserved and -impaired MS patients. While ΔCBF and ΔCMRO2 showed no group-differences, the neurovascular coupling ratio was significantly reduced in speed-impaired MS patients compared to speed-preserved MS patients. Together, these results suggest that neurovascular uncoupling might underlie cognitive slowing in MS and might be the central pathogenic mechanism governing processing speed decline.
Collapse
Affiliation(s)
- Dinesh K Sivakolundu
- Center for BrainHealth, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, TX, USA; Department of Biological Sciences, The University of Texas at Dallas, Dallas, TX, USA
| | - Kathryn L West
- Center for BrainHealth, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, TX, USA
| | - Mark Zuppichini
- Center for BrainHealth, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, TX, USA
| | - Monroe P Turner
- Center for BrainHealth, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, TX, USA
| | - Dema Abdelkarim
- Center for BrainHealth, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, TX, USA
| | - Yuguang Zhao
- Center for BrainHealth, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, TX, USA
| | - Jeffrey S Spence
- Center for BrainHealth, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, TX, USA
| | - Hanzhang Lu
- Department of Radiology, Johns Hopkins University, Baltimore, MD, USA
| | - Darin T Okuda
- Clinical Center for Multiple Sclerosis, Neuroinnovation Program, Multiple Sclerosis & Neuroimmunology Imaging Program, Department of Neurology & Neurotherapeutics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Bart Rypma
- Center for BrainHealth, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, TX, USA; Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
5
|
Hoiland RL, Fisher JA, Ainslie PN. Regulation of the Cerebral Circulation by Arterial Carbon Dioxide. Compr Physiol 2019; 9:1101-1154. [DOI: 10.1002/cphy.c180021] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
6
|
Silva JPS, Mônaco LDM, Paschoal AM, Oliveira ÍAFD, Leoni RF. Effects of global signal regression and subtraction methods on resting-state functional connectivity using arterial spin labeling data. Magn Reson Imaging 2018; 51:151-157. [DOI: 10.1016/j.mri.2018.05.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/04/2018] [Accepted: 05/14/2018] [Indexed: 11/28/2022]
|
7
|
Chiacchiaretta P, Cerritelli F, Bubbico G, Perrucci MG, Ferretti A. Reduced Dynamic Coupling Between Spontaneous BOLD-CBF Fluctuations in Older Adults: A Dual-Echo pCASL Study. Front Aging Neurosci 2018; 10:115. [PMID: 29740310 PMCID: PMC5925323 DOI: 10.3389/fnagi.2018.00115] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 04/03/2018] [Indexed: 11/13/2022] Open
Abstract
Measurement of the dynamic coupling between spontaneous Blood Oxygenation Level Dependent (BOLD) and cerebral blood flow (CBF) fluctuations has been recently proposed as a method to probe resting-state brain physiology. Here we investigated how the dynamic BOLD-CBF coupling during resting-state is affected by aging. Fifteen young subjects and 17 healthy elderlies were studied using a dual-echo pCASL sequence. We found that the dynamic BOLD-CBF coupling was markedly reduced in elderlies, in particular in the left supramarginal gyrus, an area known to be involved in verbal working memory and episodic memory. Moreover, correcting for temporal shift between BOLD and CBF timecourses resulted in an increased correlation of the two signals for both groups, but with a larger increase for elderlies. However, even after temporal shift correction, a significantly decreased correlation was still observed for elderlies in the left supramarginal gyrus, indicating that the age-related dynamic BOLD-CBF uncoupling in this region is more pronounced and can be only partially explained with a simple time-shift between the two signals. Interestingly, these results were observed in a group of elderlies with normal cognitive functions, suggesting that the study of dynamic BOLD-CBF coupling during resting-state is a promising technique, potentially able to provide early biomarkers of functional changes in the aging brain.
