1
|
Peek AL, Rebbeck TJ, Leaver AM, Foster SL, Refshauge KM, Puts NA, Oeltzschner G. A comprehensive guide to MEGA-PRESS for GABA measurement. Anal Biochem 2023; 669:115113. [PMID: 36958511 PMCID: PMC10805000 DOI: 10.1016/j.ab.2023.115113] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/25/2023]
Abstract
The aim of this guideline is to provide a series of evidence-based recommendations that allow those new to using MEGA-PRESS to produce high-quality data for the measurement of GABA levels using edited magnetic resonance spectroscopy with the MEGA-PRESS sequence at 3T. GABA is the main inhibitory neurotransmitter of the central nervous system and has been increasingly studied due to its relevance in many clinical disorders of the central nervous system. MEGA-PRESS is the most widely used method for quantification of GABA at 3T, but is technically challenging and operates at a low signal-to-noise ratio. Therefore, the acquisition of high-quality MRS data relies on avoiding numerous pitfalls and observing important caveats. The guideline was developed by a working party that consisted of experts in MRS and experts in guideline development and implementation, together with key stakeholders. Strictly following a translational framework, we first identified evidence using a systematically conducted scoping literature review, then synthesized and graded the quality of evidence that formed recommendations. These recommendations were then sent to a panel of 21 world leaders in MRS for feedback and approval using a modified-Delphi process across two rounds. The final guideline consists of 23 recommendations across six domains essential for GABA MRS acquisition (Parameters, Practicalities, Data acquisition, Confounders, Quality/reporting, Post-processing). Overall, 78% of recommendations were formed from high-quality evidence, and 91% received agreement from over 80% of the expert panel. These 23 expert-reviewed recommendations and accompanying extended documentation form a readily useable guideline to allow those new to using MEGA-PRESS to design appropriate MEGA-PRESS study protocols and generate high-quality data.
Collapse
Affiliation(s)
- A L Peek
- Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales, 2141, Australia; NHMRC Centre of Research Excellence in Road Traffic Injury Recovery, Queensland, Australia.
| | - T J Rebbeck
- Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales, 2141, Australia; NHMRC Centre of Research Excellence in Road Traffic Injury Recovery, Queensland, Australia.
| | - A M Leaver
- Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales, 2141, Australia.
| | - S L Foster
- Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales, 2141, Australia; Department of Radiology, Westmead Hospital, Hawkesbury Road, Westmead, New South Wales, 2145, Australia.
| | - K M Refshauge
- Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales, 2141, Australia.
| | - N A Puts
- Department of Forensic and Neurodevelopmental Sciences, Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology, and Neuroscience, Kings College London, UK.
| | - G Oeltzschner
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, United States; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, 21205, United States.
| |
Collapse
|
2
|
Lee JS, Kang W, Kang Y, Kim A, Han KM, Tae WS, Ham BJ. Alterations in the Occipital Cortex of Drug-Naïve Adults With Major Depressive Disorder: A Surface-Based Analysis of Surface Area and Cortical Thickness. Psychiatry Investig 2021; 18:1025-1033. [PMID: 34666430 PMCID: PMC8542746 DOI: 10.30773/pi.2021.0099] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/27/2021] [Accepted: 07/22/2021] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVE Advances in surface-based morphometric methods have allowed researchers to separate cortical volume into cortical thickness (CTh) and surface area (SA). Although CTh alterations in major depressive disorder (MDD) have been observed in numerous studies, few studies have described significant SA alterations. Our study aimed to measure patients' SAs and to compare it with their CTh to examine whether SA exhibits alteration patterns that differ from those of CTh in drug-naïve patients with MDD. METHODS A total of 71 drug-naïve MDD patients and 111 healthy controls underwent structural magnetic resonance imaging, and SA and CTh were analyzed between the groups. RESULTS We found a smaller SA in the left superior occipital gyrus (L-SOG) in drug-naïve patients with MDD. In the CTh analysis, the bilateral fusiform gyrus, left middle occipital gyrus, left temporal superior gyrus, and right posterior cingulate showed thinner cortices in patients with MDD, while the CTh of the bilateral SOG, right straight gyrus, right posterior cingulate, and left lingual gyrus were increased. CONCLUSION Compared with the bilateral occipito-temporal changes in CTh, SA alterations in patients with MDD were confined to the L-SOG. These findings may improve our understanding of the neurobiological mechanisms of SA alteration in relation to MDD.
