1
|
Khadir A, Maghareh M, Sasani Ghamsari S, Beigzadeh B. Brain activity characteristics of RGB stimulus: an EEG study. Sci Rep 2023; 13:18988. [PMID: 37923926 PMCID: PMC10624840 DOI: 10.1038/s41598-023-46450-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 11/01/2023] [Indexed: 11/06/2023] Open
Abstract
The perception of color is a fundamental cognitive feature of our psychological experience, with an essential role in many aspects of human behavior. Several studies used magnetoencephalography, functional magnetic resonance imaging, and electroencephalography (EEG) approaches to investigate color perception. Their methods includes the event-related potential and spectral power activity of different color spaces, such as Derrington-Krauskopf-Lennie and red-green-blue (RGB), in addition to exploring the psychological and emotional effects of colors. However, we found insufficient studies in RGB space that considered combining all aspects of EEG signals. Thus, in the present study, focusing on RGB stimuli and using a data-driven approach, we investigated significant differences in the perception of colors. Our findings show that beta oscillation of green compared to red and blue colors occurs in early sensory periods with a latency shifting in the occipital region. Furthermore, in the occipital region, the theta power of the blue color decreases noticeably compared to the other colors. Concurrently, in the prefrontal area, we observed an increase in phase consistency in response to the green color, while the blue color showed a decrease. Therefore, our results can be used to interpret the brain activity mechanism of color perception in RGB color space and to choose suitable colors for more efficient performance in cognitive activities.
Collapse
Affiliation(s)
- Alireza Khadir
- Biomechatronics and Cognitive Engineering Research Lab, School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Mohammad Maghareh
- Biomechatronics and Cognitive Engineering Research Lab, School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Shamim Sasani Ghamsari
- Biomechatronics and Cognitive Engineering Research Lab, School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Borhan Beigzadeh
- Biomechatronics and Cognitive Engineering Research Lab, School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran.
| |
Collapse
|
2
|
Oh W, Park H, Hallett M, You J(SH. The Effectiveness of a Multimodal Brain Empowerment Program in Mild Cognitive Impairment: A Single-Blind, Quasi-Randomized Experimental Study. J Clin Med 2023; 12:4895. [PMID: 37568297 PMCID: PMC10419895 DOI: 10.3390/jcm12154895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/13/2023] [Accepted: 07/20/2023] [Indexed: 08/13/2023] Open
Abstract
The present study aimed to determine a multimodal brain empowerment (MBE) program to mitigate the modifiable risk factors in mild cognitive impairment (MCI), and its therapeutic effects are unknown. MBE encompassing (1) tDCS, light therapy, computerized cognitive therapy (TLC) and (2) robot-assisted gait training, music therapy, and core exercise (REM) interventions were randomly assigned to 20 healthy young adults and 20 older adults with MCI. The electroencephalography (EEG) power spectrum and topographic event-related synchronization (ERS) analysis were used to assess intervention-related changes in neural activity during the MBE program. Outcome: The EEG results demonstrated that both multimodal TLC and REM decreased delta waves and increased theta, alpha, and beta waves (p < 0.001). ERS showed increased neural activation in the frontal, temporal, and parietal lobes during TLC and REM. Such enhanced neural activity in the region of interest supports potential clinical benefits in empowering cognitive function in both young adults and older adults with MCI.
Collapse
Affiliation(s)
- Wonjun Oh
- Sports Movement Artificial Robotics Technology (SMART) Institute, Department of Physical Therapy, Yonsei University, Wonju 26493, Republic of Korea; (W.O.); (H.P.)
| | - Haeun Park
- Sports Movement Artificial Robotics Technology (SMART) Institute, Department of Physical Therapy, Yonsei University, Wonju 26493, Republic of Korea; (W.O.); (H.P.)
