1
|
Yan X, Wang Y, Li W, Zhu M, Wang W, Xu C, Li K, Liu B, Shi X. A preliminary study on the application of electrical impedance tomography based on cerebral perfusion monitoring to intracranial pressure changes. Front Neurosci 2024; 18:1390977. [PMID: 38863884 PMCID: PMC11166027 DOI: 10.3389/fnins.2024.1390977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 05/10/2024] [Indexed: 06/13/2024] Open
Abstract
Background In intracranial pathologic conditions of intracranial pressure (ICP) disturbance or hemodynamic instability, maintaining appropriate ICP may reduce the risk of ischemic brain injury. The change of ICP is often accompanied by the change of intracranial blood status. As a non-invasive functional imaging technique, the sensitivity of electrical impedance tomography (EIT) to cerebral hemodynamic changes has been preliminarily confirmed. However, no team has conducted a feasibility study on the dynamic detection of ICP by EIT technology from the perspective of non-invasive whole-brain blood perfusion monitoring. In this study, human brain EIT image sequence was obtained by in vivo measurement, from which a variety of indicators that can reflect the tidal changes of the whole brain impedance were extracted, in order to establish a new method for non-invasive monitoring of ICP changes from the level of cerebral blood perfusion monitoring. Methods Valsalva maneuver (VM) was used to temporarily change the cerebral blood perfusion status of volunteers. The electrical impedance information of the brain during this process was continuously monitored by EIT device and real-time imaging was performed, and the hemodynamic indexes of bilateral middle cerebral arteries were monitored by transcranial Doppler (TCD). The changes in monitoring information obtained by the two techniques were compared and observed. Results The EIT imaging results indicated that the image sequence showed obvious tidal changes with the heart beating. Perfusion indicators of vascular pulsation obtained from EIT images decreased significantly during the stabilization phase of the intervention (PAC: 242.94 ± 100.83, p < 0.01); perfusion index which reflects vascular resistance increased significantly in the stable stage of intervention (PDT: 79.72 ± 18.23, p < 0.001). After the intervention, the parameters gradually returned to the baseline level before compression. The changes of EIT indexes in the whole process are consistent with the changes of middle cerebral artery velocity related indexes shown in TCD results. Conclusion The EIT image combined with the blood perfusion index proposed in this paper can reflect the decrease of cerebral blood flow under the condition of increased ICP in real time and intuitively. With the advantages of high time resolution and high sensitivity, EIT provides a new idea for non-invasive bedside measurement of ICP.
Collapse
Affiliation(s)
- Xiaoheng Yan
- Faculty of Electrical and Control Engineering, Liaoning Technical University, Huludao, China
- Belt and Road Joint Laboratory on Measurement and Control Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Wang
- Faculty of Electrical and Control Engineering, Liaoning Technical University, Huludao, China
| | - Weichen Li
- College of Life Sciences, Northwest University, Xi’an, China
| | - Mingxu Zhu
- Department of Biomedical Engineering, Air Force Medical University, Xi’an, China
| | - Weice Wang
- Department of Biomedical Engineering, Air Force Medical University, Xi’an, China
| | - Canhua Xu
- Department of Biomedical Engineering, Air Force Medical University, Xi’an, China
| | - Kun Li
- Faculty of Electrical and Control Engineering, Liaoning Technical University, Huludao, China
| | - Benyuan Liu
- Department of Biomedical Engineering, Air Force Medical University, Xi’an, China
| | - Xuetao Shi
- Department of Biomedical Engineering, Air Force Medical University, Xi’an, China
| |
Collapse
|
2
|
Gao C, Xiu J, Huang C, Ma K, Li T. Reliability Evaluation for Continuous-Wave Functional Near-Infrared Spectroscopy Systems: Comprehensive Testing from Bench Characterization to Human Test. SENSORS (BASEL, SWITZERLAND) 2024; 24:2045. [PMID: 38610255 PMCID: PMC11014010 DOI: 10.3390/s24072045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/18/2024] [Accepted: 03/18/2024] [Indexed: 04/14/2024]
Abstract
In recent years, biomedical optics technology has developed rapidly. The current widespread use of biomedical optics was made possible by the invention of optical instruments. The advantages of being non-invasive, portable, effective, low cost, and less susceptible to system noise have led to the rapid development of functional near-infrared spectroscopy (fNIRS) technology for hemodynamics detection, especially in the field of functional brain imaging. At the same time, laboratories and companies have developed various fNIRS-based systems. The safety, stability, and efficacy of fNIRS systems are key performance indicators. However, there is still a lack of comprehensive and systematic evaluation methods for fNIRS instruments. This study uses the fNIRS system developed in our laboratory as the test object. The test method established in this study includes system validation and performance testing to comprehensively assess fNIRS systems' reliability. These methods feature low cost and high practicality. Based on this study, existing or newly developed systems can be comprehensively and easily evaluated in the laboratory or workspace.
