1
|
Liberati G. Advancements in noninvasive brain stimulation: exploring repetitive transcranial magnetic stimulation of the posterior superior insula for pain relief. Pain 2024:00006396-990000000-00791. [PMID: 39679648 DOI: 10.1097/j.pain.0000000000003489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 12/17/2024]
Affiliation(s)
- Giulia Liberati
- Institute of Neuroscience (IoNS), Université Catholique de Louvain, Brussels, Belgium
- Psychological Sciences Research Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
2
|
Leu C, Glineur E, Liberati G. Cue-based modulation of pain stimulus expectation: do ongoing oscillations reflect changes in pain perception? A registered report. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240626. [PMID: 39100172 PMCID: PMC11296059 DOI: 10.1098/rsos.240626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 08/06/2024]
Abstract
A promising stream of investigations is targeting ongoing neural oscillations and whether their modulation could be related to the perception of pain. Using an electroencephalography (EEG) frequency-tagging approach, sustained periodic thermonociceptive stimuli perceived as painful have been shown to modulate ongoing oscillations in the theta, alpha and beta bands at the frequency of stimulation. Nonetheless, it remains uncertain whether these modulations are indeed linked to pain perception. To test this relationship, we modulated pain perception using a cue-based expectation modulation paradigm and investigated whether ongoing oscillations in different frequency bands mirror the changes in stimulus perception. Forty healthy participants were instructed that a visual cue can precede either a high- or low-intensity stimulation. These cues were paired with three different levels of sustained periodic thermonociceptive stimuli (low, medium and high). Despite a strong effect of expectation on perceived stimulus intensity, this effect was not reflected in the modulation of the ongoing oscillations, suggesting a potential dissociation of pain perception and these oscillatory activities. Rather, it seems that the intensity of stimulation is the primary generator of the frequency-tagged EEG responses. Importantly, these results need to be confirmed by further investigations that could allow the detection of smaller effects than originally estimated.
Collapse
Affiliation(s)
- Chiara Leu
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Esther Glineur
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
- Université Lumière Lyon 2, Lyon, France
| | - Giulia Liberati
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
- Psychological Sciences Research Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
3
|
Kadakia F, Khadka A, Yazell J, Davidson S. Chemogenetic Modulation of Posterior Insula CaMKIIa Neurons Alters Pain and Thermoregulation. THE JOURNAL OF PAIN 2024; 25:766-780. [PMID: 37832899 PMCID: PMC10922377 DOI: 10.1016/j.jpain.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/06/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023]
Abstract
The posterior insular cortex (PIC) is well positioned to perform somatosensory-limbic integration; yet, the function of neuronal subsets within the PIC in processing the sensory and affective dimensions of pain remains unclear. Here, we employ bidirectional chemogenetic modulation to characterize the function of PIC CaMKIIa-expressing excitatory neurons in a comprehensive array of sensory, affective, and thermoregulatory behaviors. Excitatory pyramidal neurons in the PIC were found to be sensitized under inflammatory pain conditions. Chemogenetic activation of excitatory CaMKIIa-expressing PIC neurons in non-injured conditions produced an increase in reflexive and affective pain- and anxiety-like behaviors. Moreover, activation of PIC CaMKIIa-expressing neurons during inflammatory pain conditions exacerbated hyperalgesia and decreased pain tolerance. However, Chemogenetic activation did not alter heat nociception via hot plate latency or body temperature. Conversely, inhibiting CaMKIIa-expressing neurons did not alter either sensory or affective pain-like behaviors in non-injured or under inflammatory pain conditions, but it did decrease body temperature and decreased hot plate latency. Our findings reveal that PIC CaMKIIa-expressing neurons are a critical hub for producing both sensory and affective pain-like behaviors and important for thermoregulatory processing. PERSPECTIVE: The present study reveals that activation of the posterior insula produces hyperalgesia and negative affect, and has a role in thermal tolerance and thermoregulation. These findings highlight the insula as a key player in contributing to the multidimensionality of pain.
