1
|
Cabral-Calderin Y, van Hinsberg D, Thielscher A, Henry MJ. Behavioral entrainment to rhythmic auditory stimulation can be modulated by tACS depending on the electrical stimulation field properties. eLife 2024; 12:RP87820. [PMID: 38289225 PMCID: PMC10945705 DOI: 10.7554/elife.87820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024] Open
Abstract
Synchronization between auditory stimuli and brain rhythms is beneficial for perception. In principle, auditory perception could be improved by facilitating neural entrainment to sounds via brain stimulation. However, high inter-individual variability of brain stimulation effects questions the usefulness of this approach. Here we aimed to modulate auditory perception by modulating neural entrainment to frequency modulated (FM) sounds using transcranial alternating current stimulation (tACS). In addition, we evaluated the advantage of using tACS montages spatially optimized for each individual's anatomy and functional data compared to a standard montage applied to all participants. Across two different sessions, 2 Hz tACS was applied targeting auditory brain regions. Concurrent with tACS, participants listened to FM stimuli with modulation rate matching the tACS frequency but with different phase lags relative to the tACS, and detected silent gaps embedded in the FM sound. We observed that tACS modulated the strength of behavioral entrainment to the FM sound in a phase-lag specific manner. Both the optimal tACS lag and the magnitude of the tACS effect were variable across participants and sessions. Inter-individual variability of tACS effects was best explained by the strength of the inward electric field, depending on the field focality and proximity to the target brain region. Although additional evidence is necessary, our results also provided suggestive insights that spatially optimizing the electrode montage could be a promising tool to reduce inter-individual variability of tACS effects. This work demonstrates that tACS effectively modulates entrainment to sounds depending on the optimality of the electric field. However, the lack of reliability on optimal tACS lags calls for caution when planning tACS experiments based on separate sessions.
Collapse
Affiliation(s)
| | | | - Axel Thielscher
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and HvidovreCopenhagenDenmark
- Section for Magnetic Resonance, DTU Health Tech, Technical University of DenmarkCopenhagenDenmark
| | - Molly J Henry
- Max Planck Institute for Empirical AestheticsFrankfurtGermany
- Toronto Metropolitan UniversityTorontoCanada
| |
Collapse
|
2
|
Forward entrainment: Psychophysics, neural correlates, and function. Psychon Bull Rev 2022:10.3758/s13423-022-02220-y. [DOI: 10.3758/s13423-022-02220-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2022] [Indexed: 12/04/2022]
Abstract
AbstractWe define forward entrainment as that part of behavioral or neural entrainment that outlasts the entraining stimulus. In this review, we examine conditions under which one may optimally observe forward entrainment. In Part 1, we review and evaluate studies that have observed forward entrainment using a variety of psychophysical methods (detection, discrimination, and reaction times), different target stimuli (tones, noise, and gaps), different entraining sequences (sinusoidal, rectangular, or sawtooth waveforms), a variety of physiological measures (MEG, EEG, ECoG, CSD), in different modalities (auditory and visual), across modalities (audiovisual and auditory-motor), and in different species. In Part 2, we describe those experimental conditions that place constraints on the magnitude of forward entrainment, including an evaluation of the effects of signal uncertainty and attention, temporal envelope complexity, signal-to-noise ratio (SNR), rhythmic rate, prior experience, and intersubject variability. In Part 3 we theorize on potential mechanisms and propose that forward entrainment may instantiate a dynamic auditory afterimage that lasts a fraction of a second to minimize prediction error in signal processing.