Collapse
Affiliation(s)
- Chenyang Gao
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China; (C.G.); (J.X.)
| | - Jia Xiu
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China; (C.G.); (J.X.)
| | - Chong Huang
- Philips North America, Carlsbad, CA 92011, USA;
| | - Kaixue Ma
- School of Microelectronics, Tianjin University, Tianjin 300072, China;
| | - Ting Li
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China; (C.G.); (J.X.)
| |
Collapse
|
3
|
Boerwinkle VL, Gillette K, Rubinos CA, Broman-Fulks J, Aseem F, DeHoff GK, Arhin M, Cediel E, Strohm T. Functional MRI for Acute Covert Consciousness: Emerging Data and Implementation Case Series. Semin Neurol 2023; 43:712-734. [PMID: 37788679 DOI: 10.1055/s-0043-1775845] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Although research studies have begun to demonstrate relationships between disorders of consciousness and brain network biomarkers, there are limited data on the practical aspects of obtaining such network biomarkers to potentially guide care. As the state of knowledge continues to evolve, guidelines from professional societies such as the American and European Academies of Neurology and many experts have advocated that the risk-benefit ratio for the assessment of network biomarkers has begun to favor their application toward potentially detecting covert consciousness. Given the lack of detailed operationalization guidance and the context of the ethical implications, herein we offer a roadmap based on local institutional experience with the implementation of functional MRI in the neonatal, pediatric, and adult intensive care units of our local government-supported health system. We provide a case-based demonstrative approach intended to review the current literature and to assist with the initiation of such services at other facilities.
Collapse
Affiliation(s)
- Varina L Boerwinkle
- Division of Child Neurology, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Kirsten Gillette
- Division of Child Neurology, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Clio A Rubinos
- Division of Neurocritical Care, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Jordan Broman-Fulks
- Division of Child Neurology, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Fazila Aseem
- Division of Neurocritical Care, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Grace K DeHoff
- Division of Neurocritical Care, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Martin Arhin
- Division of Child Neurology, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Emilio Cediel
- Division of Child Neurology, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Tamara Strohm
- Division of Neurocritical Care, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| |
Collapse
|
4
|
Maissan IM, Vlottes B, Hoeks S, Bosch J, Stolker RJ, den Hartog D. Ambulance deceleration causes increased intra cranial pressure in supine position: a prospective observational prove of principle study. Scand J Trauma Resusc Emerg Med 2021; 29:87. [PMID: 34193207 PMCID: PMC8246666 DOI: 10.1186/s13049-021-00904-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 06/11/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ambulance drivers in the Netherlands are trained to drive as fluent as possible when transporting a head injured patient to the hospital. Acceleration and deceleration have the potential to create pressure changes in the head that may worsen outcome. Although the idea of fluid shift during braking causing intra cranial pressure (ICP) to rise is widely accepted, it lacks any scientific evidence. In this study we evaluated the effects of driving and deceleration during ambulance transportation on the intra cranial pressure in supine position and 30° upright position. METHODS Participants were placed on the ambulance gurney in supine position. During driving and braking the optical nerve sheath diameter (ONSD) was measured with ultrasound. Because cerebro spinal fluid percolates in the optical nerve sheath when ICP rises, the diameter of this sheath will distend if ICP rises during braking of the ambulance. The same measurements were taken with the headrest in 30° upright position. RESULTS Mean ONSD in 20 subjects in supine position increased from 4.80 (IQR 4.80-5.00) mm during normal transportation to 6.00 (IQR 5.75-6.40) mm (p < 0.001) during braking. ONSD's increased in all subjects in supine position. After raising the headrest of the gurney 30° mean ONSD increased from 4.80 (IQR 4.67-5.02) mm during normal transportation to 4.90 (IQR 4.80-5.02) mm (p = 0.022) during braking. In 15 subjects (75%) there was no change in ONSD at all. CONCLUSIONS ONSD and thereby ICP increases during deceleration of a transporting vehicle in participants in supine position. Raising the headrest of the gurney to 30 degrees reduces the effect of breaking on ICP.