Collapse
Affiliation(s)
- Feni Kadakia
- Neuroscience Graduate Program, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
- Department of Anesthesiology and Pain Research Center, University of Cincinnati, College of Medicine, Cincinnati, OH, United States
| | - Akansha Khadka
- Department of Anesthesiology and Pain Research Center, University of Cincinnati, College of Medicine, Cincinnati, OH, United States
| | - Jake Yazell
- Department of Anesthesiology and Pain Research Center, University of Cincinnati, College of Medicine, Cincinnati, OH, United States
| | - Steve Davidson
- Neuroscience Graduate Program, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
- Department of Anesthesiology and Pain Research Center, University of Cincinnati, College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
4
|
Leu C, Courtin A, Cussac C, Liberati G. The role of ongoing oscillation in pain perception: Absence of modulation by a concomitant arithmetic task. Cortex 2023; 168:114-129. [PMID: 37708762 DOI: 10.1016/j.cortex.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 07/06/2023] [Accepted: 08/09/2023] [Indexed: 09/16/2023]
Abstract
Sustained nociceptive stimuli have been shown to modulate the amplitude of ongoing neural oscillations in the theta, alpha and beta frequency bands at the frequency of stimulation, suggesting a relationship between these ongoing oscillations and pain perception. Yet, whether these ongoing oscillations are actually related to the pain experience remains unclear. If it were the case, then cognitive processes that are known to affect pain intensity should also affect these ongoing oscillations. To this end, we used electroencephalography (EEG) to investigate whether distraction - an attentional state known to affect pain perception - also modulates the amplitude of these neural oscillations. More specifically, we hypothesized that performing an unrelated arithmetic task during sustained nociceptive stimulation would lead to a decrease in the modulations of ongoing oscillations exerted by the stimulation. To assess the selectivity of this modulation for nociception, we compared the modulations of ongoing oscillations exerted by sustained periodic thermonociceptive and non-nociceptive vibrotactile stimulation (.2 Hz, 75 sec), while participants were either asked to solve an unrelated arithmetic task (distraction task) or received no specific instruction (baseline). The intensity of perception was significantly reduced by the arithmetic task in both the thermonociceptive and the vibrotactile modality, and the sustained periodic stimulation elicited a periodic response at the frequency of stimulation in both modalities. However, the distraction task did not show a differential effect for the two stimulation modalities in any of the frequency bands. The fact that, unlike pain perception, these oscillations did not appear to be affected by the task suggests that they are dissociable from pain perception. Whether a different task (leading to a stronger degree of distraction) could lead to different results is unclear.
Collapse
Affiliation(s)
- Chiara Leu
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium.
| | - Arthur Courtin
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium; Center of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark
| | - Céline Cussac
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Giulia Liberati
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium; Psychological Sciences Research Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
5
|
de Andrade DC, García-Larrea L. Beyond trial-and-error: Individualizing therapeutic transcranial neuromodulation for chronic pain. Eur J Pain 2023; 27:1065-1083. [PMID: 37596980 PMCID: PMC7616049 DOI: 10.1002/ejp.2164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 08/21/2023]
Abstract
BACKGROUND AND OBJECTIVE Repetitive transcranial magnetic stimulation (rTMS) applied to the motor cortex provides supplementary relief for some individuals with chronic pain who are refractory to pharmacological treatment. As rTMS slowly enters treatment guidelines for pain relief, its starts to be confronted with challenges long known to pharmacological approaches: efficacy at the group-level does not grant pain relief for a particular patient. In this review, we present and discuss a series of ongoing attempts to overcome this therapeutic challenge in a personalized medicine framework. DATABASES AND DATA TREATMENT Relevant scientific publications published in main databases such as PubMed and EMBASE from inception until March 2023 were systematically assessed, as well as a wide number of studies dedicated to the exploration of the mechanistic grounds of rTMS analgesic effects in humans, primates and rodents. RESULTS The main strategies reported to personalize cortical neuromodulation are: (i) the use of rTMS to predict individual response to implanted motor cortex stimulation; (ii) modifications of motor cortex stimulation patterns; (iii) stimulation of extra-motor targets; (iv) assessment of individual cortical networks and rhythms to personalize treatment; (v) deep sensory phenotyping; (vi) personalization of location, precision and intensity of motor rTMS. All approaches except (i) have so far low or moderate levels of evidence. CONCLUSIONS Although current evidence for most strategies under study remains at best moderate, the multiple mechanisms set up by cortical stimulation are an advantage over single-target 'clean' drugs, as they can influence multiple pathophysiologic paths and offer multiple possibilities of individualization. SIGNIFICANCE Non-invasive neuromodulation is on the verge of personalised medicine. Strategies ranging from integration of detailed clinical phenotyping into treatment design to advanced patient neurophysiological characterisation are being actively explored and creating a framework for actual individualisation of care.