Collapse
|
3
|
Saberi K, Hickok G. A critical analysis of Lin et al.'s (2021) failure to observe forward entrainment in pitch discrimination. Eur J Neurosci 2022; 56:5191-5200. [PMID: 35857282 PMCID: PMC9804316 DOI: 10.1111/ejn.15778] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/30/2022] [Accepted: 07/14/2022] [Indexed: 01/07/2023]
Abstract
Forward entrainment refers to that part of the entrainment process that outlasts the entraining stimulus. Several studies have demonstrated psychophysical forward entrainment in a pitch-discrimination task. In a recent paper, Lin et al. (2021) challenged these findings by demonstrating that a sequence of 4 entraining pure tones does not affect the ability to determine whether a frequency modulated pulse, presented after termination of the entraining sequence, has swept up or down in frequency. They concluded that rhythmic sequences do not facilitate pitch discrimination. Here, we describe several methodological and stimulus design flaws in Lin et al.'s study that may explain their failure to observe forward entrainment in pitch discrimination.
Collapse
Affiliation(s)
- Kourosh Saberi
- Department of Cognitive SciencesUniversity of CaliforniaIrvineCaliforniaUSA
| | - Gregory Hickok
- Department of Cognitive SciencesUniversity of CaliforniaIrvineCaliforniaUSA,Department of Language ScienceUniversity of CaliforniaIrvineCaliforniaUSA
| |
Collapse
|
4
|
Listeners are sensitive to the speech breathing time series: Evidence from a gap detection task. Cognition 2022; 225:105171. [DOI: 10.1016/j.cognition.2022.105171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 04/29/2022] [Accepted: 05/11/2022] [Indexed: 11/23/2022]
|
5
|
Flaten E, Marshall SA, Dittrich A, Trainor L. Evidence for Top-down Meter Perception in Infancy as Shown by Primed Neural Responses to an Ambiguous Rhythm. Eur J Neurosci 2022; 55:2003-2023. [PMID: 35445451 DOI: 10.1111/ejn.15671] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 11/30/2022]
Abstract
From auditory rhythm patterns, listeners extract the underlying steady beat, and perceptually group beats to form meters. While previous studies show infants discriminate different auditory meters, it remains unknown whether they can maintain (imagine) a metrical interpretation of an ambiguous rhythm through top-down processes. We investigated this via electroencephalographic mismatch responses. We primed 6-month-old infants (N = 24) to hear a 6-beat ambiguous rhythm either in duple meter (n = 13), or in triple meter (n = 11) through loudness accents either on every second or every third beat. Periods of priming were inserted before sequences of the ambiguous unaccented rhythm. To elicit mismatch responses, occasional pitch deviants occurred on either beat 4 (strong beat in triple meter; weak in duple) or beat 5 (strong in duple; weak in triple) of the unaccented trials. At frontal left sites, we found a significant interaction between beat and priming group in the predicted direction. Post-hoc analyses showed mismatch response amplitudes were significantly larger for beat 5 in the duple- than triple-primed group (p = .047) and were non-significantly larger for beat 4 in the triple- than duple-primed group. Further, amplitudes were generally larger in infants with musically experienced parents. At frontal right sites, mismatch responses were generally larger for those in the duple compared to triple group, which may reflect a processing advantage for duple meter. These results indicate infants can impose a top-down, internally generated meter on ambiguous auditory rhythms, an ability that would aid early language and music learning.
