1
|
Willinger D, Häberling I, Ilioska I, Berger G, Walitza S, Brem S. Weakened effective connectivity between salience network and default mode network during resting state in adolescent depression. Front Psychiatry 2024; 15:1386984. [PMID: 38638415 PMCID: PMC11024787 DOI: 10.3389/fpsyt.2024.1386984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 03/18/2024] [Indexed: 04/20/2024] Open
Abstract
Adolescent major depressive disorder (MDD) is associated with altered resting-state connectivity between the default mode network (DMN) and the salience network (SN), which are involved in self-referential processing and detecting and filtering salient stimuli, respectively. Using spectral dynamical causal modelling, we investigated the effective connectivity and input sensitivity between key nodes of these networks in 30 adolescents with MDD and 32 healthy controls while undergoing resting-state fMRI. We found that the DMN received weaker inhibition from the SN and that the medial prefrontal cortex and the anterior cingulate cortex showed reduced self-inhibition in MDD, making them more prone to external influences. Moreover, we found that selective serotonin reuptake inhibitor (SSRI) intake was associated with decreased and increased self-inhibition of the SN and DMN, respectively, in patients. Our findings suggest that adolescent MDD is characterized by a hierarchical imbalance between the DMN and the SN, which could affect the integration of emotional and self-related information. We propose that SSRIs may help restore network function by modulating excitatory/inhibitory balance in the DMN and the SN. Our study highlights the potential of prefrontal-amygdala interactions as a biomarker and a therapeutic target for adolescent depression.
Collapse
Affiliation(s)
- David Willinger
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
- Department of Psychology and Psychodynamics, Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
| | - Isabelle Häberling
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Zurich, Switzerland
| | - Iva Ilioska
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Gregor Berger
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Zurich, Switzerland
| | - Susanne Walitza
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Silvia Brem
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| |
Collapse
|
2
|
Kang D, In MH, Jo HJ, Halverson MA, Meyer NK, Ahmed Z, Gray EM, Madhavan R, Foo TK, Fernandez B, Black DF, Welker KM, Trzasko JD, Huston J, Bernstein MA, Shu Y. Improved Resting-State Functional MRI Using Multi-Echo Echo-Planar Imaging on a Compact 3T MRI Scanner with High-Performance Gradients. SENSORS (BASEL, SWITZERLAND) 2023; 23:4329. [PMID: 37177534 PMCID: PMC10181561 DOI: 10.3390/s23094329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023]
Abstract
In blood-oxygen-level-dependent (BOLD)-based resting-state functional (RS-fMRI) studies, usage of multi-echo echo-planar-imaging (ME-EPI) is limited due to unacceptable late echo times when high spatial resolution is used. Equipped with high-performance gradients, the compact 3T MRI system (C3T) enables a three-echo whole-brain ME-EPI protocol with smaller than 2.5 mm isotropic voxel and shorter than 1 s repetition time, as required in landmark fMRI studies. The performance of the ME-EPI was comprehensively evaluated with signal variance reduction and region-of-interest-, seed- and independent-component-analysis-based functional connectivity analyses and compared with a counterpart of single-echo EPI with the shortest TR possible. Through the multi-echo combination, the thermal noise level is reduced. Functional connectivity, as well as signal intensity, are recovered in the medial orbital sulcus and anterior transverse collateral sulcus in ME-EPI. It is demonstrated that ME-EPI provides superior sensitivity and accuracy for detecting functional connectivity and/or brain networks in comparison with single-echo EPI. In conclusion, the high-performance gradient enabled high-spatial-temporal resolution ME-EPI would be the method of choice for RS-fMRI study on the C3T.
Collapse
Affiliation(s)
- Daehun Kang
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA; (D.K.)
| | - Myung-Ho In
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA; (D.K.)
| | - Hang Joon Jo
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA; (D.K.)
- Department of Physiology, Hanyang University, Seoul 04763, Republic of Korea
| | | | - Nolan K. Meyer
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA; (D.K.)
