1
|
Pitoy M, Gauthier L, Debatisse J, Maulavé J, Météreau E, Beaudoin M, Portier K, Sgambato V, Billard T, Zimmer L, Lancelot S, Tremblay L. SB-258585 reduces food motivation while blocking 5-HT 6 receptors in the non-human primate striatum. Prog Neuropsychopharmacol Biol Psychiatry 2024; 131:110970. [PMID: 38354894 DOI: 10.1016/j.pnpbp.2024.110970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/09/2024] [Accepted: 02/11/2024] [Indexed: 02/16/2024]
Abstract
The interest in new 5-HT₆ agents stems from their ability to modulate cognition processing, food motivation and anxiety-like behaviors. While these findings come primarily from rodent studies, no studies on primates have been published. Furthermore, our understanding of where and how they act in the brain remains limited. Although the striatum is involved in all of these processes and expresses the highest levels of 5-HT₆ receptors, few studies have focused on it. We thus hypothesized that 5-HT6 receptor blockade would influence food motivation and modulate behavioral expression in non-human primates through striatal 5-HT6 receptors. This study thus aimed to determine the effects of acute administration of the SB-258585 selective 5-HT6 receptor antagonist on the feeding motivation and behaviors of six male macaques. Additionally, we investigated potential 5-HT6 targets using PET imaging to measure 5-HT6 receptor occupancy throughout the brain and striatal subregions. We used a food-choice task paired with spontaneous behavioral observations, checking 5-HT6 receptor occupancy with the specific PET imaging [18F]2FNQ1P radioligand. We demonstrated, for the first time in non-human primates, that modulation of 5-HT6 transmission, most likely through the striatum (the putamen and caudate nucleus), significantly reduces food motivation while exhibiting variable, weaker effects on behavior. While these results are consistent with the literature showing a decrease in food intake in rodents and proposing that 5-HT6 receptor antagonists can be used in obesity treatment, they question the antagonists' anxiolytic potential.
Collapse
Affiliation(s)
- Mathilde Pitoy
- Institut des Sciences Cognitives Marc Jeannerod, UMR-5229 CNRS, 67 boulevard Pinel, 69675 Bron Cedex, France; Université Claude-Bernard Lyon1, 69100 Villeurbanne, France; Hospices Civils de Lyon, 3 Quai des Célestins, 69002 Lyon, France.
| | - Lisa Gauthier
- Institut des Sciences Cognitives Marc Jeannerod, UMR-5229 CNRS, 67 boulevard Pinel, 69675 Bron Cedex, France; Université Claude-Bernard Lyon1, 69100 Villeurbanne, France
| | - Justine Debatisse
- Institut des Sciences Cognitives Marc Jeannerod, UMR-5229 CNRS, 67 boulevard Pinel, 69675 Bron Cedex, France; Centre de Recherche en Neurosciences de Lyon, CNRS UMR5292, INSERM U1028, Lyon, France
| | - Julie Maulavé
- Institut des Sciences Cognitives Marc Jeannerod, UMR-5229 CNRS, 67 boulevard Pinel, 69675 Bron Cedex, France; Université Claude-Bernard Lyon1, 69100 Villeurbanne, France
| | - Elise Météreau
- Institut des Sciences Cognitives Marc Jeannerod, UMR-5229 CNRS, 67 boulevard Pinel, 69675 Bron Cedex, France; Hospices Civils de Lyon, 3 Quai des Célestins, 69002 Lyon, France
| | - Maude Beaudoin
- Institut des Sciences Cognitives Marc Jeannerod, UMR-5229 CNRS, 67 boulevard Pinel, 69675 Bron Cedex, France; Université Claude-Bernard Lyon1, 69100 Villeurbanne, France
| | - Karine Portier