Collapse
Affiliation(s)
- Erica Flaten
- Department of Psychology, Neuroscience and Behaviour, McMaster University
| | - Sara A Marshall
- Department of Psychology, Neuroscience and Behaviour, McMaster University
| | - Angela Dittrich
- Department of Psychology, Neuroscience and Behaviour, McMaster University
| | - Laurel Trainor
- Department of Psychology, Neuroscience and Behaviour, McMaster University.,McMaster Institute for Music and the Mind, McMaster University.,Rotman Research Institute, Baycrest Hospital, Toronto, ON, Canada
| |
Collapse
|
6
|
Bouwer FL, Nityananda V, Rouse AA, ten Cate C. Rhythmic abilities in humans and non-human animals: a review and recommendations from a methodological perspective. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200335. [PMID: 34420380 PMCID: PMC8380979 DOI: 10.1098/rstb.2020.0335] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2021] [Indexed: 12/15/2022] Open
Abstract
Rhythmic behaviour is ubiquitous in both human and non-human animals, but it is unclear whether the cognitive mechanisms underlying the specific rhythmic behaviours observed in different species are related. Laboratory experiments combined with highly controlled stimuli and tasks can be very effective in probing the cognitive architecture underlying rhythmic abilities. Rhythmic abilities have been examined in the laboratory with explicit and implicit perception tasks, and with production tasks, such as sensorimotor synchronization, with stimuli ranging from isochronous sequences of artificial sounds to human music. Here, we provide an overview of experimental findings on rhythmic abilities in human and non-human animals, while critically considering the wide variety of paradigms used. We identify several gaps in what is known about rhythmic abilities. Many bird species have been tested on rhythm perception, but research on rhythm production abilities in the same birds is lacking. By contrast, research in mammals has primarily focused on rhythm production rather than perception. Many experiments also do not differentiate between possible components of rhythmic abilities, such as processing of single temporal intervals, rhythmic patterns, a regular beat or hierarchical metrical structures. For future research, we suggest a careful choice of paradigm to aid cross-species comparisons, and a critical consideration of the multifaceted abilities that underlie rhythmic behaviour. This article is part of the theme issue 'Synchrony and rhythm interaction: from the brain to behavioural ecology'.
Collapse
Affiliation(s)
- Fleur L. Bouwer
- Department of Experimental and Applied Psychology, Vrije Universiteit Amsterdam, Van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands
- Institute for Logic, Language and Computation (ILLC), University of Amsterdam, PO Box 94242, 1090 CE Amsterdam, The Netherlands
- Department of Psychology, University of Amsterdam, PO Box 15900, 1001 NK Amsterdam, The Netherlands
| | - Vivek Nityananda
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Henry Wellcome Building, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Andrew A. Rouse
- Department of Psychology, Tufts University, Medford, MA 02155, USA
| | - Carel ten Cate
- Institute of Biology Leiden (IBL), Leiden Institute for Brain and Cognition (LIBC), Leiden University, PO Box 9505, 2300 RA Leiden, The Netherlands
| |
Collapse
|
7
|
Is neural entrainment to rhythms the basis of social bonding through music? Behav Brain Sci 2021; 44:e73. [PMID: 34588047 DOI: 10.1017/s0140525x20001296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Music uses the evolutionarily unique temporal sensitivity of the auditory system and its tight coupling to the motor system to create a common neurophysiological clock between individuals that facilitates action coordination. We propose that this shared common clock arises from entrainment to musical rhythms, the process by which partners' brains and bodies become temporally aligned to the same rhythmic pulse.
Collapse
|
8
|
Zamm A, Palmer C, Bauer AKR, Bleichner MG, Demos AP, Debener S. Behavioral and Neural Dynamics of Interpersonal Synchrony Between Performing Musicians: A Wireless EEG Hyperscanning Study. Front Hum Neurosci 2021; 15:717810. [PMID: 34588966 PMCID: PMC8473838 DOI: 10.3389/fnhum.2021.717810] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/27/2021] [Indexed: 11/13/2022] Open
Abstract
Interpersonal synchrony refers to the temporal coordination of actions between individuals and is a common feature of social behaviors, from team sport to ensemble music performance. Interpersonal synchrony of many rhythmic (periodic) behaviors displays dynamics of coupled biological oscillators. The current study addresses oscillatory dynamics on the levels of brain and behavior between music duet partners performing at spontaneous (uncued) rates. Wireless EEG was measured from N = 20 pairs of pianists as they performed a melody first in Solo performance (at their spontaneous rate of performance), and then in Duet performances at each partner's spontaneous rate. Influences of partners' spontaneous rates on interpersonal synchrony were assessed by correlating differences in partners' spontaneous rates of Solo performance with Duet tone onset asynchronies. Coupling between partners' neural oscillations was assessed by correlating amplitude envelope fluctuations of cortical oscillations at the Duet performance frequency between observed partners and between surrogate (re-paired) partners, who performed the same melody but at different times. Duet synchronization was influenced by partners' spontaneous rates in Solo performance. The size and direction of the difference in partners' spontaneous rates were mirrored in the size and direction of the Duet asynchronies. Moreover, observed Duet partners showed greater inter-brain correlations of oscillatory amplitude fluctuations than did surrogate partners, suggesting that performing in synchrony with a musical partner is reflected in coupled cortical dynamics at the performance frequency. The current study provides evidence that dynamics of oscillator coupling are reflected in both behavioral and neural measures of temporal coordination during musical joint action.