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Zaki Ahmed
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA; (D.K.)
| | - Erin M. Gray
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA; (D.K.)
| | | | | | | | - David F. Black
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA; (D.K.)
| | - Kirk M. Welker
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA; (D.K.)
| | - Joshua D. Trzasko
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA; (D.K.)
| | - John Huston
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA; (D.K.)
| | - Matt A. Bernstein
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA; (D.K.)
| | - Yunhong Shu
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA; (D.K.)
| |
Collapse
|
3
|
Al-Masni MA, Lee S, Al-Shamiri AK, Gho SM, Choi YH, Kim DH. A knowledge interaction learning for multi-echo MRI motion artifact correction towards better enhancement of SWI. Comput Biol Med 2023; 153:106553. [PMID: 36641933 DOI: 10.1016/j.compbiomed.2023.106553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/01/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
Patient movement during Magnetic Resonance Imaging (MRI) scan can cause severe degradation of image quality. In Susceptibility Weighted Imaging (SWI), several echoes are typically measured during a single repetition period, where the earliest echoes show less contrast between various tissues, while the later echoes are more susceptible to artifacts and signal dropout. In this paper, we propose a knowledge interaction paradigm that jointly learns feature details from multiple distorted echoes by sharing their knowledge with unified training parameters, thereby simultaneously reducing motion artifacts of all echoes. This is accomplished by developing a new scheme that boosts a Single Encoder with Multiple Decoders (SEMD), which assures that the generated features not only get fused but also learned together. We called the proposed method Knowledge Interaction Learning between Multi-Echo data (KIL-ME-based SEMD). The proposed KIL-ME-based SEMD allows to share information and gain an understanding of the correlations between the multiple echoes. The main purpose of this work is to correct the motion artifacts and maintain image quality and structure details of all motion-corrupted echoes towards generating high-resolution susceptibility enhanced contrast images, i.e., SWI, using a weighted average of multi-echo motion-corrected acquisitions. We also compare various potential strategies that might be used to address the problem of reducing artifacts in multi-echoes data. The experimental results demonstrate the feasibility and effectiveness of the proposed method, reducing the severity of motion artifacts and improving the overall clinical image quality of all echoes with their associated SWI maps. Significant improvement of image quality is observed using both motion-simulated test data and actual volunteer data with various motion severity strengths. Eventually, by enhancing the overall image quality, the proposed network can increase the effectiveness of the physicians' capability to evaluate and correctly diagnose brain MR images.
Collapse
Affiliation(s)
- Mohammed A Al-Masni
- Department of Artificial Intelligence, College of Software & Convergence Technology, Daeyang AI Center, Sejong University, Seoul, 05006, Republic of Korea
| | - Seul Lee
- Department of Electrical and Electronic Engineering, College of Engineering, Yonsei University, Seoul, Republic of Korea
| | | | | | - Young Hun Choi
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Dong-Hyun Kim
- Department of Electrical and Electronic Engineering, College of Engineering, Yonsei University, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Using multiband multi-echo imaging to improve the robustness and repeatability of co-activation pattern analysis for dynamic functional connectivity. Neuroimage 2021; 243:118555. [PMID: 34492293 PMCID: PMC10018461 DOI: 10.1016/j.neuroimage.2021.118555] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/24/2021] [Accepted: 09/03/2021] [Indexed: 02/04/2023] Open
Abstract
Emerging evidence has shown that functional connectivity is dynamic and changes over the course of a scan. Furthermore, connectivity patterns can arise from short periods of co-activation on the order of seconds. Recently, a dynamic co-activation patterns (CAPs) analysis was introduced to examine the co-activation of voxels resulting from individual timepoints. The goal of this study was to apply CAPs analysis on resting state fMRI data collected using an advanced multiband multi-echo (MBME) sequence, in comparison with a multiband (MB) sequence with a single echo. Data from 28 healthy control subjects were examined. Subjects underwent two resting state scans, one MBME and one MB, and 19 subjects returned within two weeks for a repeat scan session. Data preprocessing included advanced denoising namely multi-echo independent component analysis (ME-ICA) for the MBME data and an ICA-based strategy for Automatic Removal of Motion Artifacts (ICA-AROMA) for the MB data. The CAPs analysis was conducted using the newly published TbCAPs toolbox. CAPs were extracted using both seed-based and seed-free approaches. Timepoints were clustered using k-means clustering. The following metrics were compared between MBME and MB datasets: mean activation in each CAP, the spatial correlation and mean squared error (MSE) between each timepoint and the centroid CAP it was assigned to, within-dataset variance across timepoints assigned to the same CAP, and the between-session spatial correlation of each CAP. Co-activation was heightened for MBME data for the majority of CAPs. Spatial correlation and MSE between each timepoint and its assigned centroid CAP were higher and lower respectively for MBME data. The within-dataset variance was also lower for MBME data. Finally, the between-session spatial correlation was higher for MBME data. Overall, our findings suggest that the advanced MBME sequence is a promising avenue for the measurement of dynamic co-activation patterns by increasing the robustness and reproducibility of the CAPs.