Collapse
Affiliation(s)
- Piero Chiacchiaretta
- Department of Neuroscience, Imaging and Clinical Sciences, Università degli Studi G. d'Annunzio Chieti e Pescara, Chieti, Italy.,Institute for Advanced Biomedical Technologies (ITAB), Università degli Studi G. d'Annunzio Chieti e Pescara, Chieti, Italy
| | - Francesco Cerritelli
- Department of Neuroscience, Imaging and Clinical Sciences, Università degli Studi G. d'Annunzio Chieti e Pescara, Chieti, Italy.,Institute for Advanced Biomedical Technologies (ITAB), Università degli Studi G. d'Annunzio Chieti e Pescara, Chieti, Italy.,Clinical-Based Human Research Department-C.O.M.E. Collaboration ONLUS, Pescara, Italy
| | - Giovanna Bubbico
- Department of Neuroscience, Imaging and Clinical Sciences, Università degli Studi G. d'Annunzio Chieti e Pescara, Chieti, Italy.,Institute for Advanced Biomedical Technologies (ITAB), Università degli Studi G. d'Annunzio Chieti e Pescara, Chieti, Italy
| | - Mauro Gianni Perrucci
- Department of Neuroscience, Imaging and Clinical Sciences, Università degli Studi G. d'Annunzio Chieti e Pescara, Chieti, Italy.,Institute for Advanced Biomedical Technologies (ITAB), Università degli Studi G. d'Annunzio Chieti e Pescara, Chieti, Italy
| | - Antonio Ferretti
- Department of Neuroscience, Imaging and Clinical Sciences, Università degli Studi G. d'Annunzio Chieti e Pescara, Chieti, Italy.,Institute for Advanced Biomedical Technologies (ITAB), Università degli Studi G. d'Annunzio Chieti e Pescara, Chieti, Italy
| |
Collapse
|
8
|
Storti SF, Galazzo IB, Pizzini FB, Menegaz G. Dual-echo ASL based assessment of motor networks: a feasibility study. J Neural Eng 2018; 15:026018. [DOI: 10.1088/1741-2552/aa8b27] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
9
|
Havlicek M, Ivanov D, Roebroeck A, Uludağ K. Determining Excitatory and Inhibitory Neuronal Activity from Multimodal fMRI Data Using a Generative Hemodynamic Model. Front Neurosci 2017; 11:616. [PMID: 29249925 PMCID: PMC5715391 DOI: 10.3389/fnins.2017.00616] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 10/23/2017] [Indexed: 12/12/2022] Open
Abstract
Hemodynamic responses, in general, and the blood oxygenation level-dependent (BOLD) fMRI signal, in particular, provide an indirect measure of neuronal activity. There is strong evidence that the BOLD response correlates well with post-synaptic changes, induced by changes in the excitatory and inhibitory (E-I) balance between active neuronal populations. Typical BOLD responses exhibit transients, such as the early-overshoot and post-stimulus undershoot, that can be linked to transients in neuronal activity, but they can also result from vascular uncoupling between cerebral blood flow (CBF) and venous cerebral blood volume (venous CBV). Recently, we have proposed a novel generative hemodynamic model of the BOLD signal within the dynamic causal modeling framework, inspired by physiological observations, called P-DCM (Havlicek et al., 2015). We demonstrated the generative model's ability to more accurately model commonly observed neuronal and vascular transients in single regions but also effective connectivity between multiple brain areas (Havlicek et al., 2017b). In this paper, we additionally demonstrate the versatility of the generative model to jointly explain dynamic relationships between neuronal and hemodynamic physiological variables underlying the BOLD signal using multi-modal data. For this purpose, we utilized three distinct data-sets of experimentally induced responses in the primary visual areas measured in human, cat, and monkey brain, respectively: (1) CBF and BOLD responses; (2) CBF, total CBV, and BOLD responses (Jin and Kim, 2008); and (3) positive and negative neuronal and BOLD responses (Shmuel et al., 2006). By fitting the generative model to the three multi-modal experimental data-sets, we showed that the presence or absence of dynamic features in the BOLD signal is not an unambiguous indication of presence or absence of those features on the neuronal level. Nevertheless, the generative model that takes into account the dynamics of the physiological mechanisms underlying the BOLD response allowed dissociating neuronal from vascular transients and deducing excitatory and inhibitory neuronal activity time-courses from BOLD data alone and from multi-modal data.