- Université de Lyon, VetAgro Sup, CREFAC, 69280 Marcy l'Etoile, France; UCBL, CNRS, INSERM, CRNL U1028 UMR5292, Trajectoire, Lyon, 69500 Bron, France
| | - Véronique Sgambato
- Institut des Sciences Cognitives Marc Jeannerod, UMR-5229 CNRS, 67 boulevard Pinel, 69675 Bron Cedex, France; Université Claude-Bernard Lyon1, 69100 Villeurbanne, France
| | | | - Luc Zimmer
- Université Claude-Bernard Lyon1, 69100 Villeurbanne, France; Hospices Civils de Lyon, 3 Quai des Célestins, 69002 Lyon, France; Centre de Recherche en Neurosciences de Lyon, CNRS UMR5292, INSERM U1028, Lyon, France; CERMEP-Imagerie du Vivant, 59 Bd Pinel, 69677 Bron, France
| | - Sophie Lancelot
- Université Claude-Bernard Lyon1, 69100 Villeurbanne, France; Hospices Civils de Lyon, 3 Quai des Célestins, 69002 Lyon, France; Centre de Recherche en Neurosciences de Lyon, CNRS UMR5292, INSERM U1028, Lyon, France; CERMEP-Imagerie du Vivant, 59 Bd Pinel, 69677 Bron, France
| | - Léon Tremblay
- Institut des Sciences Cognitives Marc Jeannerod, UMR-5229 CNRS, 67 boulevard Pinel, 69675 Bron Cedex, France; Université Claude-Bernard Lyon1, 69100 Villeurbanne, France.
| |
Collapse
|
2
|
Saga Y, Galineau L, Tremblay L. Impulsive and compulsive behaviors can be induced by opposite GABAergic dysfunctions inside the primate ventral pallidum. Front Syst Neurosci 2022; 16:1009626. [PMID: 36567755 PMCID: PMC9774472 DOI: 10.3389/fnsys.2022.1009626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/17/2022] [Indexed: 12/13/2022] Open
Abstract
Introduction: The ventral pallidum (VP) is central in the limbic Basal Ganglia circuit, controlling both appetitive (approach) and aversive (avoidance) motivated behaviors. Nevertheless, VP involvement in pathological aspects remains unclear, especially in the behavioral expression of different motivational dysfunctions. This study aimed to investigate how the VP contributes to the expression of abnormal behaviors via opposite GABAergic dysfunctions. Methods: Opposite GABAergic dysfunctions were induced by injecting muscimol (a GABAA agonist) and bicuculline (a GABAA antagonist) into monkeys. We determined the effects of both substances on self-initiated behaviors in lab-chair and in free-moving home-cage contexts in six monkeys, and in two animals performing an approach-avoidance task in appetitive and aversive contexts. Results: While the self-initiated behaviors induced by bicuculline injections in VP were characterized by compulsive behaviors such as repetitive grooming and self-biting, muscimol injections induced impulsive behaviors including limb movements in a lab-chair context and exploration behaviors in a free-moving context. More specific behavioral effects were observed in the approach-avoidance task. The muscimol injections induced premature responses and erroneous screen touches, which characterize impulsive and attention disorders, while the bicuculline injections into the VP increased passive avoidance (non-initiated action) and task-escape in an aversive context, suggesting an anxiety disorder. Conclusions: These results show that activating or blocking GABAergic transmission in the VP impairs motivated behaviors. Furthermore, the behavioral expressions produced by these opposite disturbances show that the VP could be involved in anxiety-driven compulsive disorders, such as OCD, as well as in impulsive disorders motivated by attention deficits or reward-seeking, as seen in ADHD or impulse control disorders.