Collapse
|
5
|
Kovářová A, Gajdoš M, Rektor I, Mikl M. Contribution of the multi-echo approach in accelerated functional magnetic resonance imaging multiband acquisition. Hum Brain Mapp 2021; 43:955-973. [PMID: 34716738 PMCID: PMC8764472 DOI: 10.1002/hbm.25698] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/16/2021] [Accepted: 10/18/2021] [Indexed: 11/11/2022] Open
Abstract
We wanted to verify the effect of combining multi‐echo (ME) functional magnetic resonance imaging (fMRI) with slice acceleration in simultaneous multi‐slice acquisition. The aim was to shed light on the benefits of multiple echoes for various acquisition settings, especially for levels of slice acceleration and flip angle. Whole‐brain ME fMRI data were obtained from 26 healthy volunteers (using three echoes; seven runs with slice acceleration 1, 4, 6, and 8; and two different flip angles for each of the first three acceleration factors) and processed as single‐echo (SE) data and ME data based on optimal combinations weighted by the contrast‐to‐noise ratio. Global metrics (temporal signal‐to‐noise ratio, signal‐to‐noise separation, number of active voxels, etc.) and local characteristics in regions of interest were used to evaluate SE and ME data. ME results outperformed SE results in all runs; the differences became more apparent for higher acceleration, where a significant decrease in data quality is observed. ME fMRI can improve the observed data quality metrics over SE fMRI for a wide range of accelerated fMRI acquisitions.
Collapse
Affiliation(s)
- Anežka Kovářová
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic.,First Department of Neurology, Faculty of Medicine of the Masaryk University, Brno, Czech Republic
| | - Martin Gajdoš
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Ivan Rektor
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic.,First Department of Neurology, Faculty of Medicine of the Masaryk University, Brno, Czech Republic
| | - Michal Mikl
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| |
Collapse
|
6
|
Cohen AD, Jagra AS, Yang B, Fernandez B, Banerjee S, Wang Y. Detecting Task Functional MRI Activation Using the Multiband Multiecho (MBME) Echo-Planar Imaging (EPI) Sequence. J Magn Reson Imaging 2021; 53:1366-1374. [PMID: 33210793 PMCID: PMC10937038 DOI: 10.1002/jmri.27448] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Blood oxygen level-dependent (BOLD) functional MRI (fMRI) has been widely applied to detect brain activations. Recent advances in multiband (MB) and multiecho (ME) techniques have greatly improved fMRI methods. MB imaging improves temporal and/or spatial resolution, while ME imaging has been shown to improve BOLD sensitivity. This study aimed to evaluate the novel MBME echo planar imaging (EPI) sequence utilizing MB and ME simultaneously to determine if the MBME outperform the MB single echo (MBSE) sequence for task fMRI. PURPOSE To compare the performance of MBME with MBSE in a task fMRI study. STUDY TYPE Prospective. POPULATION A total of 29 healthy volunteers aged 20-46 years (9 male, 20 female). FIELD STRENGTH/SEQUENCE MBSE and MBME gradient-echo EPI sequences were applied at 3T. Additional T1 -weighted magnetization-prepared rapid acquisition with gradient echo (MPRAGE) was collected. ASSESSMENT A checkerboard visual task was presented during the functional MBSE and MBME scans. The MBME or MBSE signal was evaluated using the temporal signal-to-noise ratio (tSNR). Task activation was evaluated using the z-score, volume, sensitivity, and specificity. Test-retest metrics of task activation were examined with the Dice coefficient (DC) and intraclass correlation coefficient (ICC) on subjects with repeated scans. STATISTICAL TESTS A linear mixed-effects model was used to compared MBME and MBSE activation at the voxel base. The paired t-test was used to compare tSNR, activation z-score, and volume, along with sensitivity, specificity, and DC between MBSE and MBME. RESULTS While similar task activation was detected in the visual cortex, MBME showed higher activation volume and higher sensitivity compared with MBSE (P < 0.05). ICC was higher for MBME than MBSE, while there was a trend of differences in DC (P = 0.08). DATA CONCLUSION MBME resulted in higher task fMRI activation volume and sensitivity without losing specificity. Reliability was also higher for MBME scans compared with MBSE. LEVEL OF EVIDENCE 1 TECHNICAL EFFICACY STAGE: 1.
