1
|
Allam A, Allam V, Reddy S, Rohren EM, Sheth SA, Froudarakis E, Papageorgiou TD. Individualized functional magnetic resonance imaging neuromodulation enhances visuospatial perception: a proof-of-concept study. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230083. [PMID: 39428879 PMCID: PMC11491853 DOI: 10.1098/rstb.2023.0083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 06/13/2024] [Accepted: 09/10/2024] [Indexed: 10/22/2024] Open
Abstract
This proof-of-concept study uses individualized functional magnetic resonance imaging neuromodulation (iNM) to explore the mechanisms that enhance BOLD signals in visuospatial perception (VP) networks that are crucial for navigation. Healthy participants (n = 8) performed a VP up- and down-direction discrimination task at full and subthreshold coherence through peripheral vision, and superimposed direction through visual imagery (VI) at central space under iNM and control conditions. iNM targets individualized anatomical and functional middle- and medial-superior temporal (MST) networks that control VP. We found that iNM engaged selective exteroceptive and interoceptive attention (SEIA) and motor planning (MP) networks. Specifically, iNM increased overall: (i) area under the curve of the BOLD magnitude: 100% in VP (but decreased for weak coherences), 21-47% in VI, 26-59% in MP and 48-76% in SEIA through encoding; and (ii) classification performance for each direction, coherence and network through decoding, predicting stimuli from brain maps. Our findings, derived from encoding and decoding models, suggest that mechanisms induced by iNM are causally linked in enhancing visuospatial networks and demonstrate iNM as a feasibility treatment for low-vision patients with cortical blindness or visuospatial impairments that precede cognitive decline.This article is part of the theme issue 'Neurofeedback: new territories and neurocognitive mechanisms of endogenous neuromodulation'.
Collapse
Affiliation(s)
- Anthony Allam
- School of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Vincent Allam
- Department of Computer Science, University of Texas at Austin, Austin, TX, USA
| | - Sandy Reddy
- School of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Eric M. Rohren
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Radiology, Baylor College of Medicine, Houston, TX, USA
| | - Sameer A. Sheth
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Emmanouil Froudarakis
- Department of Basic Sciences, Medical School, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, Heraklion, Greece
| | - T. Dorina Papageorgiou
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
- Department of Psychiatry, Baylor College of Medicine, Houston, TX, USA
- Department of Physical Medicine & Rehabilitation, Baylor College of Medicine, Houston, TX, USA
- Center for Space Medicine, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, USA
| |
Collapse
|
2
|
Elul D, Levin N. The Role of Population Receptive Field Sizes in Higher-Order Visual Dysfunction. Curr Neurol Neurosci Rep 2024; 24:611-620. [PMID: 39266871 PMCID: PMC11538192 DOI: 10.1007/s11910-024-01375-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2024] [Indexed: 09/14/2024]
Abstract
PURPOSE OF REVIEW Population receptive field (pRF) modeling is an fMRI technique used to retinotopically map visual cortex, with pRF size characterizing the degree of spatial integration. In clinical populations, most pRF mapping research has focused on damage to visual system inputs. Herein, we highlight recent work using pRF modeling to study high-level visual dysfunctions. RECENT FINDINGS Larger pRF sizes, indicating coarser spatial processing, were observed in homonymous visual field deficits, aging, and autism spectrum disorder. Smaller pRF sizes, indicating finer processing, were observed in Alzheimer's disease and schizophrenia. In posterior cortical atrophy, a unique pattern was found in which pRF size changes depended on eccentricity. Changes to pRF properties were observed in clinical populations, even in high-order impairments, explaining visual behavior. These pRF changes likely stem from altered interactions between brain regions. Furthermore, some studies suggested that pRF sizes change as part of cortical reorganization, and they can point towards future prognosis.