Collapse
Affiliation(s)
- Yosuke Saga
- Institut des Sciences Cognitives Marc Jeannerod, UMR-5229 CNRS, Bron Cedex, France,*Correspondence: Yosuke Saga Léon Tremblay
| | - Laurent Galineau
- UMR INSERM U1253, Université François Rabelais de Tours, Tours, France
| | - Léon Tremblay
- Institut des Sciences Cognitives Marc Jeannerod, UMR-5229 CNRS, Bron Cedex, France,Université Claude-Bernard Lyon1, Villeurbanne, France,*Correspondence: Yosuke Saga Léon Tremblay
| |
Collapse
|
3
|
Dou R, Gao W, Meng Q, Zhang X, Cao W, Kuang L, Niu J, Guo Y, Cui D, Jiao Q, Qiu J, Su L, Lu G. Machine learning algorithm performance evaluation in structural magnetic resonance imaging-based classification of pediatric bipolar disorders type I patients. Front Comput Neurosci 2022; 16:915477. [PMID: 36082304 PMCID: PMC9445985 DOI: 10.3389/fncom.2022.915477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/21/2022] [Indexed: 11/15/2022] Open
Abstract
The diagnosis based on clinical assessment of pediatric bipolar disorder (PBD) may sometimes lead to misdiagnosis in clinical practice. For the past several years, machine learning (ML) methods were introduced for the classification of bipolar disorder (BD), which were helpful in the diagnosis of BD. In this study, brain cortical thickness and subcortical volume of 33 PBD-I patients and 19 age-sex matched healthy controls (HCs) were extracted from the magnetic resonance imaging (MRI) data and set as features for classification. The dimensionality reduced feature subset, which was filtered by Lasso or f_classif, was sent to the six classifiers (logistic regression (LR), support vector machine (SVM), random forest classifier, naïve Bayes, k-nearest neighbor, and AdaBoost algorithm), and the classifiers were trained and tested. Among all the classifiers, the top two classifiers with the highest accuracy were LR (84.19%) and SVM (82.80%). Feature selection was performed in the six algorithms to obtain the most important variables including the right middle temporal gyrus and bilateral pallidum, which is consistent with structural and functional anomalous changes in these brain regions in PBD patients. These findings take the computer-aided diagnosis of BD a step forward.
Collapse
Affiliation(s)
- Ruhai Dou
- Department of Radiology, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| | - Weijia Gao
- Department of Child Psychology, The Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qingmin Meng
- Department of Interventional Radiology, Taian Central Hospital, Taian, China
| | - Xiaotong Zhang
- Department of Radiology, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| | - Weifang Cao
- Department of Radiology, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| | - Liangfeng Kuang
- Department of Radiology, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| | - Jinpeng Niu
- Department of Radiology, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| | - Yongxin Guo
- Department of Radiology, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| | - Dong Cui
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Qing Jiao
- Department of Radiology, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
- *Correspondence: Qing Jiao,
| | - Jianfeng Qiu
- Department of Radiology, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| | - Linyan Su
- Key Laboratory of Psychiatry and Mental Health of Hunan Province, Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, China
| | - Guangming Lu
- Department of Medical Imaging, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, China
| |
Collapse
|
4
|
Pallidal volume reduction and prefrontal-striatal-thalamic functional connectivity disruption in pediatric bipolar disorders. J Affect Disord 2022; 301:281-288. [PMID: 35031334 DOI: 10.1016/j.jad.2022.01.049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/14/2021] [Accepted: 01/10/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND As a crucial node of the corticolimbic model, the striatum has been demonstrated in modulating emotional cues in pediatric bipolar disorders (PBD), the striatal distinction in structure and function between PBD-I and PBD-II remains unclear. METHODS MRI data of 36 patients in PBD-I, 22 patients in PBD-II and 19 age-gender matched healthy controls (HCs) were processed. Here, we investigated structural and functional alterations of 8 subregions of striatum (bilateral nucleus accumbens, caudate, putamen and globus pallidus) by analyzing MRI data. RESULTS We found volume reduction of the right pallidum, the significant positive correlation between the number of episodes and the functional connectivity between left pallidum and right caudate in PBD-I patients, abrupted prefrontal-striatal-thalamic functional connectivity in PBD-I group and decreased functional connectivity in PBD-II relative to HCs and PBD-I. LIMITATIONS Future studies should enroll more subjects and adopt a longitudinal perspective, which could help to discover striatum structural or functional alterations during subject-specific clinical progress in different states. CONCLUSIONS Results of the present study confirmed that structural and functional abnormality of striatum may be helpful in identifying PBD clinical types as distinctive biomarkers. The interruptions of the prefrontal-striatal-thalamic circuits may provide advantageous evidence for expounding the role of striatum in bipolar disorders etiology. Thus, potential mechanisms of dysfunction striatum need to be formulated and reconceptualized with multimodal neuroimaging studies in future.