Collapse
Affiliation(s)
- Alexander D. Cohen
- Department of Radiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | | | | | | | | | - Yang Wang
- Department of Radiology, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
7
|
Moia S, Termenon M, Uruñuela E, Chen G, Stickland RC, Bright MG, Caballero-Gaudes C. ICA-based denoising strategies in breath-hold induced cerebrovascular reactivity mapping with multi echo BOLD fMRI. Neuroimage 2021; 233:117914. [PMID: 33684602 PMCID: PMC8351526 DOI: 10.1016/j.neuroimage.2021.117914] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/25/2021] [Accepted: 02/22/2021] [Indexed: 12/19/2022] Open
Abstract
Performing a BOLD functional MRI (fMRI) acquisition during breath-hold (BH) tasks is a non-invasive, robust method to estimate cerebrovascular reactivity (CVR). However, movement and breathing-related artefacts caused by the BH can substantially hinder CVR estimates due to their high temporal collinearity with the effect of interest, and attention has to be paid when choosing which analysis model should be applied to the data. In this study, we evaluate the performance of multiple analysis strategies based on lagged general linear models applied on multi-echo BOLD fMRI data, acquired in ten subjects performing a BH task during ten sessions, to obtain subject-specific CVR and haemodynamic lag estimates. The evaluated approaches range from conventional regression models, i.e. including drifts and motion timecourses as nuisance regressors, applied on single-echo or optimally-combined data, to more complex models including regressors obtained from multi-echo independent component analysis with different grades of orthogonalization in order to preserve the effect of interest, i.e. the CVR. We compare these models in terms of their ability to make signal intensity changes independent from motion, as well as the reliability as measured by voxelwise intraclass correlation coefficients of both CVR and lag maps over time. Our results reveal that a conservative independent component analysis model applied on the optimally-combined multi-echo fMRI signal offers the largest reduction of motion-related effects in the signal, while yielding reliable CVR amplitude and lag estimates, although a conventional regression model applied on the optimally-combined data results in similar estimates. This work demonstrates the usefulness of multi-echo based fMRI acquisitions and independent component analysis denoising for precision mapping of CVR in single subjects based on BH paradigms, fostering its potential as a clinically-viable neuroimaging tool for individual patients. It also proves that the way in which data-driven regressors should be incorporated in the analysis model is not straight-forward due to their complex interaction with the BH-induced BOLD response.
Collapse
Affiliation(s)
- Stefano Moia
- Basque Center on Cognition, Brain and Language, Donostia, Spain; University of the Basque Country UPV/EHU, Donostia, Spain.
| | - Maite Termenon
- Basque Center on Cognition, Brain and Language, Donostia, Spain
| | - Eneko Uruñuela
- Basque Center on Cognition, Brain and Language, Donostia, Spain; University of the Basque Country UPV/EHU, Donostia, Spain
| | - Gang Chen
- Scientific and Statistical Computing Core, NIMH/NIH/HHS, Bethesda, MD, United States
| | - Rachael C Stickland
- Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Molly G Bright
- Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States; Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, United States
| | | |
Collapse
|
8
|
Cohen AD, Jagra AS, Visser NJ, Yang B, Fernandez B, Banerjee S, Wang Y. Improving the Breath-Holding CVR Measurement Using the Multiband Multi-Echo EPI Sequence. Front Physiol 2021; 12:619714. [PMID: 33716769 PMCID: PMC7953053 DOI: 10.3389/fphys.2021.619714] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/20/2021] [Indexed: 02/04/2023] Open
Abstract
Blood oxygen level-dependent (BOLD) functional MRI (fMRI) is commonly used to measure cerebrovascular reactivity (CVR), which can convey insightful information about neurovascular health. Breath-holding (BH) has been shown to be a practical vasodilatory stimulus for measuring CVR in clinical settings. The conventional BOLD fMRI approach has some limitations, however, such as susceptibility-induced signal dropout at air tissue interfaces and low BOLD sensitivity especially in areas of low T 2 * . These drawbacks can potentially be mitigated with multi-echo sequences, which acquire several images at different echo times in one shot. When combined with multiband techniques, high temporal resolution images can be acquired. This study compared an advanced multiband multi-echo (MBME) echo planar imaging (EPI) sequence with an existing multiband single-echo (MB) sequence