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD 20814, USA;
| | - Joshua (Sung) H. You
- Sports Movement Artificial Robotics Technology (SMART) Institute, Department of Physical Therapy, Yonsei University, Wonju 26493, Republic of Korea; (W.O.); (H.P.)
| |
Collapse
|
3
|
Göksel Duru D, Alobaidi M. Classification of brain electrophysiological changes in response to colour stimuli. Phys Eng Sci Med 2021; 44:727-743. [PMID: 34269986 DOI: 10.1007/s13246-021-01021-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 05/25/2021] [Indexed: 10/20/2022]
Abstract
In this study, the classification of ongoing brain activity occurring as a response to colour stimuli was managed and reported. Until now, the classification of the seen colour from brain electrical signals has not been investigated or reported in the related literature. In this study, we aimed to classify EEG brain responses corresponding to blue, green, and red coloured shapes. In addition to the current literature, we focused on ongoing EEG responses instead of using ERP metrics, with visual stimulus-related ERP metrics also compared throughout the study. The feature extraction process was carried out using the Fourier transform to obtain the conventional band power values of the EEG for each stimulus type. Delta, theta, alpha, beta, and gamma-band power values of each one-second period constituted the feature set. In addition to scalp measurements, a second feature set was obtained based on the inverse solution of the EEG waves. Furthermore, we applied one-way ANOVA for the feature selection prior to classification procedures. Four classifiers were implemented using the reduced feature set and the raw one as well. The differences between scalp responses were localized mainly around the temporal and temporoparietal regions. Our ERP-component findings support the fact that additional brain regions among the visual cortex participate in the colour categorization process of the brain. RGB colours were identified using 1 s EEG data. Ensemble-KNN and KNN achieved the highest accuracy values (93%) when used either with scalp spectral features or source space features.
Collapse
Affiliation(s)
- Dilek Göksel Duru
- Department of Molecular Biotechnology, Faculty of Science, Turkish-German University, Istanbul, Turkey.
| | - May Alobaidi
- Information Technologies, Graduate School of Science and Engineering, Altınbaş University, Istanbul, Turkey
| |
Collapse
|
4
|
Šmotek M, Vlček P, Saifutdinova E, Kopřivová J. Objective and Subjective Characteristics of Vigilance under Different Narrow-Bandwidth Light Conditions: Do Shorter Wavelengths Have an Alertness-Enhancing Effect? Neuropsychobiology 2020; 78:238-248. [PMID: 31587007 DOI: 10.1159/000502962] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 08/24/2019] [Indexed: 11/19/2022]
Abstract
The aim of this study was to explore the effects of 20 min of narrow-bandwidth light exposure of different wavelengths (455, 508, and 629 nm, with irradiance of 14 µW/cm2) on various neuropsychological and neurophysiological parameters of vigilance in healthy volunteers and to provide further evidence of the behavioral (subjective sleepiness, reaction time) and electrophysiological (P300 and spectral characteristics) responses to light. The results show that the short-wavelength light condition (455 nm) was found to be most effective in terms of its alerting effect for the following variables: subjective sleepiness, latency of P300 response, and absolute EEG power in higher beta (24-34 Hz) and gamma (35-50 Hz) range at each of the 19 recording electrodes. However, no differences in current power density were observed at the level of cortical EEG sources estimated by exact low-resolution electromagnetic tomography. Our results are in line with other research that shows significant alerting effects of blue (short-wavelength) light in comparison to lights of longer wavelengths. Our results confirm earlier findings that exposure to short-wavelength light during the day may enhance cognitive performance in task-specific scenarios.