Collapse
Affiliation(s)
- Martin Havlicek
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Dimo Ivanov
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Alard Roebroeck
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Kamil Uludağ
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
10
|
Galli G, Santarnecchi E, Feurra M, Bonifazi M, Rossi S, Paulus MP, Rossi A. Individual and sex-related differences in pain and relief responsiveness are associated with differences in resting-state functional networks in healthy volunteers. Eur J Neurosci 2015; 43:486-93. [DOI: 10.1111/ejn.13125] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 10/05/2015] [Accepted: 11/02/2015] [Indexed: 01/04/2023]
Affiliation(s)
- Giulia Galli
- Department of Psychology; Kingston University; Penrhyn Road Kingston Upon Thames Surrey KT1 2EE London UK
- Neurologia e Neurofisiologia Clinica; Dipartimento di Scienze Neurologiche e Neurosensoriali Azienda Ospedaliera Universitaria Senese; Brain Investigation & Neuromodulation Lab (Si-Bin Lab); Siena Italy
| | - Emiliano Santarnecchi
- Neurologia e Neurofisiologia Clinica; Dipartimento di Scienze Neurologiche e Neurosensoriali Azienda Ospedaliera Universitaria Senese; Brain Investigation & Neuromodulation Lab (Si-Bin Lab); Siena Italy
- Berenson-Allen Center for Non-Invasive Brain Stimulation; Beth Israel Deaconess Medical Center; Harvard University; Boston MA USA
| | - Matteo Feurra
- Neurologia e Neurofisiologia Clinica; Dipartimento di Scienze Neurologiche e Neurosensoriali Azienda Ospedaliera Universitaria Senese; Brain Investigation & Neuromodulation Lab (Si-Bin Lab); Siena Italy
- School of Psychology; Centre for Cognition and Decision Making; National Research University; Higher School of Economics; Moscow Russia
| | - Marco Bonifazi
- Neurologia e Neurofisiologia Clinica; Dipartimento di Scienze Neurologiche e Neurosensoriali Azienda Ospedaliera Universitaria Senese; Brain Investigation & Neuromodulation Lab (Si-Bin Lab); Siena Italy
| | - Simone Rossi
- Neurologia e Neurofisiologia Clinica; Dipartimento di Scienze Neurologiche e Neurosensoriali Azienda Ospedaliera Universitaria Senese; Brain Investigation & Neuromodulation Lab (Si-Bin Lab); Siena Italy
| | - Martin P. Paulus
- Laureate Institute for Brain Research; Tulsa OK USA
- Veterans Affairs Health Care System; San Diego CA USA
| | - Alessandro Rossi
- Neurologia e Neurofisiologia Clinica; Dipartimento di Scienze Neurologiche e Neurosensoriali Azienda Ospedaliera Universitaria Senese; Brain Investigation & Neuromodulation Lab (Si-Bin Lab); Siena Italy
- Dipartimento di Scienze Mediche; Chirurgiche e Neuroscienze; Università di Siena; Italy
| |
Collapse
|
11
|
Poublanc J, Crawley AP, Sobczyk O, Montandon G, Sam K, Mandell DM, Dufort P, Venkatraghavan L, Duffin J, Mikulis DJ, Fisher JA. Measuring cerebrovascular reactivity: the dynamic response to a step hypercapnic stimulus. J Cereb Blood Flow Metab 2015; 35:1746-56. [PMID: 26126862 PMCID: PMC4635229 DOI: 10.1038/jcbfm.2015.114] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 04/13/2015] [Accepted: 04/14/2015] [Indexed: 11/09/2022]
Abstract
We define cerebral vascular reactivity (CVR) as the ratio of the change in blood oxygen level-dependent (BOLD) magnetic resonance imaging (MRI) signal (S) to an increase in blood partial pressure of CO2 (PCO2): % Δ S/Δ PCO2 mm Hg. Our aim was to further characterize CVR into dynamic and static components and then study 46 healthy subjects collated into a reference atlas and 20 patients with unilateral carotid artery stenosis. We applied an abrupt boxcar change in PCO2 and monitored S. We convolved the PCO2 with a set of first-order exponential functions whose time constant τ was increased in 2-second intervals between 2 and 100 seconds. The τ corresponding to the best fit between S and the convolved PCO2 was used to score the speed of response. Additionally, the slope of the regression between S and the convolved PCO2 represents the steady-state CVR (ssCVR). We found that both prolongations of τ and reductions in ssCVR (compared with the reference atlas) were associated with the reductions in CVR on the side of the lesion. τ and ssCVR are respectively the dynamic and static components of measured CVR.
