1
|
Guichet C, Banjac S, Achard S, Mermillod M, Baciu M. Modeling the neurocognitive dynamics of language across the lifespan. Hum Brain Mapp 2024; 45:e26650. [PMID: 38553863 PMCID: PMC10980845 DOI: 10.1002/hbm.26650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 02/08/2024] [Accepted: 02/26/2024] [Indexed: 04/02/2024] Open
Abstract
Healthy aging is associated with a heterogeneous decline across cognitive functions, typically observed between language comprehension and language production (LP). Examining resting-state fMRI and neuropsychological data from 628 healthy adults (age 18-88) from the CamCAN cohort, we performed state-of-the-art graph theoretical analysis to uncover the neural mechanisms underlying this variability. At the cognitive level, our findings suggest that LP is not an isolated function but is modulated throughout the lifespan by the extent of inter-cognitive synergy between semantic and domain-general processes. At the cerebral level, we show that default mode network (DMN) suppression coupled with fronto-parietal network (FPN) integration is the way for the brain to compensate for the effects of dedifferentiation at a minimal cost, efficiently mitigating the age-related decline in LP. Relatedly, reduced DMN suppression in midlife could compromise the ability to manage the cost of FPN integration. This may prompt older adults to adopt a more cost-efficient compensatory strategy that maintains global homeostasis at the expense of LP performances. Taken together, we propose that midlife represents a critical neurocognitive juncture that signifies the onset of LP decline, as older adults gradually lose control over semantic representations. We summarize our findings in a novel synergistic, economical, nonlinear, emergent, cognitive aging model, integrating connectomic and cognitive dimensions within a complex system perspective.
Collapse
Affiliation(s)
| | - Sonja Banjac
- Université Grenoble Alpes, CNRS LPNC UMR 5105GrenobleFrance
| | - Sophie Achard
- LJK, UMR CNRS 5224, Université Grenoble AlpesGrenobleFrance
| | | | - Monica Baciu
- Université Grenoble Alpes, CNRS LPNC UMR 5105GrenobleFrance
| |
Collapse
|
2
|
Zhang H, Diaz MT. Task difficulty modulates age-related differences in functional connectivity during word production. BRAIN AND LANGUAGE 2023; 240:105263. [PMID: 37062160 PMCID: PMC10164070 DOI: 10.1016/j.bandl.2023.105263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 05/07/2023]
Abstract
Older adults typically report increased difficulty with language production, while its neural bases are less clear. The current study investigated the neural bases of age-related differences in language production at the word level and the modulating effect of task difficulty, focusing on task-based functional connectivity. Using an English phonological Go/No-Go picture naming task, task difficulty was manipulated by varying the proportion of naming trials (Go trials) and inhibition trials (No-Go trials) across runs. Behaviorally, compared to younger adults, older adults performed worse, and showed larger effects of task difficulty. Neurally, older adults had lower within language network connectivity compared to younger adults. Moreover, older adults' language network became less segregated as task difficulty increased. These results are consistent with the Compensation-Related Utilization of Neural Circuits Hypothesis, suggesting that the brain becomes less specified and efficient with increased task difficulty, and that these effects are stronger among older adults (i.e., more dedifferentiated).
Collapse
Affiliation(s)
- Haoyun Zhang
- University of Macau, Taipa, Macau; The Pennsylvania State University, University Park, PA 16801, USA.