Collapse
Affiliation(s)
- Deena Elul
- fMRI Unit, Neurology Department Hadassah Medical Organization, Faculty of Medicine, The Hebrew University of Jerusalem, POB 12000, Jerusalem, 91120, Israel
- Edmond and Lily Safra Center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Netta Levin
- fMRI Unit, Neurology Department Hadassah Medical Organization, Faculty of Medicine, The Hebrew University of Jerusalem, POB 12000, Jerusalem, 91120, Israel.
| |
Collapse
|
3
|
Willis HE, Ip IB, Watt A, Campbell J, Jbabdi S, Clarke WT, Cavanaugh MR, Huxlin KR, Watkins KE, Tamietto M, Bridge H. GABA and Glutamate in hMT+ Link to Individual Differences in Residual Visual Function After Occipital Stroke. Stroke 2023; 54:2286-2295. [PMID: 37477008 PMCID: PMC10453332 DOI: 10.1161/strokeaha.123.043269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 05/09/2023] [Accepted: 05/31/2023] [Indexed: 07/22/2023]
Abstract
BACKGROUND Damage to the primary visual cortex following an occipital stroke causes loss of conscious vision in the contralateral hemifield. Yet, some patients retain the ability to detect moving visual stimuli within their blind field. The present study asked whether such individual differences in blind field perception following loss of primary visual cortex could be explained by the concentration of neurotransmitters γ-aminobutyric acid (GABA) and glutamate or activity of the visual motion processing, human middle temporal complex (hMT+). METHODS We used magnetic resonance imaging in 19 patients with chronic occipital stroke to measure the concentration of neurotransmitters GABA and glutamate (proton magnetic resonance spectroscopy) and functional activity in hMT+ (functional magnetic resonance imaging). We also tested each participant on a 2-interval forced choice detection task using high-contrast, moving Gabor patches. We then measured and assessed the strength of relationships between participants' residual vision in their blind field and in vivo neurotransmitter concentrations, as well as visually evoked functional magnetic resonance imaging activity in their hMT+. Levels of GABA and glutamate were also measured in a sensorimotor region, which served as a control. RESULTS Magnetic resonance spectroscopy-derived GABA and glutamate concentrations in hMT+ (but not sensorimotor cortex) strongly predicted blind-field visual detection abilities. Performance was inversely related to levels of both inhibitory and excitatory neurotransmitters in hMT+ but, surprisingly, did not correlate with visually evoked blood oxygenation level-dependent signal change in this motion-sensitive region. CONCLUSIONS Levels of GABA and glutamate in hMT+ appear to provide superior information about motion detection capabilities inside perimetrically defined blind fields compared to blood oxygenation level-dependent signal changes-in essence, serving as biomarkers for the quality of residual visual processing in the blind-field. Whether they also reflect a potential for successful rehabilitation of visual function remains to be determined.
Collapse
Affiliation(s)
- Hanna E. Willis
- Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences (H.E.W., I.B.I., A.W., J.C., S.J., W.T.C., H.B.), University of Oxford, United Kingdom
| | - I. Betina Ip
- Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences (H.E.W., I.B.I., A.W., J.C., S.J., W.T.C., H.B.), University of Oxford, United Kingdom
| | - Archie Watt
- Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences (H.E.W., I.B.I., A.W., J.C., S.J., W.T.C., H.B.), University of Oxford, United Kingdom
| | - Jon Campbell
- Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences (H.E.W., I.B.I., A.W., J.C., S.J., W.T.C., H.B.), University of Oxford, United Kingdom
| | - Saad Jbabdi
- Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences (H.E.W., I.B.I., A.W., J.C., S.J., W.T.C., H.B.), University of Oxford, United Kingdom
| | - William T. Clarke
- Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences (H.E.W., I.B.I., A.W., J.C., S.J., W.T.C., H.B.), University of Oxford, United Kingdom
| | - Matthew R. Cavanaugh
- Flaum Eye Institute and Center for Visual Science, University of Rochester, NY (M.R.C., K.R.H.)
| | - Krystel R. Huxlin
- Flaum Eye Institute and Center for Visual Science, University of Rochester, NY (M.R.C., K.R.H.)
| | - Kate E. Watkins
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology (K.E.W.), University of Oxford, United Kingdom
| | - Marco Tamietto
- Department of Psychology, University of Torino, Italy (M.T.)