Collapse
Affiliation(s)
- Daniel Ciampi de Andrade
- Department of Health Science and Technology, Faculty of Medicine, Center for Neuroplasticity and Pain (CNAP), Aalborg University, Aalborg, Denmark
| | - Luís García-Larrea
- University Hospital Pain Center (CETD), Neurological Hospital P. Wertheimer, Hospices Civils de Lyon, Lyon, France
- NeuroPain Lab, INSERM U1028, UMR5292, Lyon Neuroscience Research Center, CNRS, University Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
6
|
Gamma-band oscillations of pain and nociception: A systematic review and meta-analysis of human and rodent studies. Neurosci Biobehav Rev 2023; 146:105062. [PMID: 36682424 DOI: 10.1016/j.neubiorev.2023.105062] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 01/08/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023]
Abstract
Pain-induced gamma-band oscillations (GBOs) are one of the most promising biomarkers of the pain experience. Although GBOs reliably encode pain perception across different individuals and species, considerable heterogeneity could be observed in the characteristics and functions of GBOs. However, such heterogeneity of GBOs and its underlying sources have rarely been detailed previously. Here, we conducted a systematic review and meta-analysis to characterize the temporal, frequential, and spatial characteristics of GBOs and summarize the functional significance of distinct GBOs. We found that GBO heterogeneity was mainly related to pain types, with a higher frequency (∼66 Hz) GBOs at the sensorimotor cortex elicited by phasic pain and a lower frequency (∼55 Hz) GBOs at the prefrontal cortex associated with tonic and chronic pains. Positive correlations between GBO magnitudes and pain intensity were observed in healthy participants. Notably, the characteristics and functions of GBOs seemed to be phylogenetically conserved across humans and rodents. Altogether, we provided a comprehensive description of heterogeneous GBOs in pain and nociception, laying the foundation for clinical applications of GBOs.
Collapse
|
7
|
Caston RM, Davis TS, Smith EH, Rahimpour S, Rolston JD. A novel thermoelectric device integrated with a psychophysical paradigm to study pain processing in human subjects. J Neurosci Methods 2023; 386:109780. [PMID: 36586439 PMCID: PMC9892356 DOI: 10.1016/j.jneumeth.2022.109780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 12/01/2022] [Accepted: 12/24/2022] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Cerebral projections of nociceptive stimuli are of great interest as targets for neuromodulation in chronic pain. To study cerebral networks involved in processing noxious stimuli, researchers often rely on thermo-nociception to induce pain. However, various limitations exist in many pain-inducing techniques, such as not accounting for individual variations in pain and trial structure predictability. METHODS We propose an improved and reliable psychometric experimental method to evaluate human nociceptive processing to overcome some of these limitations. The developed testing paradigm leverages a custom-built, open-source, thermoelectric device (TED). The device construction and hardware are described. A maximum-likelihood adaptive algorithm is integrated into the TED software, facilitating individual psychometric functions representative of both hot and cold pain perception. In addition to testing only hot or cold thresholds, the TED may also be used to induce the thermal grill illusion (TGI), where the bars are set to alternating warm and cool temperatures. RESULTS Here, we validated the TED's capability to adjust between different temperatures and showed that the device quickly and automatically changes temperature without any experimenter input. We also validated the device and integrated psychometric pain task in 21 healthy human subjects. Hot and cold pain thresholds (HPT, CPT) were determined in human subjects with <1 °C of variation. Thresholds were anticorrelated, meaning a volunteer with a low CPT likely had a high HPT. We also showed how the TED can be used to induce the TGI. CONCLUSION The TED can induce thermo-nociception and provide probabilistic measures of hot and cold pain thresholds. Based on the findings presented, we discuss how the TED could be used to study thermo-nociceptive cerebral projections if paired with intracranial electrode monitoring.