| | - Michele T Diaz
- The Pennsylvania State University, University Park, PA 16801, USA
| |
Collapse
|
3
|
Shen Y, Lu Q, Zhang T, Yan H, Mansouri N, Osipowicz K, Tanglay O, Young I, Doyen S, Lu X, Zhang X, Sughrue ME, Wang T. Use of machine learning to identify functional connectivity changes in a clinical cohort of patients at risk for dementia. Front Aging Neurosci 2022; 14:962319. [PMID: 36118683 PMCID: PMC9475065 DOI: 10.3389/fnagi.2022.962319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveProgressive conditions characterized by cognitive decline, including mild cognitive impairment (MCI) and subjective cognitive decline (SCD) are clinical conditions representing a major risk factor to develop dementia, however, the diagnosis of these pre-dementia conditions remains a challenge given the heterogeneity in clinical trajectories. Earlier diagnosis requires data-driven approaches for improved and targeted treatment modalities.MethodsNeuropsychological tests, baseline anatomical T1 magnetic resonance imaging (MRI), resting-state functional MRI (rsfMRI), and diffusion weighted scans were obtained from 35 patients with SCD, 19 with MCI, and 36 age-matched healthy controls (HC). A recently developed machine learning technique, Hollow Tree Super (HoTS) was utilized to classify subjects into diagnostic categories based on their FC, and derive network and parcel-based FC features contributing to each model. The same approach was used to identify features associated with performance in a range of neuropsychological tests. We concluded our analysis by looking at changes in PageRank centrality (a measure of node hubness) between the diagnostic groups.ResultsSubjects were classified into diagnostic categories with a high area under the receiver operating characteristic curve (AUC-ROC), ranging from 0.73 to 0.84. The language networks were most notably associated with classification. Several central networks and sensory brain regions were predictors of poor performance in neuropsychological tests, suggesting maladaptive compensation. PageRank analysis highlighted that basal and limbic deep brain region, along with the frontal operculum demonstrated a reduction in centrality in both SCD and MCI patients compared to controls.ConclusionOur methods highlight the potential to explore the underlying neural networks contributing to the cognitive changes and neuroplastic responses in prodromal dementia.
Collapse
Affiliation(s)
- Ying Shen
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Rehabilitation Medicine, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, China
| | - Qian Lu
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Rehabilitation Medicine, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, China
| | - Tianjiao Zhang
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hailang Yan
- Department of Radiology, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, China
| | | | | | - Onur Tanglay
- Omniscient Neurotechnology, Sydney, NSW, Australia
| | | | | | - Xi Lu
- Department of Rehabilitation Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Xia Zhang
- International Joint Research Center on Precision Brain Medicine, XD Group Hospital, Xi’an, China
- Shenzhen Xijia Medical Technology Company, Shenzhen, China
| | - Michael E. Sughrue
- Omniscient Neurotechnology, Sydney, NSW, Australia
- International Joint Research Center on Precision Brain Medicine, XD Group Hospital, Xi’an, China
- Michael E. Sughrue,
| | - Tong Wang
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Tong Wang,
| |
Collapse
|
4
|
Baciu M, Banjac S, Roger E, Haldin C, Perrone-Bertolotti M, Lœvenbruck H, Démonet JF. Strategies and cognitive reserve to preserve lexical production in aging. GeroScience 2021; 43:1725-1765. [PMID: 33970414 PMCID: PMC8492841 DOI: 10.1007/s11357-021-00367-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/09/2021] [Indexed: 10/28/2022] Open
Abstract
In the absence of any neuropsychiatric condition, older adults may show declining performance in several cognitive processes and among them, in retrieving and producing words, reflected in slower responses and even reduced accuracy compared to younger adults. To overcome this difficulty, healthy older adults implement compensatory strategies, which are the focus of this paper. We provide a review of mainstream findings on deficient mechanisms and possible neurocognitive strategies used by older adults to overcome the deleterious effects of age on lexical production. Moreover, we present findings on genetic and lifestyle factors that might either be protective or risk factors of cognitive impairment in advanced age. We propose that "aging-modulating factors" (AMF) can be modified, offering prevention opportunities against aging effects. Based on our review and this proposition, we introduce an integrative neurocognitive model of mechanisms and compensatory strategies for lexical production in older adults (entitled Lexical Access and Retrieval in Aging, LARA). The main hypothesis defended in LARA is that cognitive aging evolves heterogeneously and involves complementary domain-general and domain-specific mechanisms, with substantial inter-individual variability, reflected at behavioral, cognitive, and brain levels. Furthermore, we argue that the ability to compensate for the effect of cognitive aging depends on the amount of reserve specific to each individual which is, in turn, modulated by the AMF. Our conclusion is that a variety of mechanisms and compensatory strategies coexist in the same individual to oppose the effect of age. The role of reserve is pivotal for a successful coping with age-related changes and future research should continue to explore the modulating role of AMF.