Collapse
|
5
|
Amemori S, Graybiel AM, Amemori KI. Causal Evidence for Induction of Pessimistic Decision-Making in Primates by the Network of Frontal Cortex and Striosomes. Front Neurosci 2021; 15:649167. [PMID: 34276282 PMCID: PMC8277931 DOI: 10.3389/fnins.2021.649167] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 05/26/2021] [Indexed: 01/10/2023] Open
Abstract
Clinical studies have shown that patients with anxiety disorders exhibited coactivation of limbic cortices and basal ganglia, which together form a large-scale brain network. The mechanisms by which such a large-scale network could induce or modulate anxiety-like states are largely unknown. This article reviews our experimental program in macaques demonstrating a causal involvement of local striatal and frontal cortical sites in inducing pessimistic decision-making that underlies anxiety. Where relevant, we related these findings to the wider literature. To identify such sites, we have made a series of methodologic advances, including the combination of causal evidence for behavioral modification of pessimistic decisions with viral tracing methods. Critically, we introduced a version of the classic approach-avoidance (Ap-Av) conflict task, modified for use in non-human primates. We performed microstimulation of limbic-related cortical regions and the striatum, focusing on the pregenual anterior cingulate cortex (pACC), the caudal orbitofrontal cortex (cOFC), and the caudate nucleus (CN). Microstimulation of localized sites within these regions induced pessimistic decision-making by the monkeys, supporting the idea that the focal activation of these regions could induce an anxiety-like state, which subsequently influences decision-making. We further performed combined microstimulation and tract-tracing experiments by injecting anterograde viral tracers into focal regions, at which microstimulation induced increased avoidance. We found that effective stimulation sites in both pACC and cOFC zones projected preferentially to striosomes in the anterior striatum. Experiments in rodents have shown that the striosomes in the anterior striatum project directly to the dopamine-containing cells in the substantia nigra, and we have found evidence for a functional connection between striosomes and the lateral habenular region in which responses to reward are inhibitory. We present here further evidence for network interactions: we show that the pACC and cOFC project to common structures, including not only the anterior parts of the striosome compartment but also the tail of the CN, the subgenual ACC, the amygdala, and the thalamus. Together, our findings suggest that networks having pACC and cOFC as nodes share similar features in their connectivity patterns. We here hypothesize, based on these results, that the brain sites related to pessimistic judgment are mediated by a large-scale brain network that regulates dopaminergic functions and includes striosomes and striosome-projecting cortical regions.
Collapse
Affiliation(s)
- Satoko Amemori
- Institute for the Advanced Study of Human Biology, Kyoto University, Kyoto, Japan
| | - Ann M Graybiel
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Ken-Ichi Amemori
- Institute for the Advanced Study of Human Biology, Kyoto University, Kyoto, Japan
| |
Collapse
|
6
|
Fede SJ, Abrahao KP, Cortes CR, Grodin EN, Schwandt ML, George DT, Diazgranados N, Ramchandani VA, Lovinger DM, Momenan R. Alcohol effects on globus pallidus connectivity: Role of impulsivity and binge drinking. PLoS One 2020; 15:e0224906. [PMID: 32214339 PMCID: PMC7098584 DOI: 10.1371/journal.pone.0224906] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 03/03/2020] [Indexed: 12/19/2022] Open
Abstract
Despite the harm caused by binge drinking, the neural mechanisms leading to risky and disinhibited intoxication-related behaviors are not well understood. Evidence suggests that the globus pallidus externus (GPe), a substructure within the basal ganglia, participates in inhibitory control processes, as examined in stop-signaling tasks. In fact, studies in rodents have revealed that alcohol can change GPe activity by decreasing neuronal firing rates, suggesting that the GPe may have a central role in explaining impulsive behaviors and failures of inhibition that occur during binge drinking. In this study, twenty-five healthy volunteers underwent intravenous alcohol infusion to achieve a blood alcohol level of 0.08 g/dl, which is equivalent to a binge drinking episode. A resting state functional magnetic resonance imaging scan was collected prior to the infusion and at binge-level exposure. Functional connectivity analysis was used to investigate the association between alcohol-induced changes in GPe connectivity, drinking behaviors, and impulsivity traits. We found that individuals with greater number of drinks or heavy drinking days in the recent past had greater alcohol-induced deficits in GPe connectivity, particularly to the striatum. Our data also indicated an association between impulsivity and alcohol-induced deficits in GPe-frontal/precentral connectivity. Moreover, alcohol induced changes in GPe-amygdala circuitry suggested greater vulnerabilities to stress-related drinking in some individuals. Taken together, these findings suggest that alcohol may interact with impulsive personality traits and drinking patterns to drive alterations in GPe circuitry associated with behavioral inhibition, possibly indicating a neural mechanism by which binge drinking could lead to impulsive behaviors.