Collapse
Affiliation(s)
- Julien Poublanc
- Joint Department of Medical Imaging, University Health Network, Toronto, Ontario, Canada
| | - Adrian P Crawley
- Joint Department of Medical Imaging, University Health Network, Toronto, Ontario, Canada
| | - Olivia Sobczyk
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Gaspard Montandon
- Joint Department of Medical Imaging, University Health Network, Toronto, Ontario, Canada
| | - Kevin Sam
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Daniel M Mandell
- Joint Department of Medical Imaging, University Health Network, Toronto, Ontario, Canada
| | - Paul Dufort
- Joint Department of Medical Imaging, University Health Network, Toronto, Ontario, Canada
| | | | - James Duffin
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada.,Department of Anaesthesia and Pain Management, University Health Network, Toronto, Ontario, Canada
| | - David J Mikulis
- Joint Department of Medical Imaging, University Health Network, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Joseph A Fisher
- Joint Department of Medical Imaging, University Health Network, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario, Canada.,Department of Anaesthesia and Pain Management, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
12
|
Havlicek M, Roebroeck A, Friston K, Gardumi A, Ivanov D, Uludag K. Physiologically informed dynamic causal modeling of fMRI data. Neuroimage 2015; 122:355-72. [DOI: 10.1016/j.neuroimage.2015.07.078] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 07/27/2015] [Accepted: 07/28/2015] [Indexed: 12/15/2022] Open
|
13
|
Pan WJ, Billings JCW, Grooms JK, Shakil S, Keilholz SD. Considerations for resting state functional MRI and functional connectivity studies in rodents. Front Neurosci 2015; 9:269. [PMID: 26300718 PMCID: PMC4525377 DOI: 10.3389/fnins.2015.00269] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 07/16/2015] [Indexed: 12/31/2022] Open
Abstract
Resting state functional MRI (rs-fMRI) and functional connectivity mapping have become widely used tools in the human neuroimaging community and their use is rapidly spreading into the realm of rodent research as well. One of the many attractive features of rs-fMRI is that it is readily translatable from humans to animals and back again. Changes in functional connectivity observed in human studies can be followed by more invasive animal experiments to determine the neurophysiological basis for the alterations, while exploratory work in animal models can identify possible biomarkers for further investigation in human studies. These types of interwoven human and animal experiments have a potentially large impact on neuroscience and clinical practice. However, impediments exist to the optimal application of rs-fMRI in small animals, some similar to those encountered in humans and some quite different. In this review we identify the most prominent of these barriers, discuss differences between rs-fMRI in rodents and in humans, highlight best practices for animal studies, and review selected applications of rs-fMRI in rodents. Our goal is to facilitate the integration of human and animal work to the benefit of both fields.
Collapse
Affiliation(s)
- Wen-Ju Pan
- Department of Biomedical Engineering, Georgia Institute of Technology, Emory University Atlanta, GA, USA
| | | | - Joshua K Grooms
- Department of Biomedical Engineering, Georgia Institute of Technology, Emory University Atlanta, GA, USA
| | - Sadia Shakil
- School of Electrical and Computer Engineering, Georgia Institute of Technology Atlanta, GA, USA
| | - Shella D Keilholz
- Department of Biomedical Engineering, Georgia Institute of Technology, Emory University Atlanta, GA, USA ; Neuroscience Program, Emory University Atlanta, GA, USA
| |
Collapse
|