Collapse
Affiliation(s)
- Monica Baciu
- Univ. Grenoble Alpes, CNRS LPNC UMR 5105, 38000, Grenoble, France.
| | - Sonja Banjac
- Univ. Grenoble Alpes, CNRS LPNC UMR 5105, 38000, Grenoble, France
| | - Elise Roger
- Univ. Grenoble Alpes, CNRS LPNC UMR 5105, 38000, Grenoble, France
| | - Célise Haldin
- Univ. Grenoble Alpes, CNRS LPNC UMR 5105, 38000, Grenoble, France
| | | | | | | |
Collapse
|
5
|
Altered spontaneous brain activity in patients with childhood absence epilepsy: associations with treatment effects. Neuroreport 2021; 31:613-618. [PMID: 32366812 DOI: 10.1097/wnr.0000000000001447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The study aims to detect resting-state functional MRI (RS-fMRI) changes and their relationships with the clinical treatment effects of anti-epileptic drugs (AEDs) for patients with childhood absence epilepsy (CAE) using the fractional amplitude of low-frequency fluctuation (fALFF). RS-fMRI data from 30 CAE patients were collected and compared with findings from 30 healthy controls (HCs) with matched sex and age. Patients were treated with first-line AEDs for 46.2 months before undergoing a second RS-fMRI scan. fALFF data were processed using DPABI and SPM12 software. Compared with the HCs, CAE patients at baseline showed increased fALFF in anterior cingulate cortex, inferior parietal lobule, inferior frontal lobule, supplementary motor area and reduced fALFF in putamen and thalamus. At follow-up, the fALFF showed a clear rebound which indicated a normalization of spontaneous brain activities in these regions. In addition, the fALFF changes within thalamus showed significant positive correlation with the seizure frequency improvements. Our results suggest that specific cortical and subcortical regions are involved in seizure generation and the neurological impairments found in CAE children and might shed new light about the AEDs effects on CAE patients.
Collapse
|
6
|
Pistono A, Senoussi M, Guerrier L, Rafiq M, Giméno M, Péran P, Jucla M, Pariente J. Language Network Connectivity Increases in Early Alzheimer's Disease. J Alzheimers Dis 2021; 82:447-460. [PMID: 34024825 PMCID: PMC8293644 DOI: 10.3233/jad-201584] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Background: Language production deficits occur early in the course of Alzheimer’s disease (AD); however, only a few studies have focused on language network’s functional connectivity in mild cognitive impairment (MCI) due to AD. Objective: The current study aims to uncover the extent of language alteration at the MCI stage, at a behavioral and neural level, using univariate and multivariate analyses of structural MRI and resting-state fMRI. Methods: Twenty-four MCI due to AD participants and 24 matched healthy controls underwent a comprehensive language evaluation, a structural T1-3D MRI, and resting-state fMRI. We performed seed-based analyses, using the left inferior frontal gyrus and left posterior temporal gyrus as seeds. Then, we analyzed connectivity between executive control networks and language network in each group. Finally, we used multivariate pattern analyses to test whether the two groups could be distinguished based on the pattern of atrophy within the language network; within the executive control networks, as well as the pattern of functional connectivity within the language network and within the executive control networks. Results: MCI due to AD participants had language impairment during standardized language tasks and connected-speech production. Regarding functional connectivity, univariate analyses were not able to discriminate participants, while multivariate pattern analyses could significantly predict participants’ group. Language network’s functional connectivity could discriminate MCI due to AD participants better than executive control networks. Most notably, they revealed an increased connectivity at the MCI stage, positively correlated with language performance. Conclusion: Multivariate analyses represent a useful tool for investigating the functional and structural (re-)organization of the neural bases of language.