Collapse
Affiliation(s)
- Samantha J. Fede
- Clinical NeuroImaging Research Core, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Karina P. Abrahao
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland, United States of America
- Departamento de Psicobiologia, Universidade Federal de Sao Paulo, Sao Paulo, São Paulo, Brazil
| | - Carlos R. Cortes
- Clinical NeuroImaging Research Core, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Erica N. Grodin
- Clinical NeuroImaging Research Core, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Melanie L. Schwandt
- Office of the Clinical Director, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, United States of America
| | - David T. George
- Office of the Clinical Director, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Nancy Diazgranados
- Office of the Clinical Director, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Vijay A. Ramchandani
- Section on Human Psychopharmacology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, United States of America
| | - David M. Lovinger
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland, United States of America
| | - Reza Momenan
- Clinical NeuroImaging Research Core, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
7
|
Kraskov A, Soteropoulos DS, Glover IS, Lemon RN, Baker SN. Slowly-Conducting Pyramidal Tract Neurons in Macaque and Rat. Cereb Cortex 2019; 30:3403-3418. [PMID: 32026928 PMCID: PMC7197198 DOI: 10.1093/cercor/bhz318] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/22/2019] [Accepted: 09/02/2019] [Indexed: 01/19/2023] Open
Abstract
Anatomical studies report a large proportion of fine myelinated fibers in the primate pyramidal tract (PT), while very few PT neurons (PTNs) with slow conduction velocities (CV) (<~10 m/s) are reported electrophysiologically. This discrepancy might reflect recording bias toward fast PTNs or prevention of antidromic invasion by recurrent inhibition (RI) of slow PTNs from faster axons. We investigated these factors in recordings made with a polyprobe (32 closely-spaced contacts) from motor cortex of anesthetized rats (n = 2) and macaques (n = 3), concentrating our search on PTNs with long antidromic latencies (ADLs). We identified 21 rat PTNs with ADLs >2.6 ms and estimated CV 3-8 m/s, and 67 macaque PTNs (>3.9 ms, CV 6-12 m/s). Spikes of most slow PTNs were small and present on only some recording contacts, while spikes from simultaneously recorded fast-conducting PTNs were large and appeared on all contacts. Antidromic thresholds were similar for fast and slow PTNS, while spike duration was considerably longer in slow PTNs. Most slow PTNs showed no signs of failure to respond antidromically. A number of tests, including intracortical microinjection of bicuculline (GABAA antagonist), failed to provide any evidence that RI prevented antidromic invasion of slow PTNs. Our results suggest that recording bias is the main reason why previous studies were dominated by fast PTNs.