- Department of Medical and Clinical Psychology, and CoRPS—Center of Research on Psychology in Somatic Diseases—Tilburg University, the Netherlands (M.T.)
| | - Holly Bridge
- Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences (H.E.W., I.B.I., A.W., J.C., S.J., W.T.C., H.B.), University of Oxford, United Kingdom
| |
Collapse
|
4
|
Werth R. A Scientific Approach to Conscious Experience, Introspection, and Unconscious Processing: Vision and Blindsight. Brain Sci 2022; 12:1305. [PMID: 36291239 PMCID: PMC9599441 DOI: 10.3390/brainsci12101305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/15/2022] [Accepted: 09/25/2022] [Indexed: 11/17/2022] Open
Abstract
Although subjective conscious experience and introspection have long been considered unscientific and banned from psychology, they are indispensable in scientific practice. These terms are used in scientific contexts today; however, their meaning remains vague, and earlier objections to the distinction between conscious experience and unconscious processing, remain valid. This also applies to the distinction between conscious visual perception and unconscious visual processing. Damage to the geniculo-striate pathway or the visual cortex results in a perimetrically blind visual hemifield contralateral to the damaged hemisphere. In some cases, cerebral blindness is not absolute. Patients may still be able to guess the presence, location, shape or direction of movement of a stimulus even though they report no conscious visual experience. This "unconscious" ability was termed "blindsight". The present paper demonstrates how the term conscious visual experience can be introduced in a logically precise and methodologically correct way and becomes amenable to scientific examination. The distinction between conscious experience and unconscious processing is demonstrated in the cases of conscious vision and blindsight. The literature on "blindsight" and its neurobiological basis is reviewed. It is shown that blindsight can be caused by residual functions of neural networks of the visual cortex that have survived cerebral damage, and may also be due to an extrastriate pathway via the midbrain to cortical areas such as areas V4 and MT/V5.
Collapse
Affiliation(s)
- Reinhard Werth
- Social Pediatrics and Adolescent Medicine, Ludwig-Maximilians-University of Munich, Haydnstr. 5, D-80336 München, Germany
| |
Collapse
|
5
|
Rina A, Papanikolaou A, Zong X, Papageorgiou DT, Keliris GA, Smirnakis SM. Visual Motion Coherence Responses in Human Visual Cortex. Front Neurosci 2022; 16:719250. [PMID: 35310109 PMCID: PMC8924467 DOI: 10.3389/fnins.2022.719250] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 01/17/2022] [Indexed: 01/24/2023] Open
Abstract
Random dot kinematograms (RDKs) have recently been used to train subjects with cortical scotomas to perform direction of motion discrimination, partially restoring visual motion perception. To study the recovery of visual perception, it is important to understand how visual areas in normal subjects and subjects with cortical scotomas respond to RDK stimuli. Studies in normal subjects have shown that blood oxygen level-dependent (BOLD) responses in human area hV5/MT+ increase monotonically with coherence, in general agreement with electrophysiology studies in primates. However, RDK responses in prior studies were obtained while the subject was performing fixation, not a motion discrimination condition. Furthermore, BOLD responses were gauged against a baseline condition of uniform illumination or static dots, potentially decreasing the specificity of responses for the spatial integration of local motion signals (motion coherence). Here, we revisit this question starting from a baseline RDK condition of no coherence, thereby isolating the component of BOLD response due specifically to the spatial integration of local motion signals. In agreement with prior studies, we found that responses in the area hV5/MT+ of healthy subjects were monotonically increasing when subjects fixated without performing a motion discrimination task. In contrast, when subjects were performing an RDK direction of motion discrimination task, responses in the area hV5/MT+ remained flat, changing minimally, if at all, as a function of motion coherence. A similar pattern of responses was seen in the area hV5/MT+ of subjects with dense cortical scotomas performing direction of motion discrimination for RDKs presented inside the scotoma. Passive RDK presentation within the scotoma elicited no significant hV5/MT+ responses. These observations shed further light on how visual cortex responses behave as a function of motion coherence, helping to prepare the ground for future studies using these methods to study visual system recovery after injury.