Collapse
Affiliation(s)
- Aurélie Pistono
- Octogone-Lordat Interdisciplinary Research Unit (EA 4156), University of Toulouse II-Jean Jaurès, Toulouse, France.,Department of Experimental Psychology, Ghent University, Ghent, Belgium
| | - Mehdi Senoussi
- Department of Experimental Psychology, Ghent University, Ghent, Belgium
| | - Laura Guerrier
- Toulouse NeuroImaging Center, Toulouse University, Inserm, UPS, France
| | - Marie Rafiq
- Department of Neurology, Neuroscience Centre, Toulouse University Hospital, Toulouse, France
| | - Mélanie Giméno
- Octogone-Lordat Interdisciplinary Research Unit (EA 4156), University of Toulouse II-Jean Jaurès, Toulouse, France
| | - Patrice Péran
- Toulouse NeuroImaging Center, Toulouse University, Inserm, UPS, France
| | - Mélanie Jucla
- Octogone-Lordat Interdisciplinary Research Unit (EA 4156), University of Toulouse II-Jean Jaurès, Toulouse, France
| | - Jérémie Pariente
- Toulouse NeuroImaging Center, Toulouse University, Inserm, UPS, France.,Department of Neurology, Neuroscience Centre, Toulouse University Hospital, Toulouse, France
| |
Collapse
|
7
|
Jockwitz C, Caspers S. Resting-state networks in the course of aging-differential insights from studies across the lifespan vs. amongst the old. Pflugers Arch 2021; 473:793-803. [PMID: 33576851 PMCID: PMC8076139 DOI: 10.1007/s00424-021-02520-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 01/05/2021] [Accepted: 01/11/2021] [Indexed: 11/29/2022]
Abstract
Resting-state functional connectivity (RSFC) has widely been used to examine reorganization of functional brain networks during normal aging. The extraction of generalizable age trends, however, is hampered by differences in methodological approaches, study designs and sample characteristics. Distinct age ranges of study samples thereby represent an important aspect between studies especially due to the increase in inter-individual variability over the lifespan. The current review focuses on comparing age-related differences in RSFC in the course of the whole adult lifespan versus later decades of life. We summarize and compare studies assessing age-related differences in within- and between-network RSFC of major resting-state brain networks. Differential effects of the factor age on resting-state networks can be identified when comparing studies focusing on younger versus older adults with studies investigating effects within the older adult population. These differential effects pertain to higher order and primary processing resting-state networks to a varying extent. Especially during later decades of life, other factors beyond age might come into play to understand the high inter-individual variability in RSFC.
Collapse
Affiliation(s)
- C Jockwitz
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany. .,Institute for Anatomy I, Medical Faculty & University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany.
| | - S Caspers
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany.,Institute for Anatomy I, Medical Faculty & University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany.,JARA-Brain, Jülich-Aachen Research Alliance, Jülich, Germany
| |
Collapse
|
8
|
Coupling of cerebral blood flow and functional connectivity is decreased in healthy aging. Brain Imaging Behav 2021; 14:436-450. [PMID: 31250268 DOI: 10.1007/s11682-019-00157-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Aging leads to cerebral perfusion and functional connectivity changes that have been assessed using various neuroimaging techniques. In addition, a link between these two parameters has been demonstrated in healthy young adults. In this work, we employed arterial spin labeling (ASL) fMRI to measure global and voxel-wise differences in cerebral blood flow (CBF) and intrinsic connectivity contrast (ICC) in the resting state in a group of cognitively normal elderly subjects and a group of cognitively normal young subjects, in order to assess the effects of aging on CBF-ICC coupling, which had not been previously evaluated. Our results showed age-related global and regional CBF decreases in prefrontal mesial areas, lateral frontal regions, insular cortex, lateral parietal areas, precuneus and occipital regions. Subcortically, perfusion was reduced in the medial thalamus and caudate nucleus. ICC was also found reduced with age in prefrontal cortical areas and insular cortex, affecting key nodes of the default mode and salience networks. Areas of ICC and CBF decrease partially overlapped, however, the CBF reduction was more extensive and encompassed more areas. This dissociation was accompanied by a decrease in CBF-ICC coupling. These results suggest that aging leads to a disruption in the relationship between CBF and intrinsic functional connectivity that could be due to neurovascular dysregulation.
Collapse
|
9
|
Jäncke L, Liem F, Merillat S. Are language skills related to structural features in Broca's and Wernicke's area? Eur J Neurosci 2020; 53:1124-1135. [PMID: 33179366 DOI: 10.1111/ejn.15038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/02/2020] [Accepted: 11/02/2020] [Indexed: 11/30/2022]
Abstract
This study used structural magnetic resonance imaging to examine whether specific anatomical features of Broca's and Wernicke's areas are related to language functions in typically developing older subjects with no specific language expertize. Data from 231 subjects from the Zurich LHAB-study are used for this study. For these subjects, we obtained several psychometric measures from which we calculated performance measures reflecting specific psychological functions (language comprehension, verbal fluency, perceptual speed, visual memory, recognition of regularities, and logical thinking). From the MRI measurements, we calculated the cortical thickness and cortical surface of Broca's and Wernicke's areas. Applying multiple regression analyses, we identified a moderately strong relationship between language comprehension and the brain metrics from Broca's and Wernicke's areas and showed that approximately 10% of the variance in language comprehension performance is explained by the linear combination of all perisylvian brain metrics. The other psychological functions (verbal fluency, perceptual speed, visual memory, recognition of regularities, and logical thinking) are not related to these brain metrics. Subsequent detailed analyses revealed that the cortical thickness of Wernicke's area, in particular, contributed most to this structure-function relationship. The better performance in the language comprehension tests was related to a thicker cortex in Wernicke's area. Thus, this study demonstrates a structure-function relationship between the anatomical features of the perisylvian language areas and language comprehension, suggesting that particular anatomical features are associated with better language performance.