Collapse
Affiliation(s)
- Anna Zamm
- Sequence Production Laboratory, Department of Psychology, McGill University, Montreal, QC, Canada
| | - Caroline Palmer
- Sequence Production Laboratory, Department of Psychology, McGill University, Montreal, QC, Canada
| | - Anna-Katharina R. Bauer
- Neuropsychology Laboratory, Institute for Psychology, European Medical School, University of Oldenburg, Oldenburg, Germany
| | - Martin G. Bleichner
- Neuropsychology Laboratory, Institute for Psychology, European Medical School, University of Oldenburg, Oldenburg, Germany
| | - Alexander P. Demos
- Sequence Production Laboratory, Department of Psychology, McGill University, Montreal, QC, Canada
| | - Stefan Debener
- Neuropsychology Laboratory, Institute for Psychology, European Medical School, University of Oldenburg, Oldenburg, Germany
- Cluster of Excellence Hearing4All Oldenburg, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
9
|
Bauer AKR, van Ede F, Quinn AJ, Nobre AC. Rhythmic Modulation of Visual Perception by Continuous Rhythmic Auditory Stimulation. J Neurosci 2021; 41:7065-7075. [PMID: 34261698 PMCID: PMC8372019 DOI: 10.1523/jneurosci.2980-20.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 04/16/2021] [Accepted: 05/29/2021] [Indexed: 11/21/2022] Open
Abstract
At any given moment our sensory systems receive multiple, often rhythmic, inputs from the environment. Processing of temporally structured events in one sensory modality can guide both behavioral and neural processing of events in other sensory modalities, but whether this occurs remains unclear. Here, we used human electroencephalography (EEG) to test the cross-modal influences of a continuous auditory frequency-modulated (FM) sound on visual perception and visual cortical activity. We report systematic fluctuations in perceptual discrimination of brief visual stimuli in line with the phase of the FM-sound. We further show that this rhythmic modulation in visual perception is related to an accompanying rhythmic modulation of neural activity recorded over visual areas. Importantly, in our task, perceptual and neural visual modulations occurred without any abrupt and salient onsets in the energy of the auditory stimulation and without any rhythmic structure in the visual stimulus. As such, the results provide a critical validation for the existence and functional role of cross-modal entrainment and demonstrates its utility for organizing the perception of multisensory stimulation in the natural environment.SIGNIFICANCE STATEMENT Our sensory environment is filled with rhythmic structures that are often multi-sensory in nature. Here, we show that the alignment of neural activity to the phase of an auditory frequency-modulated (FM) sound has cross-modal consequences for vision: yielding systematic fluctuations in perceptual discrimination of brief visual stimuli that are mediated by accompanying rhythmic modulation of neural activity recorded over visual areas. These cross-modal effects on visual neural activity and perception occurred without any abrupt and salient onsets in the energy of the auditory stimulation and without any rhythmic structure in the visual stimulus. The current work shows that continuous auditory fluctuations in the natural environment can provide a pacing signal for neural activity and perception across the senses.