Collapse
Affiliation(s)
- Andriani Rina
- Department of Neurology Brigham and Women’s Hospital and Jamaica Plain Veterans Administration Hospital, Harvard Medical School, Boston, MA, United States
- Visual and Cognitive Neuroscience, Faculty of Science, University of Tübingen, Tuebingen, Germany
| | - Amalia Papanikolaou
- Department of Experimental Psychology, Institute of Behavioral Neuroscience, University College London, London, United Kingdom
| | - Xiaopeng Zong
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Dorina T. Papageorgiou
- Department of Physical Medicine and Rehabilitation, Neuroscience, Psychiatry Baylor College of Medicine, Houston, TX, United States
- Department of Electrical and Computer Engineering, Neuroengineering Research Initiative and Applied Physics, Rice University, Houston, TX, United States
| | - Georgios A. Keliris
- Bio-Imaging Lab, University of Antwerp, Antwerp, Belgium
- Max-Planck Institute for Biological Cybernetics, Physiology of Cognitive Processes, Tübingen, Germany
| | - Stelios M. Smirnakis
- Department of Neurology Brigham and Women’s Hospital and Jamaica Plain Veterans Administration Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
6
|
Spared perilesional V1 activity underlies training-induced recovery of luminance detection sensitivity in cortically-blind patients. Nat Commun 2021; 12:6102. [PMID: 34671032 PMCID: PMC8528839 DOI: 10.1038/s41467-021-26345-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 09/29/2021] [Indexed: 11/19/2022] Open
Abstract
Damage to the primary visual cortex (V1) causes homonymous visual-field loss long considered intractable. Multiple studies now show that perceptual training can restore visual functions in chronic cortically-induced blindness (CB). A popular hypothesis is that training can harness residual visual functions by recruiting intact extrageniculostriate pathways. Training may also induce plastic changes within spared regions of the damaged V1. Here, we link changes in luminance detection sensitivity with retinotopic fMRI activity before and after visual discrimination training in eleven patients with chronic, stroke-induced CB. We show that spared V1 activity representing perimetrically-blind locations prior to training predicts the amount of training-induced recovery of luminance detection sensitivity. Additionally, training results in an enlargement of population receptive fields in perilesional V1, which increases blind-field coverage and may support further recovery with subsequent training. These findings uncover fundamental changes in perilesional V1 cortex underlying training-induced restoration of conscious luminance detection sensitivity in CB. In humans, stroke damage to V1 causes large visual field defects. Spared V1 activity prior to training predicts the amount of training-induced recovery in luminance detection sensitivity. Moreover, visual training changes population receptive field properties within residual V1 circuits.
Collapse
|
7
|
Halbertsma HN, Bridge H, Carvalho J, Cornelissen FW, Ajina S. Visual Field Reconstruction in Hemianopia Using fMRI Based Mapping Techniques. Front Hum Neurosci 2021; 15:713114. [PMID: 34447301 PMCID: PMC8382851 DOI: 10.3389/fnhum.2021.713114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/21/2021] [Indexed: 11/21/2022] Open
Abstract
PURPOSE A stroke that includes the primary visual cortex unilaterally leads to a loss of visual field (VF) representation in the hemifield contralateral to the damage. While behavioral procedures for measuring the VF, such as perimetry, may indicate that a patient cannot see in a particular area, detailed psychophysical testing often detects the ability to perform detection or discrimination of visual stimuli ("blindsight"). The aim of this study was to determine whether functional magnetic resonance imaging (fMRI) could be used to determine whether perimetrically blind regions of the VF were still represented in VF maps reconstructed on the basis of visually evoked neural activity. METHODS Thirteen patients with hemianopia and nine control participants were scanned using 3T MRI while presented with visual stimulation. Two runs of a dynamic "wedge and ring" mapping stimulus, totaling approximately 10 min, were performed while participants fixated centrally. Two different analysis approaches were taken: the conventional population receptive field (pRF) analysis and micro-probing (MP). The latter is a variant of the former that makes fewer assumptions when modeling the visually evoked neural activity. Both methods were used to reconstruct the VF by projecting modeled activity back onto the VF. Following a normalization step, these "coverage maps" can be compared to the VF sensitivity plots obtained using perimetry. RESULTS While both fMRI-based approaches revealed regions of neural activity within the perimetrically "blind" sections of the VF, the MP approach uncovered more voxels in the lesioned hemisphere in which a modest degree of visual sensitivity was retained. Furthermore, MP-based analysis indicated that both early (V1/V2) and extrastriate visual areas contributed equally to the retained sensitivity in both patients and controls. CONCLUSION In hemianopic patients, fMRI-based approaches for reconstructing the VF can pick up activity in perimetrically blind regions of the VF. Such regions of the VF may be particularly amenable for rehabilitation to regain visual function. Compared to conventional pRF modeling, MP reveals more voxels with retained visual sensitivity, suggesting it is a more sensitive approach for VF reconstruction.