Collapse
Affiliation(s)
- Lutz Jäncke
- Division Neuropsychology, Department of Psychology, University of Zurich, Zurich, Switzerland.,University Research Priority Program "Dynamic of Healthy Aging", University, Zurich, Switzerland.,Zurich Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Franz Liem
- Division Neuropsychology, Department of Psychology, University of Zurich, Zurich, Switzerland.,University Research Priority Program "Dynamic of Healthy Aging", University, Zurich, Switzerland
| | - Susan Merillat
- Division Neuropsychology, Department of Psychology, University of Zurich, Zurich, Switzerland.,University Research Priority Program "Dynamic of Healthy Aging", University, Zurich, Switzerland
| |
Collapse
|
10
|
Abstract
Previous studies have used resting-state functional MRI (rs-fMRI) and graph-theory approaches to investigate the lifespan trajectory of the topological organization of the gray-matter functional networks. Recent evidences have suggested that rs-fMRI data can also be used to estimate white-matter function, challenging the conventional practice of taking white-matter signals as noise or artifacts. Here, we examined the correlation between age and white-matter functional network efficiency by applying graph-theory to a large sample of rs-fMRI data of 435 participants. We found that age was correlated negatively with both global and local efficiency of the white-matter functional networks. These findings suggest decreasing white-matter functional network efficiency during the aging process, which provides a complement to conventional gray-matter functional network studies.
Collapse
|
11
|
|
12
|
Ferré P, Benhajali Y, Steffener J, Stern Y, Joanette Y, Bellec P. Resting-state and Vocabulary Tasks Distinctively Inform On Age-Related Differences in the Functional Brain Connectome. LANGUAGE, COGNITION AND NEUROSCIENCE 2019; 34:949-972. [PMID: 31457069 PMCID: PMC6711486 DOI: 10.1080/23273798.2019.1608072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 03/05/2019] [Indexed: 05/23/2023]
Abstract
Most of the current knowledge about age-related differences in brain neurofunctional organization stems from neuroimaging studies using either a "resting state" paradigm, or cognitive tasks for which performance decreases with age. However, it remains to be known if comparable age-related differences are found when participants engage in cognitive activities for which performance is maintained with age, such as vocabulary knowledge tasks. A functional connectivity analysis was performed on 286 adults ranging from 18 to 80 years old, based either on a resting state paradigm or when engaged in vocabulary tasks. Notable increases in connectivity of regions of the language network were observed during task completion. Conversely, only age-related decreases were observed across the whole connectome during resting-state. While vocabulary accuracy increased with age, no interaction was found between functional connectivity, age and task accuracy or proxies of cognitive reserve, suggesting that older individuals typically benefits from semantic knowledge accumulated throughout one's life trajectory, without the need for compensatory mechanisms.