Collapse
Affiliation(s)
- A Kraskov
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - D S Soteropoulos
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - I S Glover
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - R N Lemon
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - S N Baker
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| |
Collapse
|
8
|
Saga Y, Ruff CC, Tremblay L. Disturbance of approach‐avoidance behaviors in non‐human primates by stimulation of the limbic territories of basal ganglia and anterior insula. Eur J Neurosci 2018; 49:687-700. [DOI: 10.1111/ejn.14201] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 09/19/2018] [Accepted: 09/26/2018] [Indexed: 01/21/2023]
Affiliation(s)
- Yosuke Saga
- Institut des Sciences Cognitives Marc Jeannerod UMR‐5229 CNRS 67 Boulevard Pinel 69675 Bron Cedex France
| | - Christian C. Ruff
- Laboratory for Social and Neural Systems Research Department of Economics University of Zurich Zurich Switzerland
| | - Léon Tremblay
- Institut des Sciences Cognitives Marc Jeannerod UMR‐5229 CNRS 67 Boulevard Pinel 69675 Bron Cedex France
- Université Claude‐Bernard Lyon 1 Villeurbanne France
| |
Collapse
|
9
|
Sgambato V, Tremblay L. Pathophysiology of dyskinesia and behavioral disorders in non-human primates: the role of serotonergic fibers. J Neural Transm (Vienna) 2018; 125:1145-1156. [PMID: 29502255 DOI: 10.1007/s00702-018-1871-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 02/27/2018] [Indexed: 12/26/2022]
Abstract
The MPTP monkey model of Parkinson's disease (PD) has allowed huge advances regarding the understanding of the pathological mechanisms of PD and L-DOPA-induced adverse effects. Among the main findings were the imbalance between the efferent striatal pathways in opposite directions between the hypokinetic and hyperkinetic states of PD. In both normal and parkinsonian monkeys, the combination of behavioral and anatomical studies has allowed the deciphering of the cortico-basal ganglia circuits involved in both movement and behavioral disorders. A major breakthrough has then been made regarding the hypothesis of the involvement of serotonergic fibers in the conversion of L-DOPA to dopamine when dopaminergic neurons are dying and to release it, in an uncontrolled manner, as serotonergic neurons are deprived from the machinery required for buffering dopamine from the synaptic cleft. The crucial involvement of serotonergic fibers underlying L-DOPA-induced dyskinesia (LID) has been demonstrated in both rodent and monkey models of PD, in which dyskinesia induced by L-DOPA is abolished following lesion of the serotonergic system. Moreover, the role of serotonergic fibers goes well beyond dyskinesia, as lesioning of such serotonergic fibers by MDMA in the monkey also decreased other L-DOPA-induced adverse effects such as impulsive compulsive behaviors and visual hallucinations. The same pathological mechanism, i.e., an imbalance between serotonin and dopamine terminals may, therefore, favor L-DOPA-induced adverse effects according to the basal ganglia territory it inhabits. Further non-human primate studies will be needed to demonstrate the role of such a pathological mechanism in both movement and behavioral disorders driven by L-DOPA therapy but also to determine the causal link between serotonin lesions and the expression of non-motor symptoms like apathy, depression and anxiety, frequently observed in PD patients.
Collapse
Affiliation(s)
- Véronique Sgambato
- Institut des Sciences Cognitives Marc Jeannerod, UMR 5229, Univ Lyon, CNRS, 69675, Bron, France.