Collapse
Affiliation(s)
- Hinke N. Halbertsma
- Laboratory for Experimental Ophthalmology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Holly Bridge
- Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Joana Carvalho
- Champalimaud Centre for the Unknown, Champalimaud Foundation, Lisbon, Portugal
| | - Frans W. Cornelissen
- Laboratory for Experimental Ophthalmology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Sara Ajina
- Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Department of Neurorehabilitation, National Hospital for Neurology and Neurosurgery, London, United Kingdom
| |
Collapse
|
8
|
Elshout JA, Bergsma DP, van den Berg AV, Haak KV. Functional MRI of visual cortex predicts training-induced recovery in stroke patients with homonymous visual field defects. NEUROIMAGE-CLINICAL 2021; 31:102703. [PMID: 34062384 PMCID: PMC8173295 DOI: 10.1016/j.nicl.2021.102703] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 12/28/2022]
Abstract
Damage to the visual brain typically leads to vision loss. Vision loss may be partially recovered with visual restitution training (VRT) Cortical responses to visual stimulation do not always lead to visual awareness. A mismatch between Humphrey and neural perimetry predicts training outcome. This finding has important implications for better rehabilitation strategies.
Post-chiasmatic damage to the visual system leads to homonymous visual field defects (HVDs), which can severely interfere with daily life activities. Visual Restitution Training (VRT) can recover parts of the affected visual field in patients with chronic HVDs, but training outcome is variable. An untested hypothesis suggests that training potential may be largest in regions with ‘neural reserve’, where cortical responses to visual stimulation do not lead to visual awareness as assessed by Humphrey perimetry—a standard behavioural visual field test. Here, we tested this hypothesis in a sample of twenty-seven hemianopic stroke patients, who participated in an assiduous 80-hour VRT program. For each patient, we collected Humphrey perimetry and wide-field fMRI-based retinotopic mapping data prior to training. In addition, we used Goal Attainment Scaling to assess whether personal activities in daily living improved. After training, we assessed with a second Humphrey perimetry measurement whether the visual field was improved and evaluated which personal goals were attained. Confirming the hypothesis, we found significantly larger improvements of visual sensitivity at field locations with neural reserve. These visual field improvements implicated both regions in primary visual cortex and higher order visual areas. In addition, improvement in daily life activities correlated with the extent of visual field enlargement. Our findings are an important step toward understanding the mechanisms of visual restitution as well as predicting training efficacy in stroke patients with chronic hemianopia.
Collapse
Affiliation(s)
- J A Elshout
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - D P Bergsma
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - A V van den Berg
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - K V Haak
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands.