Collapse
Affiliation(s)
- Perrine Ferré
- Centre de recherche de l'Institut Universitaire de Gériatrie de Montréal (CRIUGM), Université de Montréal, 4545 Queen Mary Road, Montréal, Qc, H3W 1W3, CANADA
| | - Yassine Benhajali
- Centre de recherche de l'Institut Universitaire de Gériatrie de Montréal (CRIUGM), Université de Montréal, 4545 Queen Mary Road, Montréal, Qc, H3W 1W3, CANADA
| | - Jason Steffener
- Centre de recherche de l'Institut Universitaire de Gériatrie de Montréal (CRIUGM), Université de Montréal, 4545 Queen Mary Road, Montréal, Qc, H3W 1W3, CANADA
- PERFORM Center, Concordia University
- Interdisciplinary School of Health Sciences, University of Ottawa, 200 Lees, Lees Campus, Office # E-250C, Ottawa, Ontario. K1S 5S9, CANADA
| | - Yaakov Stern
- Cognitive Neuroscience Division, Columbia University, 710 W 168th St, New York, NY 10032, USA
| | - Yves Joanette
- Centre de recherche de l'Institut Universitaire de Gériatrie de Montréal (CRIUGM), Université de Montréal, 4545 Queen Mary Road, Montréal, Qc, H3W 1W3, CANADA
| | - Pierre Bellec
- Centre de recherche de l'Institut Universitaire de Gériatrie de Montréal (CRIUGM), Université de Montréal, 4545 Queen Mary Road, Montréal, Qc, H3W 1W3, CANADA
| |
Collapse
|
13
|
Lou W, Wang D, Wong A, Chu WCW, Mok VCT, Shi L. Frequency-specific age-related decreased brain network diversity in cognitively healthy elderly: A whole-brain data-driven analysis. Hum Brain Mapp 2018; 40:340-351. [PMID: 30240493 DOI: 10.1002/hbm.24376] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 08/16/2018] [Accepted: 08/17/2018] [Indexed: 12/14/2022] Open
Abstract
Age-related changes in functional brain network have been well documented. However, recent studies have suggested the nonstationary properties of the functional connectivity of the brain, and little is known about the changes of functional connectivity dynamics during aging. In this study, a two-step singular value decomposition was introduced to capture the dynamic patterns of the time-varying functional connectivity in different frequency intervals, and the whole-brain and regional brain diversity were quantified by using Shannon entropy. The relationships between age and functional connectivity dynamics were investigated in a relatively large sample cohort of cognitively healthy elderly (N = 188, ages 65-80). The results showed an age-related decreased diversity in the whole brain as well as in the right inferior frontal gyrus, right amygdala, right hippocampus, left parahippocampal, and left inferior parietal gyrus in the frequency interval of 0.06-0.12 Hz. In addition, the whole-brain diversity during resting state could also reflect the general mental flexibility. This study provided the first evidence of frequency-specific age effects on the functional connectivity dynamics in cognitively healthy elderly, and may shed new light on the dynamic functional connectivity analysis of aging and neurodegenerative diseases.
Collapse
Affiliation(s)
- Wutao Lou
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Defeng Wang
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, China.,School of Instrumentation Science and Opto-electronics Engineering, Beihang University, Beijing, China.,Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong, China.,Research Center for Medical Image Computing, The Chinese University of Hong Kong, Hong Kong, China
| | - Adrian Wong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Winnie C W Chu
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong, China
| | - Vincent C T Mok
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China.,Chow Yuk Ho Technology Centre for Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Lin Shi
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong, China.,Research Center for Medical Image Computing, The Chinese University of Hong Kong, Hong Kong, China.,Chow Yuk Ho Technology Centre for Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
14
|
Methqal I, Marsolais Y, Wilson MA, Monchi O, Joanette Y. More expertise for a better perspective: Task and strategy-driven adaptive neurofunctional reorganization for word production in high-performing older adults. AGING NEUROPSYCHOLOGY AND COGNITION 2018; 26:190-221. [PMID: 29334837 DOI: 10.1080/13825585.2017.1423021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The suggestion that neurofunctional reorganization may contribute to preserved language abilities is still emerging in aging studies. Some of these abilities, such as verbal fluency (VF), are not unitary but instead rely on different strategic processes that are differentially changed with age. Younger (n = 13) and older adults (n = 13) carried out an overt self-paced semantic and orthographic VF tasks within mixed fMRI design. Our results suggest that patterns of brain activation sustaining equivalent performances could be underpinned by different strategies facing brain changes during healthy aging. These main findings suggest that temporally mediated semantic clustering and frontally mediated orthographic switching were driven by evolutive neurofunctional resources in high-performing older adults. These age-related activation changes can appear to be compatible with the idea that unique neural patterns expressing distinctive cognitive strategies are necessary to support older adults' performance on VF tasks.