Collapse
Affiliation(s)
- Jee Soo Lee
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Wooyoung Kang
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Youbin Kang
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Aram Kim
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Kyu-Man Han
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Woo-Suk Tae
- Brain Convergence Research Center, Korea University Anam Hospital, Seoul, Republic of Korea
| | - Byung-Joo Ham
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
3
|
Alvarez I, Finlayson NJ, Ei S, de Haas B, Greenwood JA, Schwarzkopf DS. Heritable functional architecture in human visual cortex. Neuroimage 2021; 239:118286. [PMID: 34153449 PMCID: PMC7611349 DOI: 10.1016/j.neuroimage.2021.118286] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 06/08/2021] [Accepted: 06/17/2021] [Indexed: 11/23/2022] Open
Abstract
We analyzed retinotopic maps from monozygotic and dizygotic twin pairs. Visual field maps in V1-V3 are more similar in monozygotic twins. Heritability is greater in V1 and V3 for polar angle and population receptive field sizes. Eccentricity maps show lesser degree of heritability. Further evidence for link between cortical morphology and topology of retinotopic maps.
How much of the functional organization of our visual system is inherited? Here we tested the heritability of retinotopic maps in human visual cortex using functional magnetic resonance imaging. We demonstrate that retinotopic organization shows a closer correspondence in monozygotic (MZ) compared to dizygotic (DZ) twin pairs, suggesting a partial genetic determination. Using population receptive field (pRF) analysis to examine the preferred spatial location and selectivity of these neuronal populations, we estimate a heritability around 10–20% for polar angle preferences and spatial selectivity, as quantified by pRF size, in extrastriate areas V2 and V3. Our findings are consistent with heritability in both the macroscopic arrangement of visual regions and stimulus tuning properties of visual cortex. This could constitute a neural substrate for variations in a range of perceptual effects, which themselves have been found to be at least partially genetically determined. These findings also add convergent evidence for the hypothesis that functional map topology is linked with cortical morphology.
Collapse
Affiliation(s)
- Ivan Alvarez
- Helen Wills Neuroscience Institute, University of California, Berkeley, United States; Wellcome Centre for Integrative Neuroimaging, University of Oxford, United Kingdom
| | - Nonie J Finlayson
- Experimental Psychology, University College London, United Kingdom; Ipsos, Brisbane, Queensland, Australia
| | - Shwe Ei
- Experimental Psychology, University College London, United Kingdom; GKT School of Medical Education, Kings College London, United Kingdom
| | - Benjamin de Haas
- Experimental Psychology, University College London, United Kingdom; Department of Psychology, Justus-Liebig University, Giessen, Germany
| | - John A Greenwood
- Experimental Psychology, University College London, United Kingdom
| | - D Samuel Schwarzkopf
- Experimental Psychology, University College London, United Kingdom; School of Optometry & Vision Science, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| |
Collapse
|
4
|
Piven J, Elison JT, Zylka MJ. Toward a conceptual framework for early brain and behavior development in autism. Mol Psychiatry 2017; 22:1385-1394. [PMID: 28937691 PMCID: PMC5621737 DOI: 10.1038/mp.2017.131] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 04/19/2017] [Accepted: 04/24/2017] [Indexed: 01/12/2023]
Abstract
Studies of infant siblings of older autistic probands, who are at elevated risk for autism, have demonstrated that the defining features of autism are not present in the first year of life but emerge late in the first and into the second year. A recent longitudinal neuroimaging study of high-risk siblings revealed a specific pattern of brain development in infants later diagnosed with autism, characterized by cortical surface area hyper-expansion in the first year followed by brain volume overgrowth in the second year that is associated with the emergence of autistic social deficits. Together with new observations from genetically defined autism risk alleles and rodent model, these findings suggest a conceptual framework for the early, post-natal development of autism. This framework postulates that an increase in the proliferation of neural progenitor cells and hyper-expansion of cortical surface area in the first year, occurring during a pre-symptomatic period characterized by disrupted sensorimotor and attentional experience, leads to altered experience-dependent neuronal development and decreased elimination of neuronal processes. This process is linked to brain volume overgrowth and disruption of the refinement of neural circuit connections and is associated with the emergence of autistic social deficits in the second year of life. A better understanding of the timing of developmental brain and behavior mechanisms in autism during infancy, a period which precedes the emergence of the defining features of this disorder, will likely have important implications for designing rational approaches to early intervention.