| |
Collapse
|
9
|
de Best PB, Abulafia R, McKyton A, Levin N. Convergence Along the Visual Hierarchy Is Altered in Posterior Cortical Atrophy. Invest Ophthalmol Vis Sci 2020; 61:8. [PMID: 32897377 PMCID: PMC7488212 DOI: 10.1167/iovs.61.11.8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 08/17/2020] [Indexed: 12/14/2022] Open
Abstract
Purpose Posterior cortical atrophy (PCA) is a rare neurodegenerative syndrome manifesting with visuospatial processing impairment. We recently suggested that abnormal population receptive field properties are associated with the symptoms of PCA patients. Specifically, simultanagnosia, the inability to perceive multiple items simultaneously, can be explained by smaller peripheral population receptive fields, and foveal crowding, in which nearby distractors interfere with object perception, may result from larger foveal population receptive fields. These effects occurred predominantly in V1, even though atrophy mainly involves high-order areas. In this study, we used connective field modeling to better understand these inter-area interactions. Methods We used functional magnetic resonance imaging to scan six PCA patients and eight controls while they viewed drifting bar stimuli. Resting-state data were also collected. Connective field modeling was applied for both conditions: once when the source was V1 and the targets were extrastriate areas and once for the opposite direction. The difference between the two was defined as convergence magnitude. Results With stimulus, the convergence magnitude of the controls increased along the visual pathway, suggesting that spatial integration from V1 becomes larger up the visual hierarchy. No such slope was found in the PCA patients. The difference between the groups originated mainly from the dorsal pathway. Without stimulus, the convergence magnitude was negative, slightly more so for the PCA patients, with no slope, suggesting constant divergence along the visual hierarchy. Conclusions Atrophy in one part of the visual system can affect other areas within the network through complex intervisual area interactions, resulting in modulation of population receptive field properties and an ensemble of visuocognitive function impairments.
Collapse
Affiliation(s)
- Pieter B. de Best
- fMRI Unit, Neurology Department, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Ruth Abulafia
- fMRI Unit, Neurology Department, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Ayelet McKyton
- fMRI Unit, Neurology Department, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Netta Levin
- fMRI Unit, Neurology Department, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
10
|
Studying Cortical Plasticity in Ophthalmic and Neurological Disorders: From Stimulus-Driven to Cortical Circuitry Modeling Approaches. Neural Plast 2019; 2019:2724101. [PMID: 31814821 PMCID: PMC6877932 DOI: 10.1155/2019/2724101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/05/2019] [Indexed: 12/30/2022] Open
Abstract
Unsolved questions in computational visual neuroscience research are whether and how neurons and their connecting cortical networks can adapt when normal vision is compromised by a neurodevelopmental disorder or damage to the visual system. This question on neuroplasticity is particularly relevant in the context of rehabilitation therapies that attempt to overcome limitations or damage, through either perceptual training or retinal and cortical implants. Studies on cortical neuroplasticity have generally made the assumption that neuronal population properties and the resulting visual field maps are stable in healthy observers. Consequently, differences in the estimates of these properties between patients and healthy observers have been taken as a straightforward indication for neuroplasticity. However, recent studies imply that the modeled neuronal properties and the cortical visual maps vary substantially within healthy participants, e.g., in response to specific stimuli or under the influence of cognitive factors such as attention. Although notable advances have been made to improve the reliability of stimulus-driven approaches, the reliance on the visual input remains a challenge for the interpretability of the obtained results. Therefore, we argue that there is an important role in the study of cortical neuroplasticity for approaches that assess intracortical signal processing and circuitry models that can link visual cortex anatomy, function, and dynamics.
Collapse
|
11
|
Bridge H, Bell AH, Ainsworth M, Sallet J, Premereur E, Ahmed B, Mitchell AS, Schüffelgen U, Buckley M, Tendler BC, Miller KL, Mars RB, Parker AJ, Krug K. Preserved extrastriate visual network in a monkey with substantial, naturally occurring damage to primary visual cortex. eLife 2019; 8:e42325. [PMID: 31120417 PMCID: PMC6533062 DOI: 10.7554/elife.42325] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 04/27/2019] [Indexed: 12/13/2022] Open
Abstract
Lesions of primary visual cortex (V1) lead to loss of conscious visual perception with significant impact on human patients. Understanding the neural consequences of such damage may aid the development of rehabilitation methods. In this rare case of a Rhesus macaque (monkey S), likely born without V1, the animal's in-group behaviour was unremarkable, but visual task training was impaired. With multi-modal magnetic resonance imaging, visual structures outside of the lesion appeared normal. Visual stimulation under anaesthesia with checkerboards activated lateral geniculate nucleus of monkey S, while full-field moving dots activated pulvinar. Visual cortical activation was sparse but included face patches. Consistently across lesion and control monkeys, functional connectivity analysis revealed an intact network of bilateral dorsal visual areas temporally correlated with V5/MT activation, even without V1. Despite robust subcortical responses to visual stimulation, we found little evidence for strengthened subcortical input to V5/MT supporting residual visual function or blindsight-like phenomena.