Collapse
Affiliation(s)
- Rose M Caston
- University of Utah, Department of Biomedical Engineering, USA; University of Utah, Department of Neurosurgery, USA.
| | | | | | - Shervin Rahimpour
- University of Utah, Department of Biomedical Engineering, USA; University of Utah, Department of Neurosurgery, USA
| | - John D Rolston
- University of Utah, Department of Biomedical Engineering, USA; Brigham & Women's Hospital and Harvard Medical School, Department of Neurosurgery, USA
| |
Collapse
|
8
|
Wang H, Guo Y, Tu Y, Peng W, Lu X, Bi Y, Iannetti GD, Hu L. Neural processes responsible for the translation of sustained nociceptive inputs into subjective pain experience. Cereb Cortex 2022; 33:634-650. [PMID: 35244170 PMCID: PMC9890464 DOI: 10.1093/cercor/bhac090] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/24/2022] [Accepted: 02/11/2022] [Indexed: 02/04/2023] Open
Abstract
Tracking and predicting the temporal structure of nociceptive inputs is crucial to promote survival, as proper and immediate reactions are necessary to avoid actual or potential bodily injury. Neural activities elicited by nociceptive stimuli with different temporal structures have been described, but the neural processes responsible for translating nociception into pain perception are not fully elucidated. To tap into this issue, we recorded electroencephalographic signals from 48 healthy participants receiving thermo-nociceptive stimuli with 3 different durations and 2 different intensities. We observed that pain perception and several brain responses are modulated by stimulus duration and intensity. Crucially, we identified 2 sustained brain responses that were related to the emergence of painful percepts: a low-frequency component (LFC, < 1 Hz) originated from the insula and anterior cingulate cortex, and an alpha-band event-related desynchronization (α-ERD, 8-13 Hz) generated from the sensorimotor cortex. These 2 sustained brain responses were highly coupled, with the α-oscillation amplitude that fluctuated with the LFC phase. Furthermore, the translation of stimulus duration into pain perception was serially mediated by α-ERD and LFC. The present study reveals how brain responses elicited by nociceptive stimulation reflect the complex processes occurring during the translation of nociceptive information into pain perception.
