1
|
Zhu J, Zhang H, Chong YS, Shek LP, Gluckman PD, Meaney MJ, Fortier MV, Qiu A. Integrated structural and functional atlases of Asian children from infancy to childhood. Neuroimage 2021; 245:118716. [PMID: 34767941 DOI: 10.1016/j.neuroimage.2021.118716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 11/06/2021] [Accepted: 11/08/2021] [Indexed: 12/21/2022] Open
Abstract
The developing brain grows exponentially in the first few years of life. There is a need to have age-appropriate brain atlases that coherently characterize the geometry of the cerebral cortex, white matter tracts, and functional organization. This study employed multi-modal brain images of an Asian cohort and constructed brain structural and functional atlases for 6-month-old infants, 4.5-, 6-, and 7.5-year-old children. We exploited large deformation diffeomorphic metric mapping and probabilistic atlas generation approaches to integrate structural MRI and diffusion weighted images (DWIs) and to create the atlas where white matter tracts well fit into the cortical folding pattern. Based on this structural atlas, we then employed spectral clustering to parcellate the brain into functional networks from resting-state fMRI (rs-fMRI). Our results provided the atlas that characterizes the cortical folding geometry, subcortical regions, deep white matter tracts, as well as functional networks in a stereotaxic coordinate space for the four different age groups. The functional networks consisting of the primary cortex were well established in infancy and remained stable to childhood, while specific higher-order functional networks showed specific patterns of hemispherical, subcortical-cerebellar, and cortical-cortical integration and segregation from infancy to childhood. Our multi-modal fusion analysis demonstrated the use of the integrated structural and functional atlas for understanding coherent patterns of brain anatomical and functional development during childhood. Hence, our atlases can be potentially used to study coherent patterns of brain anatomical and functional development.
Collapse
Affiliation(s)
- Jingwen Zhu
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, Block E4 #04-08, 11758, Singapore
| | - Han Zhang
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, Block E4 #04-08, 11758, Singapore
| | - Yap-Seng Chong
- Singapore Institute for Clinical Sciences, Singapore; Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Lynette P Shek
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | - Michael J Meaney
- Singapore Institute for Clinical Sciences, Singapore; Douglas Mental Health University Institute, McGill University, Montreal, Canada
| | - Marielle V Fortier
- Department of Diagnostic and Interventional Imaging, KK Women's and Children's Hospital, Singapore
| | - Anqi Qiu
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, Block E4 #04-08, 11758, Singapore; The N.1 Institute for Health, National University of Singapore, Singapore; Institute of Data Science, National University of Singapore, Singapore; NUS (Suzhou) Research Institute, National University of Singapore, China; Department of Biomedical Engineering, The Johns Hopkins University, USA.
| |
Collapse
|
2
|
Clark SV, Semmel ES, Aleksonis HA, Steinberg SN, King TZ. Cerebellar-Subcortical-Cortical Systems as Modulators of Cognitive Functions. Neuropsychol Rev 2021; 31:422-446. [PMID: 33515170 DOI: 10.1007/s11065-020-09465-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 11/10/2020] [Indexed: 02/07/2023]
Abstract
Over the past few decades, research has established that the cerebellum is involved in executive functions; however, its specific role remains unclear. There are numerous theories of cerebellar function and numerous cognitive processes falling under the umbrella of executive function, making investigations of the cerebellum's role in executive functioning challenging. In this review, we explored the role of the cerebellum in executive functioning through clinical and cognitive neuroscience frameworks. We reviewed the neuroanatomical systems and theoretical models of cerebellar functions and the multifaceted nature of executive functions. Using attention deficit hyperactivity disorder and cerebellar tumor as clinical developmental models of cerebellar dysfunction, and the functional magnetic resonance imaging literature, we reviewed evidence for cerebellar involvement in specific components of executive function in childhood, adolescence, and adulthood. There is evidence for posterior cerebellar contributions to working memory, planning, inhibition, and flexibility, but the heterogeneous literature that largely was not designed to study the cerebellum makes it difficult to determine specific functions of the cerebellum or cerebellar regions. In addition, while it is clear that cerebellar insult in childhood affects executive function performance later in life, more work is needed to elucidate the mechanisms by which executive dysfunction occurs and its developmental course. The limitations of the current literature are discussed and potential directions for future research are provided.
Collapse
Affiliation(s)
- Sarah V Clark
- Department of Psychology, Georgia State University, GA, 30303, Atlanta, USA
| | - Eric S Semmel
- Department of Psychology, Georgia State University, GA, 30303, Atlanta, USA
| | - Holly A Aleksonis
- Department of Psychology, Georgia State University, GA, 30303, Atlanta, USA
| | | | - Tricia Z King
- Department of Psychology, Georgia State University, GA, 30303, Atlanta, USA. .,Neuroscience Institute, Georgia State University, GA, 30303, Atlanta, USA.
| |
Collapse
|
3
|
Kipping JA, Xie Y, Qiu A. Cerebellar development and its mediation role in cognitive planning in childhood. Hum Brain Mapp 2018; 39:5074-5084. [PMID: 30133063 DOI: 10.1002/hbm.24346] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 07/27/2018] [Accepted: 07/29/2018] [Indexed: 12/30/2022] Open
Abstract
Recent evidence suggests that the cerebellum contributes not only to the planning and execution of movement but also to the high-order cognitive planning. Childhood is a critical period for development of the cerebellum and cognitive planning. This study aimed (a) to examine the development of cerebellar morphology and microstructure and (b) to examine the cerebellar mediation roles in the relationship between age and cognitive planning in 6- to 10-year-old children (n = 126). We used an anatomical parcellation to quantify cerebellar regional gray matter (GM) and white matter (WM) volumes, and WM microstructure, including fractional anisotropy (FA) and mean diffusivity (MD). We assessed planning ability using the Stockings of Cambridge (SOC) task in all children. We revealed (a) a measure-specific anterior-to-posterior gradient of the cerebellar development in childhood, that is, smaller GM volumes and greater WM FA of the anterior segment of the cerebellum but larger GM volumes and lower WM FA in the posterior segment of the cerebellum in older children; (b) an age-related improvement of the SOC performance at the most demanding level of five-move problems; and (c) a mediation role of the lateral cerebellar WM volumes in age-related improvement in the SOC performance in childhood. These results highlight the differential development of the cerebellum during childhood and provide evidence that brain adaptation to the acquisition of planning ability during childhood could partially be achieved through the engagement of the lateral cerebellum.
Collapse
Affiliation(s)
- Judy A Kipping
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - Yingyao Xie
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - Anqi Qiu
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore.,Singapore Institute for Clinical Sciences, Singapore, Singapore.,Clinical Imaging Research Center, National University of Singapore, Singapore, Singapore
| |
Collapse
|