Collapse
Affiliation(s)
- Michal Šmotek
- National Institute of Mental Health, Klecany, Czechia, .,Third Faculty of Medicine, Charles University in Prague, Prague, Czechia,
| | - Přemysl Vlček
- National Institute of Mental Health, Klecany, Czechia.,Third Faculty of Medicine, Charles University in Prague, Prague, Czechia
| | - Elizaveta Saifutdinova
- National Institute of Mental Health, Klecany, Czechia.,Faculty of Electrical Engineering, Czech Technical University, Prague, Czechia
| | - Jana Kopřivová
- National Institute of Mental Health, Klecany, Czechia.,Third Faculty of Medicine, Charles University in Prague, Prague, Czechia
| |
Collapse
|
5
|
Chai MT, Amin HU, Izhar LI, Saad MNM, Abdul Rahman M, Malik AS, Tang TB. Exploring EEG Effective Connectivity Network in Estimating Influence of Color on Emotion and Memory. Front Neuroinform 2019; 13:66. [PMID: 31649522 PMCID: PMC6794354 DOI: 10.3389/fninf.2019.00066] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 09/18/2019] [Indexed: 11/20/2022] Open
Abstract
Color is a perceptual stimulus that has a significant impact on improving human emotion and memory. Studies have revealed that colored multimedia learning materials (MLMs) have a positive effect on learner's emotion and learning where it was assessed by subjective/objective measurements. This study aimed to quantitatively assess the influence of colored MLMs on emotion, cognitive processes during learning, and long-term memory (LTM) retention using electroencephalography (EEG). The dataset consisted of 45 healthy participants, and MLMs were designed in colored or achromatic illustrations to elicit emotion and that to assess its impact on LTM retention after 30-min and 1-month delay. The EEG signal analysis was first started to estimate the effective connectivity network (ECN) using the phase slope index and expand it to characterize the ECN pattern using graph theoretical analysis. EEG results showed that colored MLMs had influences on theta and alpha networks, including (1) an increased frontal-parietal connectivity (top-down processing), (2) a larger number of brain hubs, (3) a lower clustering coefficient, and (4) a higher local efficiency, indicating that color influences information processing in the brain, as reflected by ECN, together with a significant improvement in learner's emotion and memory performance. This is evidenced by a more positive emotional valence and higher recall accuracy for groups who learned with colored MLMs than that of achromatic MLMs. In conclusion, this paper demonstrated how the EEG ECN parameters could help quantify the influences of colored MLMs on emotion and cognitive processes during learning.
Collapse
Affiliation(s)
- Meei Tyng Chai
- Centre for Intelligent Signal and Imaging Research, Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia
| | - Hafeez Ullah Amin
- Centre for Intelligent Signal and Imaging Research, Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia
| | - Lila Iznita Izhar
- Centre for Intelligent Signal and Imaging Research, Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia
| | - Mohamad Naufal Mohamad Saad
- Centre for Intelligent Signal and Imaging Research, Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia
| | - Mohammad Abdul Rahman
- Faculty of Medicine, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh, Malaysia
| | | | - Tong Boon Tang
- Centre for Intelligent Signal and Imaging Research, Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia
| |
Collapse
|
6
|
Yoshiike T, Honma M, Ikeda H, Kuriyama K. Bright light exposure advances consolidation of motor skill accuracy in humans. Neurobiol Learn Mem 2019; 166:107084. [PMID: 31491556 DOI: 10.1016/j.nlm.2019.107084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 08/07/2019] [Accepted: 08/31/2019] [Indexed: 01/06/2023]
Abstract
Light has attracted increasing attention as a critical determinant of memory processing. While sleep selectively consolidates newly encoded memories according to their future relevance, the role of light in human memory consolidation is largely unknown. Here, we report how bright light (BL), provided during encoding, influences online and offline consolidation of motor skill learning. We sought to determine whether relatively slower and faster key-press transitions within individuals were differentially consolidated by BL. Healthy human subjects were briefly exposed to either BL (>8000 lx) or control light (CL; <500 lx) during memory encoding at 13:00 h, when light minimally affects circadian phase-shifting, and were retested 24 h later. The effects of BL on online and offline performance gains were determined by accuracy and speed. BL-exposed subjects showed better overall performance accuracy during training and lower overnight accuracy gains after a subsequent night of sleep than did CL-exposed subjects. BL preferentially improved the initially most difficult individual key-press transitions during practice; these were only improved overnight under CL. By contrast, accuracy during what had been the easiest key-press transitions at the beginning of the experiment was unaffected by light conditions or online/offline learning processes. BL effects were not observed for performance speed, mood, or sleep-wake patterns. Brief BL exposure during training may advance motor memory selection and consolidation that optimally meet individual requirements for potential gains, which would otherwise depend on post-training sleep. This suggests a new way of enhancing brain plasticity to compensate for impaired sleep-dependent memory consolidation in neuropsychiatric conditions.