Collapse
Affiliation(s)
- Iscander M Maissan
- Department of Anesthesiology, Dr. Molenwaterplein 40, 3015, GD, Rotterdam, The Netherlands.
| | - Boris Vlottes
- Department of Anesthesiology, Dr. Molenwaterplein 40, 3015, GD, Rotterdam, The Netherlands
| | - Sanne Hoeks
- Department of Anesthesiology, Dr. Molenwaterplein 40, 3015, GD, Rotterdam, The Netherlands
| | - Jan Bosch
- Regionale Ambulancevoorziening Hollands Midden, Research and Development, Vondellaan 43, 2332AA, Leiden, The Netherlands
| | - Robert Jan Stolker
- Department of Anesthesiology, Dr. Molenwaterplein 40, 3015, GD, Rotterdam, The Netherlands
| | - Dennis den Hartog
- Department of Trauma Surgery, Dr. Molenwaterplein 40, 3015 GD, Rotterdam, The Netherlands
| |
Collapse
|
5
|
Won SY, Dubinski D, Behmanesh B, Bernstock JD, Keil F, Freiman T, Konczalla J, Seifert V, Gessler F. Supervised Valsalva Maneuver after Burr Hole Evacuation of Chronic Subdural Hematomas: A Prospective Cohort Study. J Neurotrauma 2020; 38:911-917. [PMID: 33081586 DOI: 10.1089/neu.2020.7391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Research on chronic subdural hematoma (cSDH) management has primarily focused on potential recurrence after surgical evacuation. Herein, we present a novel postoperative/non-invasive treatment that includes a supervised Valsalva maneuver (SVM), which may serve to reduce SDH recurrence. Accordingly, the aims of the study were to investigate the effects of SVM on SDH recurrence rates and functional outcomes. A prospective study was conducted from December 2016 until December 2019 at the Goethe University Hospital Frankfurt. Of the 204 adult patients with surgically treated cSDH who had subdural drains placed, 94 patients were assigned to the SVM group and 82 patients were assigned to the control group. The SVM was performed by having patients blow into a self-made SVM device at least two times/h for 12 h/day. The primary end-point was SDH recurrence rate, while secondary outcomes were morbidity and functional outcomes at 3 months of follow-up. SDH recurrence was observed in 16 of 94 patients (17%) in the SVM group, which was a significant reduction as compared with the control group, which had 24 of 82 patients (29.3%; p = 0.05) develop recurrent SDHs. Further, the infection rate (e.g., pneumonia) was significantly lower in the SVM group (1.1%) than in the control group (13.4%; p < 0.001; odds ratio [OR] 0.1). At the 3-month follow-up, 85 of 94 patients (90.4%) achieved favorable outcomes in the SVM group compared with 62 of 82 patients (75.6%) in the control group (p = 0.008; OR 3.0). Independent predictors for favorable outcome at follow-up were age (OR 0.9) and infection (OR 0.2). SVM appears to be safe and effective in the post-operative management of cSDHs, reducing both recurrence rates and infections after surgical evacuation, thereby resulting in favorable outcomes at follow-up.