| | - Léon Tremblay
- Institut des Sciences Cognitives Marc Jeannerod, UMR 5229, Univ Lyon, CNRS, 69675, Bron, France
| |
Collapse
|
10
|
Jo HJ, McCairn KW, Gibson WS, Testini P, Zhao CZ, Gorny KR, Felmlee JP, Welker KM, Blaha CD, Klassen BT, Min HK, Lee KH. Global network modulation during thalamic stimulation for Tourette syndrome. NEUROIMAGE-CLINICAL 2018; 18:502-509. [PMID: 29560306 PMCID: PMC5857897 DOI: 10.1016/j.nicl.2018.02.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 02/09/2018] [Accepted: 02/18/2018] [Indexed: 12/14/2022]
Abstract
Background and objectives Deep brain stimulation (DBS) of the thalamus is a promising therapeutic alternative for treating medically refractory Tourette syndrome (TS). However, few human studies have examined its mechanism of action. Therefore, the networks that mediate the therapeutic effects of thalamic DBS remain poorly understood. Methods Five participants diagnosed with severe medically refractory TS underwent bilateral thalamic DBS stereotactic surgery. Intraoperative fMRI characterized the blood oxygen level-dependent (BOLD) response evoked by thalamic DBS and determined whether the therapeutic effectiveness of thalamic DBS, as assessed using the Modified Rush Video Rating Scale test, would correlate with evoked BOLD responses in motor and limbic cortical and subcortical regions. Results Our results reveal that thalamic stimulation in TS participants has wide-ranging effects that impact the frontostriatal, limbic, and motor networks. Thalamic stimulation induced suppression of motor and insula networks correlated with motor tic reduction, while suppression of frontal and parietal networks correlated with vocal tic reduction. These regions mapped closely to major regions of interest (ROI) identified in a nonhuman primate model of TS. Conclusions Overall, these findings suggest that a critical factor in TS treatment should involve modulation of both frontostriatal and motor networks, rather than be treated as a focal disorder of the brain. Using the novel combination of DBS-evoked tic reduction and fMRI in human subjects, we provide new insights into the basal ganglia-cerebellar-thalamo-cortical network-level mechanisms that influence the effects of thalamic DBS. Future translational research should identify whether these network changes are cause or effect of TS symptoms.
Collapse
Affiliation(s)
- Hang Joon Jo
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA; Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Kevin W McCairn
- Systems Neuroscience Section, Primate Research Institute, Kyoto University, Inuyama, Aichi 484-8506, Japan
| | - William S Gibson
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Paola Testini
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Cong Zhi Zhao
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Joel P Felmlee
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | - Kirk M Welker
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | - Charles D Blaha
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Bryan T Klassen
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Hoon-Ki Min
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA; Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA.
| | - Kendall H Lee
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
11
|
Huang Q, Nie B, Ma C, Wang J, Zhang T, Duan S, Wu S, Liang S, Li P, Liu H, Sun H, Zhou J, Xu L, Shan B. Stereotaxic 18F-FDG PET and MRI templates with three-dimensional digital atlas for statistical parametric mapping analysis of tree shrew brain. J Neurosci Methods 2017; 293:105-116. [PMID: 28917660 DOI: 10.1016/j.jneumeth.2017.09.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 09/01/2017] [Accepted: 09/12/2017] [Indexed: 12/23/2022]
Abstract
BACKGROUND Tree shrews are proposed as an alternative animal model to nonhuman primates due to their close affinity to primates. Neuroimaging techniques are widely used to study brain functions and structures of humans and animals. However, tree shrews are rarely applied in neuroimaging field partly due to the lack of available species specific analysis methods. NEW METHOD In this study, 10 PET/CT and 10 MRI images of tree shrew brain were used to construct PET and MRI templates; based on histological atlas we reconstructed a three-dimensional digital atlas with 628 structures delineated; then the digital atlas and templates were aligned into a stereotaxic space. Finally, we integrated the digital atlas and templates into a toolbox for tree shrew brain spatial normalization, statistical analysis and results localization. RESULTS We validated the feasibility of the toolbox by simulated data with lesions in laterodorsal thalamic nucleus (LD). The lesion volumes of simulated PET and MRI images were (12.97±3.91)mm3 and (7.04±0.84)mm3. Statistical results at p<0.005 showed the lesion volumes of PET and MRI were 13.18mm3 and 8.06mm3 in LD. COMPARISON WITH EXISTING METHOD(S) To our knowledge, we report the first PET template and digital atlas of tree shrew brain. Compared to the existing MRI templates, our MRI template was aligned into stereotaxic space. And the toolbox is the first software dedicated for tree shrew brain analysis. CONCLUSIONS The templates and digital atlas of tree shrew brain, as well as the toolbox, facilitate the use of tree shrews in neuroimaging field.