Collapse
Affiliation(s)
- J Piven
- Carolina Institute for Developmental Disabilities, The University of North Carolina, Chapel Hill, NC, USA,Department of Psychiatry, The University of North Carolina, Chapel Hill, NC, USA,Carolina Institute for Developmental Disabilities, The University of North Carolina School of Medicine, Campus Box 7255, Chapel Hill, NC 27599-7255, USA. E-mail:
| | - J T Elison
- Institute of Child Development and Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - M J Zylka
- Carolina Institute for Developmental Disabilities, The University of North Carolina, Chapel Hill, NC, USA,Department of Cell Biology and Physiology, and UNC Neuroscience Center, The University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
5
|
Gamma Frequency and the Spatial Tuning of Primary Visual Cortex. PLoS One 2016; 11:e0157374. [PMID: 27362265 PMCID: PMC4928794 DOI: 10.1371/journal.pone.0157374] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 05/28/2016] [Indexed: 12/05/2022] Open
Abstract
Visual stimulation produces oscillatory gamma responses in human primary visual cortex (V1) that also relate to visual perception. We have shown previously that peak gamma frequency positively correlates with central V1 cortical surface area. We hypothesized that people with larger V1 would have smaller receptive fields and that receptive field size, not V1 area, might explain this relationship. Here we set out to test this hypothesis directly by investigating the relationship between fMRI estimated population receptive field (pRF) size and gamma frequency in V1. We stimulated both the near-center and periphery of the visual field using both large and small stimuli in each location and replicated our previous finding of a positive correlation between V1 surface area and peak gamma frequency. Counter to our expectation, we found that between participants V1 size (and not PRF size) accounted for most of the variability in gamma frequency. Within-participants we found that gamma frequency increased, rather than decreased, with stimulus eccentricity directly contradicting our initial hypothesis.
Collapse
|
6
|
Greenhouse I, Noah S, Maddock RJ, Ivry RB. Individual differences in GABA content are reliable but are not uniform across the human cortex. Neuroimage 2016; 139:1-7. [PMID: 27288552 DOI: 10.1016/j.neuroimage.2016.06.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 05/01/2016] [Accepted: 06/06/2016] [Indexed: 11/15/2022] Open
Abstract
1H magnetic resonance spectroscopy (MRS) provides a powerful tool to measure gamma-aminobutyric acid (GABA), the principle inhibitory neurotransmitter in the human brain. We asked whether individual differences in MRS estimates of GABA are uniform across the cortex or vary between regions. In two sessions, resting GABA concentrations in the lateral prefrontal, sensorimotor, dorsal premotor, and occipital cortices were measured in twenty-eight healthy individuals. GABA estimates within each region were stable across weeks, with low coefficients of variation. Despite this stability, the GABA estimates were not correlated between regions. In contrast, the percentage of brain tissue per volume, a control measure, was correlated between the three anterior regions. These results provide an interesting dissociation between an anatomical measure of individual differences and a neurochemical measure. The different patterns of anatomy and GABA concentrations have implications for understanding regional variation in the molecular topography of the brain in health and disease.
Collapse
Affiliation(s)
- Ian Greenhouse
- University of California, Berkeley, Berkeley, CA, United States.
| | - Sean Noah
- University of California, Berkeley, Berkeley, CA, United States
| | | | - Richard B Ivry
- University of California, Berkeley, Berkeley, CA, United States
| |
Collapse
|