Collapse
Affiliation(s)
- Sae-Yeon Won
- Department of Neurosurgery, University Hospital, and Goethe University, Frankfurt, Germany
| | - Daniel Dubinski
- Department of Neurosurgery, University Hospital, and Goethe University, Frankfurt, Germany
| | - Bedjan Behmanesh
- Department of Neurosurgery, University Hospital, and Goethe University, Frankfurt, Germany
| | | | - Fee Keil
- Department of Neurosurgery, Brigham and Women`s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Thomas Freiman
- Department of Neurosurgery, University Hospital, and Goethe University, Frankfurt, Germany
| | - Juergen Konczalla
- Department of Neurosurgery, University Hospital, and Goethe University, Frankfurt, Germany
| | - Volker Seifert
- Department of Neurosurgery, University Hospital, and Goethe University, Frankfurt, Germany
| | - Florian Gessler
- Department of Neurosurgery, University Hospital, and Goethe University, Frankfurt, Germany
| |
Collapse
|
6
|
Thranitz J, Knauth M, Heldmann M, Küchler J, Münte TF, Royl G. Elevation of intracranial pressure affects the relationship between hemoglobin concentration and neuronal activation in human somatosensory cortex. Hum Brain Mapp 2020; 41:2702-2716. [PMID: 32128949 PMCID: PMC7294068 DOI: 10.1002/hbm.24973] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 02/13/2020] [Accepted: 02/18/2020] [Indexed: 11/25/2022] Open
Abstract
During neuronal activation, a local decrease of deoxygenated hemoglobin concentration (deoxy‐Hb) occurs which is the basis of functional brain imaging with blood oxygenation level dependent functional magnetic resonance imaging (BOLD‐fMRI). Elevated intracranial pressure (eICP) has been shown to impair functional deoxy‐Hb changes. This study investigated this effect and its relation to the underlying neuronal activity in the human primary somatosensory cortex (SI). Functional near‐infrared spectroscopy (fNIRS) during somatosensory evoked potentials (SEP) monitoring was performed on 75 subjects during conditions of median nerve stimulation (MNS) and resting state, combined with normal breathing (NB) and eICP by escalating breathing maneuvers (breath holding [BH], Valsalva maneuver with 15 mmHg [V15] and 35 mmHg expiratory pressure [V35]). During NB, fNIRS revealed a typical oxygenated hemoglobin concentration (oxy‐Hb) increase with deoxy‐Hb decrease during MNS enabling SI brain mapping. Breathing maneuvers associated eICP produced a known global change of oxy‐Hb and deoxy‐Hb with and without MNS. When subtracting measurements during resting state from measurements during MNS, neither functional oxy‐Hb nor deoxy‐Hb changes could be recovered while SEPs remained unchanged. In conclusion, Valsalva‐induced eICP prevents oxy‐Hb and deoxy‐Hb changes during neuronal activation in SI. This finding raises questions on the validity of oxy‐Hb‐ and deoxy‐Hb‐based brain imaging (e.g., BOLD‐fMRI) during eICP.
Collapse
Affiliation(s)
- Julia Thranitz
- Department of Neurology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - Martin Knauth
- Department of Internal Medicine, Schön Klinik Neustadt, Neustadt in Holstein, Germany
| | - Marcus Heldmann
- Department of Neurology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - Jan Küchler
- Department of Neurosurgery, University of Lübeck, Lübeck, Germany
| | - Thomas F Münte
- Department of Neurology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - Georg Royl
- Department of Neurology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| |
Collapse
|
7
|
Raitamaa L, Korhonen V, Huotari N, Raatikainen V, Hautaniemi T, Kananen J, Rasila A, Helakari H, Zienkiewicz A, Myllylä T, Borchardt V, Kiviniemi V. Breath hold effect on cardiovascular brain pulsations - A multimodal magnetic resonance encephalography study. J Cereb Blood Flow Metab 2019; 39:2471-2485. [PMID: 30204040 PMCID: PMC6893986 DOI: 10.1177/0271678x18798441] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Ultra-fast functional magnetic resonance encephalography (MREG) enables separate assessment of cardiovascular, respiratory, and vasomotor waves from brain pulsations without temporal aliasing. We examined effects of breath hold- (BH) related changes on cardiovascular brain pulsations using MREG to study the physiological nature of cerebrovascular reactivity. We used alternating 32 s BH and 88 s resting normoventilation (NV) to change brain pulsations during MREG combined with simultaneously measured respiration, continuous non-invasive blood pressure, and cortical near-infrared spectroscopy (NIRS) in healthy volunteers. Changes in classical resting-state network BOLD-like signal and cortical blood oxygenation were reproduced based on MREG and NIRS signals. Cardiovascular pulsation amplitudes of MREG signal from anterior cerebral artery, oxygenated hemoglobin concentration in frontal cortex, and blood pressure decreased after BH. MREG cardiovascular pulse amplitudes in cortical areas and sagittal sinus increased, while cerebrospinal fluid and white matter remained unchanged. Respiratory centers in the brainstem - hypothalamus - thalamus - amygdala network showed strongest increases in cardiovascular pulsation amplitude. The spatial propagation of averaged cardiovascular impulses altered as a function of successive BH runs. The spread of cardiovascular pulse cycles exhibited a decreasing spatial similarity over time. MREG portrayed spatiotemporally accurate respiratory network activity and cardiovascular pulsation dynamics related to BH challenges at an unpreceded high temporal resolution.