Collapse
Affiliation(s)
- Qi Huang
- Division of Nuclear Technology and Applications, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; Beijing Engineering Research Center of Radiographic Techniques and Equipment, Beijing 100049, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Binbin Nie
- Division of Nuclear Technology and Applications, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; Beijing Engineering Research Center of Radiographic Techniques and Equipment, Beijing 100049, China
| | - Chen Ma
- Key Laboratory of Animal Models and Human Disease Mechanisms, and Laboratory of Learning and Memory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650223, China
| | - Jing Wang
- Department of Neurobiology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Tianhao Zhang
- Division of Nuclear Technology and Applications, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; Beijing Engineering Research Center of Radiographic Techniques and Equipment, Beijing 100049, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shaofeng Duan
- Division of Nuclear Technology and Applications, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; Beijing Engineering Research Center of Radiographic Techniques and Equipment, Beijing 100049, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shang Wu
- Division of Nuclear Technology and Applications, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; Beijing Engineering Research Center of Radiographic Techniques and Equipment, Beijing 100049, China; Physical Science and Technology College, Zhengzhou University, Zhengzhou 450052, China
| | - Shengxiang Liang
- Division of Nuclear Technology and Applications, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; Beijing Engineering Research Center of Radiographic Techniques and Equipment, Beijing 100049, China; Physical Science and Technology College, Zhengzhou University, Zhengzhou 450052, China
| | - Panlong Li
- Division of Nuclear Technology and Applications, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; Beijing Engineering Research Center of Radiographic Techniques and Equipment, Beijing 100049, China; Physical Science and Technology College, Zhengzhou University, Zhengzhou 450052, China
| | - Hua Liu
- Division of Nuclear Technology and Applications, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; Beijing Engineering Research Center of Radiographic Techniques and Equipment, Beijing 100049, China
| | - Hua Sun
- The Third Affiliated Hospital of Kunming Medical University, The PET/CT Center of Yunnan Tumor Hospital, Kunming 650118, China
| | - Jiangning Zhou
- Chinese Academy of Science Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China.
| | - Lin Xu
- Key Laboratory of Animal Models and Human Disease Mechanisms, and Laboratory of Learning and Memory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650223, China; KIZ-SU Joint Laboratory of Animal Model and Drug Development, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China; CAS Centre for Excellence in Brain Science and Intelligent Technology, Shanghai 200031, China.
| | - Baoci Shan
- Division of Nuclear Technology and Applications, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; Beijing Engineering Research Center of Radiographic Techniques and Equipment, Beijing 100049, China; CAS Centre for Excellence in Brain Science and Intelligent Technology, Shanghai 200031, China.
| |
Collapse
|
12
|
Dopamine and serotonin modulation of motor and non-motor functions of the non-human primate striato-pallidal circuits in normal and pathological states. J Neural Transm (Vienna) 2017; 125:485-500. [PMID: 28176009 DOI: 10.1007/s00702-017-1693-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 01/30/2017] [Indexed: 10/20/2022]
Abstract
Thanks to the non-human primate (NHP), we have shown that the pharmacological disturbance of the anterior striatum or of external globus pallidus triggers a set of motivation and movement disorders, depending on the functional subterritory involved. One can, therefore, assume that the aberrant activity of the different subterritories of basal ganglia (BG) could lead to different behavioral disorders in neuropsychiatric disorders as Tourette's syndrome and Parkinson's disease. We are now addressing in the NHP the impact of modulating dopamine or serotonin within the BG on behavioral disorders. Indeed, we have shown a prominent role of serotonergic degeneration within the ventral striatum and caudate nucleus in neuropsychiatric symptoms in de novo PD patients. Of note, the serotonergic modulation of these BG regions in the NHP plays also a critical role in the induction or treatment of behavioral disorders. Given that both dopamine and serotonin are targeted to treat neuropsychiatric disorders, we are studying the effects of modulating dopamine and serotonin transporters in the different territories of the striatum, and more particularly within the ventral striatum on decision-making processing at both behavioral and neuronal levels. Finally, we evidence the need to extend the pharmacological approach to the receptors of these two neuromodulator systems as the use of substances targeting receptor subtypes preferentially localized in the associative and limbic territories of BG could be very effective to specifically improve the behavioral disorders in Parkinson's disease, Gilles de la Tourette syndrome but also in several psychiatric disorders such as depression, anxiety, anorexia, or impulse control disorders.
Collapse
|