Collapse
Affiliation(s)
- Holly Bridge
- Wellcome Centre for Integrative Neuroimaging, FMRIBOxford UniversityOxfordUnited Kingdom
- Nuffield Department of Clinical NeurosciencesOxford UniversityOxfordUnited Kingdom
| | - Andrew H Bell
- Wellcome Centre for Integrative Neuroimaging, FMRIBOxford UniversityOxfordUnited Kingdom
- Department of Experimental PsychologyOxford UniversityOxfordUnited Kingdom
- MRC Cognition and Brain Sciences UnitCambridgeUnited Kingdom
| | - Matthew Ainsworth
- Department of Experimental PsychologyOxford UniversityOxfordUnited Kingdom
- MRC Cognition and Brain Sciences UnitCambridgeUnited Kingdom
| | - Jerome Sallet
- Wellcome Centre for Integrative Neuroimaging, FMRIBOxford UniversityOxfordUnited Kingdom
- Department of Experimental PsychologyOxford UniversityOxfordUnited Kingdom
| | - Elsie Premereur
- Laboratory for Neuro- and PsychophysiologyKU LeuvenLeuvenBelgium
| | - Bashir Ahmed
- Department of Physiology, Anatomy and GeneticsOxford UniversityOxfordUnited Kingdom
| | - Anna S Mitchell
- Department of Experimental PsychologyOxford UniversityOxfordUnited Kingdom
| | - Urs Schüffelgen
- Wellcome Centre for Integrative Neuroimaging, FMRIBOxford UniversityOxfordUnited Kingdom
- Department of Experimental PsychologyOxford UniversityOxfordUnited Kingdom
| | - Mark Buckley
- Department of Experimental PsychologyOxford UniversityOxfordUnited Kingdom
| | - Benjamin C Tendler
- Wellcome Centre for Integrative Neuroimaging, FMRIBOxford UniversityOxfordUnited Kingdom
- Nuffield Department of Clinical NeurosciencesOxford UniversityOxfordUnited Kingdom
| | - Karla L Miller
- Wellcome Centre for Integrative Neuroimaging, FMRIBOxford UniversityOxfordUnited Kingdom
- Nuffield Department of Clinical NeurosciencesOxford UniversityOxfordUnited Kingdom
| | - Rogier B Mars
- Wellcome Centre for Integrative Neuroimaging, FMRIBOxford UniversityOxfordUnited Kingdom
- Nuffield Department of Clinical NeurosciencesOxford UniversityOxfordUnited Kingdom
- Donders Institute for Brain, Cognition and BehaviourRadboud University NijmegenNijmegenNetherlands
| | - Andrew J Parker
- Department of Physiology, Anatomy and GeneticsOxford UniversityOxfordUnited Kingdom
| | - Kristine Krug
- Department of Physiology, Anatomy and GeneticsOxford UniversityOxfordUnited Kingdom
| |
Collapse
|
12
|
Dagher A, Lehéricy S, Rowe JB, Siebner HR. Disease-informed brain mapping teaches important lessons about the human brain. Neuroimage 2019; 190:1-3. [PMID: 30798013 DOI: 10.1016/j.neuroimage.2019.02.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Affiliation(s)
- Alain Dagher
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada.
| | - Stéphane Lehéricy
- Institut Du Cerveau et de La Moelle épinière, Centre for NeuroImaging Research, Team Movement Investigation and Therapeutics, Sorbonne Université, UPMC - Inserm U1127, CNRS UMR, 7225, Paris, France.
| | - James B Rowe
- Department of Clinical Neurosciences, University of Cambridge, UK; Medical Research Council, Cognition and Brain Sciences Unit, Cambridge, UK; Behavioural and Clinical Neuroscience Institute, University of Cambridge, UK.
| | - Hartwig R Siebner
- Danish Research Centre for Magnetic Resonance (DRCMR), Centre for Functional and Diagnostic Imaging and Research, Hvidovre Hospital, University of Copenhagen, Denmark.
| |
Collapse
|