Collapse
Affiliation(s)
- Takuya Yoshiike
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi, Kodaira, Tokyo 187-8553, Japan; Department of Sleep-Wake Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi, Kodaira, Tokyo 187-8553, Japan; Department of Psychiatry, Shiga University of Medical Science, Seta Tsukinowacho, Otsu, Shiga 520-2192, Japan.
| | - Motoyasu Honma
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi, Kodaira, Tokyo 187-8553, Japan; Department of Physiology, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan
| | - Hiroki Ikeda
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi, Kodaira, Tokyo 187-8553, Japan; Research Center for Overwork-Related Disorders, National Institute of Occupational Safety and Health, 6-21-1 Nagao, Tama-Ku, Kawasaki, Kanagawa 214-8585, Japan
| | - Kenichi Kuriyama
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi, Kodaira, Tokyo 187-8553, Japan; Department of Sleep-Wake Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi, Kodaira, Tokyo 187-8553, Japan; Department of Psychiatry, Shiga University of Medical Science, Seta Tsukinowacho, Otsu, Shiga 520-2192, Japan
| |
Collapse
|
7
|
Scheuermaier K, Münch M, Ronda JM, Duffy JF. Improved cognitive morning performance in healthy older adults following blue-enriched light exposure on the previous evening. Behav Brain Res 2018; 348:267-275. [PMID: 29684473 DOI: 10.1016/j.bbr.2018.04.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 04/03/2018] [Accepted: 04/15/2018] [Indexed: 01/28/2023]
Abstract
OBJECTIVES Exposure to light can have acute alerting and circadian phase-shifting effects. This study investigated the effects of evening exposure to blue-enriched polychromatic white (BEL) vs. polychromatic white light (WL) on sleep inertia dissipation the following morning in older adults. METHODS Ten healthy older adults (average age = 63.3 yrs; 6F) participated in a 13-day study comprising three baseline days, an initial circadian phase assessment, four days with 2-h evening light exposures, a post light exposure circadian phase assessment and three recovery days. Participants were randomized to either BEL or WL of the same irradiance for the four evening light exposures. On the next mornings at 2, 12, 22 and 32 min after each wake time, the participants completed a 90-s digit-symbol substitution test (DSST) to assess working memory, and objective alertness was assessed using a wake EEG recording. DSST and power density from the wake EEG recordings were compared between the two groups. RESULTS DSST performance improved with time awake (p < 0.0001) and across study days in both light exposure groups (p < 0.0001). There was no main effect of group, although we observed a significant day x group interaction (p = 0.0004), whereby participants exposed to BEL performed significantly better on the first two mornings after light exposures than participants in WL (post-hoc, p < 0.05). On those days, the BEL group showed higher EEG activity in some of the frequency bins in the sigma and beta range (p < 0.05) on the wake EEG. CONCLUSION Exposure to blue-enriched white light in the evening significantly improved DSST performance the following morning when compared to polychromatic white light. This was associated with a higher level of objective alertness on the wake EEG, but not with changes in sleep or circadian timing.