Collapse
Affiliation(s)
- Ikram Methqal
- a Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal , Montreal, QC , Canada.,b Faculty of Medecine , University of Montreal , Montreal , QC , Canada
| | | | - Maximiliano A Wilson
- d Centre de recherche CERVO - CIUSSS de la Capitale-Nationale et Département de réadaptation , Université Laval , Québec , Canada
| | - Oury Monchi
- e Department of Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine , University of Calgary , Calgary , Canada
| | - Yves Joanette
- a Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal , Montreal, QC , Canada.,b Faculty of Medecine , University of Montreal , Montreal , QC , Canada
| |
Collapse
|
15
|
Zhou X, Wu T, Yu J, Lei X. Sleep Deprivation Makes the Young Brain Resemble the Elderly Brain: A Large-Scale Brain Networks Study. Brain Connect 2017; 7:58-68. [PMID: 27733049 DOI: 10.1089/brain.2016.0452] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Decreased cognition performance and impaired brain function are similar results of sleep deprivation (SD) and aging, according to mounted supporting evidence. Some investigators even proposed SD as a model of aging. However, few direct comparisons were ever explored between the effects of SD and aging by network module analysis with the resting-state functional magnetic resonance imaging. In this study, both within-module and between-module (BT) connectivities were calculated in the whole brain to describe a complete picture of brain networks' functional connectivity among three groups (young normal sleep, young SD, and old group). The results showed that the BT connectivities in subcortical and cerebellar networks were significantly declined in both the young SD group and old group. There were six other networks, that is, ventral attention, dorsal attention, default mode, auditory, cingulo-opercular, and memory retrieval networks, significantly influenced by aging. Therefore, we speculated that the effects of SD on the young group can be regarded as a simplified model of aging. Moreover, this provided a possible explanation, that is, the old were more tolerable for SD than the young. However, SD may not be a considerable model for aging when discussing the brain regions related to those SD-uninfluenced networks.
Collapse
Affiliation(s)
- Xinqi Zhou
- 1 Sleep and NeuroImaging Center, Faculty of Psychology, Southwest University , Chongqing, China .,2 Key Laboratory of Cognition and Personality of Ministry of Education , Chongqing, China
| | - Taoyu Wu
- 1 Sleep and NeuroImaging Center, Faculty of Psychology, Southwest University , Chongqing, China .,2 Key Laboratory of Cognition and Personality of Ministry of Education , Chongqing, China
| | - Jing Yu
- 1 Sleep and NeuroImaging Center, Faculty of Psychology, Southwest University , Chongqing, China .,2 Key Laboratory of Cognition and Personality of Ministry of Education , Chongqing, China
| | - Xu Lei
- 1 Sleep and NeuroImaging Center, Faculty of Psychology, Southwest University , Chongqing, China .,2 Key Laboratory of Cognition and Personality of Ministry of Education , Chongqing, China
| |
Collapse
|
16
|
Walpola IC, Nest T, Roseman L, Erritzoe D, Feilding A, Nutt DJ, Carhart-Harris RL. Altered Insula Connectivity under MDMA. Neuropsychopharmacology 2017; 42:2152-2162. [PMID: 28195139 PMCID: PMC5603811 DOI: 10.1038/npp.2017.35] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 02/05/2017] [Accepted: 02/08/2017] [Indexed: 12/14/2022]
Abstract
Recent work with noninvasive human brain imaging has started to investigate the effects of 3,4-methylenedioxymethamphetamine (MDMA) on large-scale patterns of brain activity. MDMA, a potent monoamine-releaser with particularly pronounced serotonin- releasing properties, has unique subjective effects that include: marked positive mood, pleasant/unusual bodily sensations and pro-social, empathic feelings. However, the neurobiological basis for these effects is not properly understood, and the present analysis sought to address this knowledge gap. To do this, we administered MDMA-HCl (100 mg p.o.) and, separately, placebo (ascorbic acid) in a randomized, double-blind, repeated-measures design with twenty-five healthy volunteers undergoing fMRI scanning. We then employed a measure of global resting-state functional brain connectivity and follow-up seed-to-voxel analysis to the fMRI data we acquired. Results revealed decreased right insula/salience network functional connectivity under MDMA. Furthermore, these decreases in right insula/salience network connectivity correlated with baseline trait anxiety and acute experiences of altered bodily sensations under MDMA. The present findings highlight insular disintegration (ie, compromised salience network membership) as a neurobiological signature of the MDMA experience, and relate this brain effect to trait anxiety and acutely altered bodily sensations-both of which are known to be associated with insular functioning.