Collapse
Affiliation(s)
- Anna-Katharina R Bauer
- Department of Experimental Psychology, University of Oxford, Oxford OX2 6GG, United Kingdom
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford OX3 7JX, United Kingdom
| | - Freek van Ede
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford OX3 7JX, United Kingdom
- Institute for Brain and Behavior Amsterdam, Department of Experimental and Applied Psychology, Vrije Universiteit Amsterdam, Amsterdam 1081BT, The Netherlands
| | - Andrew J Quinn
- Department of Experimental Psychology, University of Oxford, Oxford OX2 6GG, United Kingdom
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford OX3 7JX, United Kingdom
| | - Anna C Nobre
- Department of Experimental Psychology, University of Oxford, Oxford OX2 6GG, United Kingdom
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford OX3 7JX, United Kingdom
| |
Collapse
|
10
|
Barne LC, Cravo AM, de Lange FP, Spaak E. Temporal prediction elicits rhythmic preactivation of relevant sensory cortices. Eur J Neurosci 2021; 55:3324-3339. [PMID: 34322927 PMCID: PMC9545120 DOI: 10.1111/ejn.15405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 07/10/2021] [Accepted: 07/24/2021] [Indexed: 11/28/2022]
Abstract
Being able to anticipate events before they happen facilitates stimulus processing. The anticipation of the contents of events is thought to be implemented by the elicitation of prestimulus templates in sensory cortex. In contrast, the anticipation of the timing of events is typically associated with entrainment of neural oscillations. It is so far unknown whether and in which conditions temporal expectations interact with feature‐based expectations, and, consequently, whether entrainment modulates the generation of content‐specific sensory templates. In this study, we investigated the role of temporal expectations in a sensory discrimination task. We presented participants with rhythmically interleaved visual and auditory streams of relevant and irrelevant stimuli while measuring neural activity using magnetoencephalography. We found no evidence that rhythmic stimulation induced prestimulus feature templates. However, we did observe clear anticipatory rhythmic preactivation of the relevant sensory cortices. This oscillatory activity peaked at behaviourally relevant, in‐phase, intervals. Our results suggest that temporal expectations about stimulus features do not behave similarly to explicitly cued, nonrhythmic, expectations, yet elicit a distinct form of modality‐specific preactivation.
Collapse
Affiliation(s)
- Louise Catheryne Barne
- Center for Mathematics, Computing and Cognition, Universidade Federal do ABC (UFABC), São Bernardo do Campo, Sao Paolo, Brazil.,Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands.,Département Traitement de l'Information et Systèmes, ONERA, Salon-de-Provence, France
| | - André Mascioli Cravo
- Center for Mathematics, Computing and Cognition, Universidade Federal do ABC (UFABC), São Bernardo do Campo, Sao Paolo, Brazil
| | - Floris P de Lange
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Eelke Spaak
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
11
|
Mathias B, Zamm A, Gianferrara PG, Ross B, Palmer C. Rhythm Complexity Modulates Behavioral and Neural Dynamics During Auditory–Motor Synchronization. J Cogn Neurosci 2020; 32:1864-1880. [DOI: 10.1162/jocn_a_01601] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Abstract
We addressed how rhythm complexity influences auditory–motor synchronization in musically trained individuals who perceived and produced complex rhythms while EEG was recorded. Participants first listened to two-part auditory sequences (Listen condition). Each part featured a single pitch presented at a fixed rate; the integer ratio formed between the two rates varied in rhythmic complexity from low (1:1) to moderate (1:2) to high (3:2). One of the two parts occurred at a constant rate across conditions. Then, participants heard the same rhythms as they synchronized their tapping at a fixed rate (Synchronize condition). Finally, they tapped at the same fixed rate (Motor condition). Auditory feedback from their taps was present in all conditions. Behavioral effects of rhythmic complexity were evidenced in all tasks; detection of missing beats (Listen) worsened in the most complex (3:2) rhythm condition, and tap durations (Synchronize) were most variable and least synchronous with stimulus onsets in the 3:2 condition. EEG power spectral density was lowest at the fixed rate during the 3:2 rhythm and greatest during the 1:1 rhythm (Listen and Synchronize). ERP amplitudes corresponding to an N1 time window were smallest for the 3:2 rhythm and greatest for the 1:1 rhythm (Listen). Finally, synchronization accuracy (Synchronize) decreased as amplitudes in the N1 time window became more positive during the high rhythmic complexity condition (3:2). Thus, measures of neural entrainment corresponded to synchronization accuracy, and rhythmic complexity modulated the behavioral and neural measures similarly.