Collapse
Affiliation(s)
- Karine Scheuermaier
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, United States; Division of Sleep Medicine, Harvard Medical School, Boston, MA, United States; Wits Sleep Laboratory, Brain Function Research Group, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| | - Mirjam Münch
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, United States; Division of Sleep Medicine, Harvard Medical School, Boston, MA, United States; Sleep research and clinical chronobiology, Institute of Physiology, Charité Universitätsmedizin, Berlin, Germany; Clinic for Sleep and Chronomedicine, St. Hedwig-Krankenhaus, Berlin, Germany
| | - Joseph M Ronda
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, United States; Division of Sleep Medicine, Harvard Medical School, Boston, MA, United States
| | - Jeanne F Duffy
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, United States; Division of Sleep Medicine, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
8
|
Blue lighting accelerates post-stress relaxation: Results of a preliminary study. PLoS One 2017; 12:e0186399. [PMID: 29049332 PMCID: PMC5648169 DOI: 10.1371/journal.pone.0186399] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 09/19/2017] [Indexed: 02/01/2023] Open
Abstract
Several authors have studied the influence of light on both human physiology and emotions. Blue light has been proved to reduce sleepiness by suppression of melatonin secretion and it is also present in many emotion-related studies. Most of these have a common lack of objective methodology since results and conclusions are based on subjective perception of emotions. The aim of this work was the objective assessment of the effect of blue lighting in post-stress relaxation, in comparison with white lighting, by means of bio-signals and standardized procedures. We conducted a study in which twelve healthy volunteers were stressed and then performed a relaxation session within a chromotherapy room with blue (test group) or white (control group) lighting. We conclude that the blue lighting accelerates the relaxation process after stress in comparison with conventional white lighting. The relaxation time decreased by approximately three-fold (1.1 vs. 3.5 minutes). We also observed a convergence time (3.5–5 minutes) after which the advantage of blue lighting disappeared. This supports the relationship between color of light and stress, and the observations reported in previous works. These findings could be useful in clinical and educational environments, as well as in daily-life context and emerging technologies such as neuromarketing. However, our study must be extended to draw reliable conclusions and solid scientific evidence.
Collapse
|
9
|
Münch M, Nowozin C, Regente J, Bes F, De Zeeuw J, Hädel S, Wahnschaffe A, Kunz D. Blue-Enriched Morning Light as a Countermeasure to Light at the Wrong Time: Effects on Cognition, Sleepiness, Sleep, and Circadian Phase. Neuropsychobiology 2017. [PMID: 28637029 DOI: 10.1159/000477093] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Light during the day and darkness at night are crucial factors for proper entrainment of the human circadian system to the solar 24-h day. However, modern life and work styles have led to much more time spent indoors, often with lower daytime and higher evening/nighttime light intensity from electrical lighting than outdoors. Whether this has long-term consequences for human health is being currently investigated. We tested if bright blue-enriched morning light over several days could counteract the detrimental effects of inadequate daytime and evening lighting. In a seminaturalistic, within-between subject study design, 18 young participants were exposed to different lighting conditions on 3 evenings (blue-enriched, bright orange, or dim light), after exposure to 2 lighting conditions (mixed blue-enriched light and control light, for 3 days each) in the mornings. Subjective sleepiness, reaction times, salivary melatonin concentrations, and nighttime sleep were assessed. Exposure to the blue-enriched morning lighting showed acute wake-promoting effects and faster reaction times than with control lighting. Some of these effects persisted until the evening, and performance improved over several days. The magnitude of circadian phase shifts induced by combinations of 3 different evening and 2 morning lighting conditions were significantly smaller with the blue-enriched morning light. During the night, participants had longer total sleep times after orange light exposure than after blue light exposure in the evening. Our results indicate that bright blue-enriched morning light stabilizes circadian phase, and it could be an effective counterstrategy for poor lighting during the day and also light exposure at the wrong time, such as in the late evening.