to evaluate the repeatability and sensitivity of BH activation and CVR mapping. Images were acquired from 28 healthy volunteers, of which 18 returned for repeat imaging. Both MBME and MB data were pre-processed using both standard and advanced denoising techniques. The MBME data was further processed by combining echoes using a T 2 * -weighted approach and denoising using multi-echo independent component analysis. BH activation was calculated using a general linear model and the respiration response function. CVR was computed as the percent change related to the activation. To account for differences in CVR related to TE, relative CVR (rCVR) was computed and normalized to the mean gray matter CVR. Test-retest metrics were assessed with the Dice coefficient, rCVR difference, within subject coefficient of variation, and the intraclass correlation coefficient. Our findings demonstrate that rCVR for MBME scans were significantly higher than for MB scans across most of the gray matter. In areas of high susceptibility-induced signal dropout, however, MBME rCVR was significantly less than MB rCVR due to artifactually high rCVR for MB scans in these regions. MBME rCVR showed improved test-retest metrics compared with MB. Overall, the MBME sequence displayed superior BOLD sensitivity, improved specificity in areas of signal dropout on MBME scans, enhanced reliability, and reduced variability across subjects compared with MB acquisitions. Our results suggest that the MBME EPI sequence is a promising tool for imaging CVR.
Collapse
Affiliation(s)
- Alexander D. Cohen
- Department of Radiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | | | - Nicholas J. Visser
- Department of Radiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | | | | | | | - Yang Wang
- Department of Radiology, Medical College of Wisconsin, Milwaukee, WI, United States,*Correspondence: Yang Wang,
| |
Collapse
|
9
|
Cohen AD, Yang B, Fernandez B, Banerjee S, Wang Y. Improved resting state functional connectivity sensitivity and reproducibility using a multiband multi-echo acquisition. Neuroimage 2021; 225:117461. [PMID: 33069864 PMCID: PMC10015256 DOI: 10.1016/j.neuroimage.2020.117461] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 09/20/2020] [Accepted: 10/12/2020] [Indexed: 02/04/2023] Open
Abstract
Recent advances in functional MRI techniques include multiband (MB) imaging and multi-echo (ME) imaging. In MB imaging multiple slices are acquired simultaneously leading to significant increases in temporal and spatial resolution. Multi-echo imaging enables multiple echoes to be acquired in one shot, where the ME images can be used to denoise the BOLD time series and increase BOLD sensitivity. In this study, resting state fMRI (rs-fMRI) data were collected using a combined MBME sequence and compared to an MB single echo sequence. In total, 29 subjects were imaged, and 18 of them returned within two weeks for repeat imaging. Participants underwent one MBME scan with three echoes and one MB scan with one echo. Both datasets were processed using standard denoising and advanced denoising. Advanced denoising included multi-echo independent component analysis (ME-ICA) for the MBME data and ICA-AROMA for the MB data. Resting state functional connectivity (RSFC) was evaluated using both selective seed-based and whole grey matter (GM) region-of-interest (ROI) based approaches. The reproducibility of connectivity metrics was also analyzed in the repeat subjects. In addition, functional connectivity density (FCD), a data-driven approach that counts the number of significant connections, both within a local cluster and globally, with each voxel was analyzed. Regardless of the standard or advanced denoising technique, all seed-based RSFC was significantly higher for MBME compared to MB. Much more GM ROI combinations showed significantly higher RSFC for MBME vs. MB. Reproducibility, evaluated using the dice coefficient was significantly higher for MBME relative to MB data. Finally, FCD was also higher for MBME vs. MB data. This study showed higher RSFC for MBME vs. MB data using selected seed-based, whole GM ROI-based, and data-driven approaches. Reproducibility found also higher for MBME data. Taken together, these results indicate that MBME is a promising technique for rs-fMRI.
Collapse
Affiliation(s)
- Alexander D Cohen
- Department of Radiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | | | | | | | - Yang Wang
- Department of Radiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States.
| |
Collapse
|
10
|
A comparative fMRI meta-analysis of altruistic and strategic decisions to give. Neuroimage 2019; 184:227-241. [DOI: 10.1016/j.neuroimage.2018.09.009] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 07/11/2018] [Accepted: 09/04/2018] [Indexed: 12/18/2022] Open
|