Collapse
Affiliation(s)
- Brian Mathias
- McGill University
- Max Planck Institute for Human Cognitive and Brain Science
| | - Anna Zamm
- McGill University
- Central European University, Budapest, Hungary
| | | | | | | |
Collapse
|
12
|
Bauer AKR, Debener S, Nobre AC. Synchronisation of Neural Oscillations and Cross-modal Influences. Trends Cogn Sci 2020; 24:481-495. [PMID: 32317142 PMCID: PMC7653674 DOI: 10.1016/j.tics.2020.03.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 02/20/2020] [Accepted: 03/14/2020] [Indexed: 01/23/2023]
Abstract
At any given moment, we receive multiple signals from our different senses. Prior research has shown that signals in one sensory modality can influence neural activity and behavioural performance associated with another sensory modality. Recent human and nonhuman primate studies suggest that such cross-modal influences in sensory cortices are mediated by the synchronisation of ongoing neural oscillations. In this review, we consider two mechanisms proposed to facilitate cross-modal influences on sensory processing, namely cross-modal phase resetting and neural entrainment. We consider how top-down processes may further influence cross-modal processing in a flexible manner, and we highlight fruitful directions for further research.
Collapse
Affiliation(s)
- Anna-Katharina R Bauer
- Department of Experimental Psychology, Brain and Cognition Lab, Oxford Centre for Human Brain Activity, Department of Psychiatry, Wellcome Centre for Integrative Neuroimaging, University of Oxford, UK.
| | - Stefan Debener
- Department of Psychology, Neuropsychology Lab, Cluster of Excellence Hearing4All, University of Oldenburg, Germany
| | - Anna C Nobre
- Department of Experimental Psychology, Brain and Cognition Lab, Oxford Centre for Human Brain Activity, Department of Psychiatry, Wellcome Centre for Integrative Neuroimaging, University of Oxford, UK
| |
Collapse
|
13
|
Sidiras C, Iliadou VV, Nimatoudis I, Grube M, Griffiths T, Bamiou DE. Deficits in Auditory Rhythm Perception in Children With Auditory Processing Disorder Are Unrelated to Attention. Front Neurosci 2019; 13:953. [PMID: 31551701 PMCID: PMC6743378 DOI: 10.3389/fnins.2019.00953] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 08/23/2019] [Indexed: 11/13/2022] Open
Abstract
Auditory processing disorder (APD) is defined as a specific deficit in the processing of auditory information along the central auditory nervous system, including bottom-up and top-down neural connectivity. Even though music comprises a big part of audition, testing music perception in APD population has not yet gained wide attention in research. This work tests the hypothesis that deficits in rhythm perception occur in a group of subjects with APD. The primary focus of this study is to measure perception of a simple auditory rhythm, i.e., short isochronous sequences of beats, in APD children and to compare their performance to age-matched normal controls. The secondary question is to study the relationship between cognition and auditory processing of rhythm perception. We tested 39 APD children and 25 control children aged between 6 and 12 years via (a) clinical APD tests, including a monaural speech in noise test, (b) isochrony task, a test measuring the detection of small deviations from perfect isochrony in a isochronous beats sequence, and (c) two cognitive tests (auditory memory and auditory attention). APD children scored worse in isochrony task compared to the age-matched control group. In the APD group, neither measure of cognition (attention nor memory) correlated with performance in isochrony task. Left (but not right) speech in noise performance correlated with performance in isochrony task. In the control group a large correlation (r = -0.701, p = 0.001) was observed between isochrony task and attention, but not with memory. The results demonstrate a deficit in the perception of regularly timed sequences in APD that is relevant to the perception of speech in noise, a ubiquitous complaint in this condition. Our results suggest (a) the existence of a non-attention related rhythm perception deficit in APD children and (b) differential effects of attention on task performance in normal vs. APD children. The potential beneficial use of music/rhythm training for rehabilitation purposes in APD children would need to be explored.