Collapse
Affiliation(s)
- Mirjam Münch
- Sleep Research and Clinical Chronobiology, Institute of Physiology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Hung SM, Milea D, Rukmini AV, Najjar RP, Tan JH, Viénot F, Dubail M, Tow SLC, Aung T, Gooley JJ, Hsieh PJ. Cerebral neural correlates of differential melanopic photic stimulation in humans. Neuroimage 2017; 146:763-769. [DOI: 10.1016/j.neuroimage.2016.09.061] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 09/21/2016] [Accepted: 09/25/2016] [Indexed: 12/31/2022] Open
|
11
|
Carretié L, Ruiz-Padial E. Ambient Light Modulation of Exogenous Attention to Threat. Brain Topogr 2016; 29:847-855. [DOI: 10.1007/s10548-016-0510-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 07/21/2016] [Indexed: 10/21/2022]
|
12
|
Carretié L, Ruiz-Padial E, Mendoza MT. An Event-related Potential Study on the Interaction between Lighting Level and Stimulus Spatial Location. Front Hum Neurosci 2015; 9:637. [PMID: 26635588 PMCID: PMC4656832 DOI: 10.3389/fnhum.2015.00637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 11/06/2015] [Indexed: 01/03/2023] Open
Abstract
Due to heterogeneous photoreceptor distribution, spatial location of stimulation is crucial to study visual brain activity in different light environments. This unexplored issue was studied through occipital event-related potentials (ERPs) recorded from 40 participants in response to discrete visual stimuli presented at different locations and in two environmental light conditions, low mesopic (L, 0.03 lux) and high mesopic (H, 6.5 lux), characterized by a differential photoreceptor activity balance: rod > cone and rod < cone, respectively. Stimuli, which were exactly the same in L and H, consisted of squares presented at fixation, at the vertical periphery (above or below fixation) or at the horizontal periphery (left or right). Analyses showed that occipital ERPs presented important L vs. H differences in the 100 to 450 ms window, which were significantly modulated by spatial location of stimulation: differences were greater in response to peripheral stimuli than to stimuli presented at fixation. Moreover, in the former case, significance of L vs. H differences was even stronger in response to stimuli presented at the horizontal than at the vertical periphery. These low vs. high mesopic differences may be explained by photoreceptor activation and their retinal distribution, and confirm that ERPs discriminate between rod- and cone-originated visual processing.
Collapse
Affiliation(s)
- Luis Carretié
- Facultad de Psicología, Universidad Autónoma de Madrid Madrid, Spain
| | | | | |
Collapse
|
13
|
Leibovich T, Henik A, Salti M. Numerosity processing is context driven even in the subitizing range: An fMRI study. Neuropsychologia 2015; 77:137-47. [PMID: 26297625 PMCID: PMC4710636 DOI: 10.1016/j.neuropsychologia.2015.08.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 07/30/2015] [Accepted: 08/17/2015] [Indexed: 01/29/2023]
Abstract
Numerical judgments are involved in almost every aspect of our daily life. They are carried out so efficiently that they are often considered to be automatic and innate. However, numerosity of non-symbolic stimuli is highly correlated with its continuous properties (e.g., density, area), and so it is hard to determine whether numerosity and continuous properties rely on the same mechanism. Here we examined the behavioral and neuronal mechanisms underlying such judgments. We scanned subjects' hemodynamic responses to a numerosity comparison task and to a surface area comparison task. In these tasks, numerical and continuous magnitudes could be either congruent or incongruent. Behaviorally, an interaction between the order of the tasks and the relevant dimension modulated the congruency effects. Continuous magnitudes always interfered with numerosity comparison. Numerosity, on the other hand, interfered with the surface area comparison only when participants began with the numerosity task. Hemodynamic activity showed that context (induced by task order) determined the neuronal pathways in which the dimensions were processed. Starting with the numerosity task led to enhanced activity in the right hemisphere, while starting with the continuous task led to enhanced left hemisphere activity. Continuous magnitudes processing relied on activation of the frontal eye field and the post-central gyrus. Processing of numerosities, on the other hand, relied on deactivation of these areas, suggesting active suppression of the continuous dimension. Accordingly, we suggest that numerosities, even in the subitizing range, are not always processed automatically; their processing depends on context and task demands.
Collapse
Affiliation(s)
- Tali Leibovich
- Department of Cognitive and Brain Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel; The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| | - Avishai Henik
- The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel; Department of Psychology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Moti Salti
- Department of Cognitive and Brain Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel; The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|