Collapse
Affiliation(s)
- Lauri Raitamaa
- Oulu Functional Neuro Imaging Group, Research Unit of Medical Imaging Physics and Technology (MIPT), University of Oulu, Oulu, Finland
| | - Vesa Korhonen
- Oulu Functional Neuro Imaging Group, Research Unit of Medical Imaging Physics and Technology (MIPT), University of Oulu, Oulu, Finland.,Department of Diagnostic Radiology, Medical Research Center (MRC), Oulu University Hospital, Oulu, Finland
| | - Niko Huotari
- Oulu Functional Neuro Imaging Group, Research Unit of Medical Imaging Physics and Technology (MIPT), University of Oulu, Oulu, Finland
| | - Ville Raatikainen
- Oulu Functional Neuro Imaging Group, Research Unit of Medical Imaging Physics and Technology (MIPT), University of Oulu, Oulu, Finland
| | - Taneli Hautaniemi
- Oulu Functional Neuro Imaging Group, Research Unit of Medical Imaging Physics and Technology (MIPT), University of Oulu, Oulu, Finland
| | - Janne Kananen
- Oulu Functional Neuro Imaging Group, Research Unit of Medical Imaging Physics and Technology (MIPT), University of Oulu, Oulu, Finland
| | - Aleksi Rasila
- Oulu Functional Neuro Imaging Group, Research Unit of Medical Imaging Physics and Technology (MIPT), University of Oulu, Oulu, Finland
| | - Heta Helakari
- Oulu Functional Neuro Imaging Group, Research Unit of Medical Imaging Physics and Technology (MIPT), University of Oulu, Oulu, Finland
| | - Aleksandra Zienkiewicz
- Biomedical Sensors and Measurement Systems Group, Optoelectronics and Measurement Techniques Unit, University of Oulu, Oulu, Finland
| | - Teemu Myllylä
- Oulu Functional Neuro Imaging Group, Research Unit of Medical Imaging Physics and Technology (MIPT), University of Oulu, Oulu, Finland.,Biomedical Sensors and Measurement Systems Group, Optoelectronics and Measurement Techniques Unit, University of Oulu, Oulu, Finland
| | - Viola Borchardt
- Oulu Functional Neuro Imaging Group, Research Unit of Medical Imaging Physics and Technology (MIPT), University of Oulu, Oulu, Finland
| | - Vesa Kiviniemi
- Oulu Functional Neuro Imaging Group, Research Unit of Medical Imaging Physics and Technology (MIPT), University of Oulu, Oulu, Finland.,Department of Diagnostic Radiology, Medical Research Center (MRC), Oulu University Hospital, Oulu, Finland
| |
Collapse
|
8
|
Zhang M, Mary Ying YL, Ihlefeld A. Spatial Release From Informational Masking: Evidence From Functional Near Infrared Spectroscopy. Trends Hear 2018; 22:2331216518817464. [PMID: 30558491 PMCID: PMC6299332 DOI: 10.1177/2331216518817464] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 10/31/2018] [Accepted: 11/13/2018] [Indexed: 11/30/2022] Open
Abstract
Informational masking (IM) can greatly reduce speech intelligibility, but the neural mechanisms underlying IM are not understood. Binaural differences between target and masker can improve speech perception. In general, improvement in masked speech intelligibility due to provision of spatial cues is called spatial release from masking. Here, we focused on an aspect of spatial release from masking, specifically, the role of spatial attention. We hypothesized that in a situation with IM background sound (a) attention to speech recruits lateral frontal cortex (LFCx) and (b) LFCx activity varies with direction of spatial attention. Using functional near infrared spectroscopy, we assessed LFCx activity bilaterally in normal-hearing listeners. In Experiment 1, two talkers were simultaneously presented. Listeners either attended to the target talker (speech task) or they listened passively to an unintelligible, scrambled version of the acoustic mixture (control task). Target and masker differed in pitch and interaural time difference (ITD). Relative to the passive control, LFCx activity increased during attentive listening. Experiment 2 measured how LFCx activity varied with ITD, by testing listeners on the speech task in Experiment 1, except that talkers either were spatially separated by ITD or colocated. Results show that directing of auditory attention activates LFCx bilaterally. Moreover, right LFCx is recruited more strongly in the spatially separated as compared with colocated configurations. Findings hint that LFCx function contributes to spatial release from masking in situations with IM.
Collapse
Affiliation(s)
- Min Zhang
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
- Graduate School of Biomedical Sciences, Rutgers University, Newark, NJ, USA
| | - Yu-Lan Mary Ying
- Department of Otolaryngology-Head and Neck Surgery, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Antje Ihlefeld
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| |
Collapse
|