Collapse
Affiliation(s)
- Christos Sidiras
- Clinical Psychoacoustics Lab, Third Department of Psychiatry, Neuroscience Sector, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Vasiliki Vivian Iliadou
- Clinical Psychoacoustics Lab, Third Department of Psychiatry, Neuroscience Sector, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ioannis Nimatoudis
- Clinical Psychoacoustics Lab, Third Department of Psychiatry, Neuroscience Sector, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Manon Grube
- Auditory Group, Medical School, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Tim Griffiths
- Auditory Group, Medical School, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Doris-Eva Bamiou
- Faculty of Brain Sciences, UCL Ear Institute, University College London, London, United Kingdom
- Hearing and Deafness Biomedical Research Centre, National Institute for Health Research, London, United Kingdom
| |
Collapse
|
14
|
Chang A, Bosnyak DJ, Trainor LJ. Rhythmicity facilitates pitch discrimination: Differential roles of low and high frequency neural oscillations. Neuroimage 2019; 198:31-43. [DOI: 10.1016/j.neuroimage.2019.05.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 04/30/2019] [Accepted: 05/03/2019] [Indexed: 02/04/2023] Open
|
15
|
Music and Metronomes Differentially Impact Motor Timing in People with and without Parkinson's Disease: Effects of Slow, Medium, and Fast Tempi on Entrainment and Synchronization Performances in Finger Tapping, Toe Tapping, and Stepping on the Spot Tasks. PARKINSONS DISEASE 2019; 2019:6530838. [PMID: 31531220 PMCID: PMC6721399 DOI: 10.1155/2019/6530838] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/21/2019] [Accepted: 06/26/2019] [Indexed: 11/18/2022]
Abstract
Introduction Rhythmic auditory stimulation (RAS) has successfully helped regulate gait for people with Parkinson's disease. However, the way in which different auditory cues and types of movements affect entrainment, synchronization, and pacing stability has not been directly compared in different aged people with and without Parkinson's. Therefore, this study compared music and metronomes (cue types) in finger tapping, toe tapping, and stepping on the spot tasks to explore the potential of RAS training for general use. Methods Participants (aged 18–78 years) included people with Parkinson's (n = 30, Hoehn and Yahr mean = 1.78), older (n = 26), and younger adult controls (n = 36), as age may effect motor timing. Timed motor production was assessed using an extended synchronization-continuation task in cue type and movement conditions for slow, medium, and fast tempi (81, 116, and 140 mean beats per minute, respectively). Results Analyses revealed main effects of cue and movement type but no between-group interactions, suggesting no differences in motor timing between people with Parkinson's and controls. Music supported entrainment better than metronomes in medium and fast tempi, and stepping on the spot enabled better entrainment and less asynchrony, as well as more stable pacing compared to tapping in medium and fast tempi. Age was not confirmed as a factor, and no differences were observed in slow tempo. Conclusion This is the first study to directly compare how different external auditory cues and movement types affect motor timing. The music and the stepping enabled participants to maintain entrainment once the external pacing cue ceased, suggesting endogenous mechanisms continued to regulate the movements. The superior performance of stepping on the spot suggests embodied entrainment can occur during continuous movement, and this may be related to emergent timing in tempi above 600 ms. These findings can be applied therapeutically to manage and improve adaptive behaviours for people with Parkinson's.
Collapse
|
16
|
Shalev N, Bauer AKR, Nobre AC. The tempos of performance. Curr Opin Psychol 2019; 29:254-260. [PMID: 31302478 PMCID: PMC6996131 DOI: 10.1016/j.copsyc.2019.06.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 06/05/2019] [Accepted: 06/10/2019] [Indexed: 11/19/2022]
Abstract
Human performance fluctuates over time. Rather than random, the complex time course of variation reflects, among other factors, influences from regular periodic processes operating at multiple time scales. In this review, we consider evidence for how our performance ebbs and flows over fractions of seconds as we engage with sensory objects, over minutes as we perform tasks, and over hours according to homeostatic factors. We propose that rhythms of performance at these multiple tempos arise from the interplay among three sources of influence: intrinsic fluctuations in brain activity, periodicity of external stimulation, and the anticipation of the temporal structure of external stimulation by the brain.