Collapse
Affiliation(s)
- Ishan C Walpola
- Department of Psychiatry, McGill University Faculty of Medicine, McGill University, Montreal, Quebec, Canada,Department of Psychiatry, McGill University, 6825 LaSalle Boulevard, Montreal, Quebec, Canada H4H 1R3, Tel: 5147662010, E-mail:
| | - Timothy Nest
- Department of Psychiatry, McGill University Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Leor Roseman
- Division of Brain Sciences, Faculty of Medicine, Centre for Neuropsychopharmacology, Imperial College London, London, UK
| | - David Erritzoe
- Division of Brain Sciences, Faculty of Medicine, Centre for Neuropsychopharmacology, Imperial College London, London, UK
| | | | - David J Nutt
- Division of Brain Sciences, Faculty of Medicine, Centre for Neuropsychopharmacology, Imperial College London, London, UK
| | - Robin L Carhart-Harris
- Division of Brain Sciences, Faculty of Medicine, Centre for Neuropsychopharmacology, Imperial College London, London, UK
| |
Collapse
|
17
|
Van Ombergen A, Wuyts FL, Jeurissen B, Sijbers J, Vanhevel F, Jillings S, Parizel PM, Sunaert S, Van de Heyning PH, Dousset V, Laureys S, Demertzi A. Intrinsic functional connectivity reduces after first-time exposure to short-term gravitational alterations induced by parabolic flight. Sci Rep 2017; 7:3061. [PMID: 28607373 PMCID: PMC5468234 DOI: 10.1038/s41598-017-03170-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 04/26/2017] [Indexed: 11/16/2022] Open
Abstract
Spaceflight severely impacts the human body. However, little is known about how gravity and gravitational alterations affect the human brain. Here, we aimed at measuring the effects of acute exposure to gravity transitions. We exposed 28 naïve participants to repetitive alterations between normal, hyper- and microgravity induced by a parabolic flight (PF) and measured functional MRI connectivity changes. Scans were acquired before and after the PF. To mitigate motion sickness, PF participants received scopolamine prior to PF. To account for the scopolamine effects, 12 non-PF controls were scanned prior to and after scopolamine injection. Changes in functional connectivity were explored with the Intrinsic Connectivity Contrast (ICC). Seed-based analysis on the regions exhibiting localized changes was subsequently performed to understand the networks associated with the identified nodes. We found that the PF group was characterized by lower ICC scores in the right temporo-parietal junction (rTPJ), an area involved in multisensory integration and spatial tasks. The encompassed network revealed PF-related decreases in within- and inter-hemispheric anticorrelations between the rTPJ and the supramarginal gyri, indicating both altered vestibular and self-related functions. Our findings shed light on how the brain copes with gravity transitions, on gravity internalization and are relevant for the understanding of bodily self-consciousness.
Collapse
Affiliation(s)
- Angelique Van Ombergen
- Antwerp University Research Centre for Equilibrium and Aerospace (AUREA), University of Antwerp, Antwerp, Belgium
| | - Floris L Wuyts
- Antwerp University Research Centre for Equilibrium and Aerospace (AUREA), University of Antwerp, Antwerp, Belgium.
| | - Ben Jeurissen
- Vision Lab, Department of Physics, University of Antwerp, Antwerp, Belgium
| | - Jan Sijbers
- Vision Lab, Department of Physics, University of Antwerp, Antwerp, Belgium
| | - Floris Vanhevel
- Department of Radiology, Antwerp University Hospital & University of Antwerp, Antwerp, Belgium
| | - Steven Jillings
- Antwerp University Research Centre for Equilibrium and Aerospace (AUREA), University of Antwerp, Antwerp, Belgium
| | - Paul M Parizel
- Department of Radiology, Antwerp University Hospital & University of Antwerp, Antwerp, Belgium
| | - Stefan Sunaert
- KU Leuven - University of Leuven, Department of Imaging & Pathology, Translational MRI, Leuven, Belgium
| | - Paul H Van de Heyning
- Antwerp University Research Centre for Equilibrium and Aerospace (AUREA), University of Antwerp, Antwerp, Belgium
| | - Vincent Dousset
- University of Bordeaux, CHU de Bordeaux, INSERM Magendie, Bordeaux, France
| | - Steven Laureys
- Coma Science Group, GIGA-Research & Neurology Department, University and University Hospital of Liège, Liège, Belgium
| | - Athena Demertzi
- Coma Science Group, GIGA-Research & Neurology Department, University and University Hospital of Liège, Liège, Belgium
- Institut du Cerveau et de la Moelle Epinière - Brain and Spine Insititute, Hôpital Pitié-Salpêtrière, Paris, France
| |
Collapse
|