Collapse
Affiliation(s)
- Nir Shalev
- Department of Experimental Psychology, Oxford Centre for Human Brain Activity, Department of Psychiatry, and Wellcome Centre for Integrative Neuroimaging, University of Oxford, United Kingdom.
| | - Anna-Katharina R Bauer
- Department of Experimental Psychology, Oxford Centre for Human Brain Activity, Department of Psychiatry, and Wellcome Centre for Integrative Neuroimaging, University of Oxford, United Kingdom
| | - Anna C Nobre
- Department of Experimental Psychology, Oxford Centre for Human Brain Activity, Department of Psychiatry, and Wellcome Centre for Integrative Neuroimaging, University of Oxford, United Kingdom
| |
Collapse
|
17
|
Stropahl M, Bauer AKR, Debener S, Bleichner MG. Source-Modeling Auditory Processes of EEG Data Using EEGLAB and Brainstorm. Front Neurosci 2018; 12:309. [PMID: 29867321 PMCID: PMC5952032 DOI: 10.3389/fnins.2018.00309] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 04/20/2018] [Indexed: 11/25/2022] Open
Abstract
Electroencephalography (EEG) source localization approaches are often used to disentangle the spatial patterns mixed up in scalp EEG recordings. However, approaches differ substantially between experiments, may be strongly parameter-dependent, and results are not necessarily meaningful. In this paper we provide a pipeline for EEG source estimation, from raw EEG data pre-processing using EEGLAB functions up to source-level analysis as implemented in Brainstorm. The pipeline is tested using a data set of 10 individuals performing an auditory attention task. The analysis approach estimates sources of 64-channel EEG data without the prerequisite of individual anatomies or individually digitized sensor positions. First, we show advanced EEG pre-processing using EEGLAB, which includes artifact attenuation using independent component analysis (ICA). ICA is a linear decomposition technique that aims to reveal the underlying statistical sources of mixed signals and is further a powerful tool to attenuate stereotypical artifacts (e.g., eye movements or heartbeat). Data submitted to ICA are pre-processed to facilitate good-quality decompositions. Aiming toward an objective approach on component identification, the semi-automatic CORRMAP algorithm is applied for the identification of components representing prominent and stereotypic artifacts. Second, we present a step-wise approach to estimate active sources of auditory cortex event-related processing, on a single subject level. The presented approach assumes that no individual anatomy is available and therefore the default anatomy ICBM152, as implemented in Brainstorm, is used for all individuals. Individual noise modeling in this dataset is based on the pre-stimulus baseline period. For EEG source modeling we use the OpenMEEG algorithm as the underlying forward model based on the symmetric Boundary Element Method (BEM). We then apply the method of dynamical statistical parametric mapping (dSPM) to obtain physiologically plausible EEG source estimates. Finally, we show how to perform group level analysis in the time domain on anatomically defined regions of interest (auditory scout). The proposed pipeline needs to be tailored to the specific datasets and paradigms. However, the straightforward combination of EEGLAB and Brainstorm analysis tools may be of interest to others performing EEG source localization.
Collapse
Affiliation(s)
- Maren Stropahl
- Neuropsychology Lab, Department of Psychology, European Medical School, University of Oldenburg, Oldenburg, Germany
| | - Anna-Katharina R Bauer
- Neuropsychology Lab, Department of Psychology, European Medical School, University of Oldenburg, Oldenburg, Germany
| | - Stefan Debener
- Neuropsychology Lab, Department of Psychology, European Medical School, University of Oldenburg, Oldenburg, Germany.,Cluster of Excellence Hearing4all, University of Oldenburg, Oldenburg, Germany
| | - Martin G Bleichner
- Neuropsychology Lab, Department of Psychology, European Medical School, University of Oldenburg, Oldenburg, Germany.,Cluster of Excellence Hearing4all, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|