Collapse
Affiliation(s)
- Hailu Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China,Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yifei Guo
- Neuroscience and Behaviour Laboratory, Istituto Italiano di Tecnologia, Rome 30 16163, Italy,Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, United Kingdom
| | - Yiheng Tu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China,Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weiwei Peng
- Brain Function and Psychological Science Research Center, Shenzhen University, Shenzhen 518061, China
| | - Xuejing Lu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China,Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanzhi Bi
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China,Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gian Domenico Iannetti
- Neuroscience and Behaviour Laboratory, Istituto Italiano di Tecnologia, Rome 30 16163, Italy,Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, United Kingdom
| | - Li Hu
- Corresponding author: CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
9
|
Nunez-Ibero M, Camino-Pontes B, Diez I, Erramuzpe A, Martinez-Gutierrez E, Stramaglia S, Alvarez-Cienfuegos JO, Cortes JM. A Controlled Thermoalgesic Stimulation Device for Exploring Novel Pain Perception Biomarkers. IEEE J Biomed Health Inform 2021; 25:2948-2957. [PMID: 33999827 DOI: 10.1109/jbhi.2021.3080935] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVE To develop a new device for identifying physiological markers of pain perception by reading the brain's electrical activity and hemodynamic interactions while applying thermoalgesic stimulation. METHODS We designed a compact prototype that generates well-controlled thermal stimuli using a computer-driven Peltier cell while simultaneously capturing electroencephalography (EEG) and photoplethysmography (PPG) signals. The study was performed on 35 healthy subjects (mean age 30.46 years, SD 4.93 years; 20 males, 15 females). We first determined the heat pain threshold (HPT) for each subject, defined as the maximum temperature that the subject can withstand when the Peltier cell gradually increased the temperature. Next, we defined the painful condition as the one occurring at temperature equal to 90% of the HPT, comparing this to the no-pain state (control) in the absence of thermoalgesic stimulation. RESULTS Both the one-dimensional and the two-dimensional spectral entropy (SE) obtained from both the EEG and PPG signals differentiated the condition of pain. In particular, the SE for PPG was significantly reduced in association with pain, while the SE for EEG increased slightly. Moreover, significant discrimination occurred within a specific range of frequencies, 26-30 Hz for EEG and about 5-10 Hz for PPG. CONCLUSION Hemodynamics, brain dynamics and their interactions can discriminate thermal pain perception. SIGNIFICANCE The possibility of monitoring on-line variations in thermal pain perception using a similar device and algorithms may be of interest to study different pathologies that affect the peripheral nervous system, such as small fiber neuropathies, fibromyalgia or painful diabetic neuropathy.
Collapse
|
10
|
Tan LL, Kuner R. Neocortical circuits in pain and pain relief. Nat Rev Neurosci 2021; 22:458-471. [PMID: 34127843 DOI: 10.1038/s41583-021-00468-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2021] [Indexed: 02/07/2023]
Abstract
The sensory, associative and limbic neocortical structures play a critical role in shaping incoming noxious inputs to generate variable pain perceptions. Technological advances in tracing circuitry and interrogation of pathways and complex behaviours are now yielding critical knowledge of neocortical circuits, cellular contributions and causal relationships between pain perception and its abnormalities in chronic pain. Emerging insights into neocortical pain processing suggest the existence of neocortical causality and specificity for pain at the level of subdomains, circuits and cellular entities and the activity patterns they encode. These mechanisms provide opportunities for therapeutic intervention for improved pain management.
Collapse
Affiliation(s)
- Linette Liqi Tan
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany.
| | - Rohini Kuner
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
11
|
Low Back Pain Assessment Based on Alpha Oscillation Changes in Spontaneous Electroencephalogram (EEG). Neural Plast 2021; 2021:8537437. [PMID: 34306064 PMCID: PMC8266462 DOI: 10.1155/2021/8537437] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/12/2021] [Accepted: 06/21/2021] [Indexed: 12/13/2022] Open
Abstract
Objectively and accurately assessing pain in clinical settings is challenging. Previous studies showed that alpha oscillations of electroencephalogram data are correlated with subjective perceived pain. Based on this finding, this study is aimed at assessing chronic low back pain based on alpha oscillations. Multichannel electroencephalogram data were recorded from 27 subjects with chronic low back pain under the simple conditions of closing eyes or opening eyes. Spectral analyses were conducted to extract the alpha band responses, and the alpha powers were calculated for the two conditions, respectively. Normalized alpha power was calculated by subtracting the alpha power in the eyes-open condition from that in the eyes-closed condition. The correlation between the alpha power and the subjective pain intensity was evaluated in frontal, central, and posterior regions. The normalized alpha power in the central region was negatively correlated with the subjective pain intensity (R = -0.50, P = 0.01), with the strongest correlation occurring at the Cz electrode (R = -0.59, P = 0.04). The correlation analysis results demonstrated the possibility of using the differences of alpha spectral power between eyes-closed and eyes-open conditions as a measure for assessing chronic low back pain. The findings suggest that the normalized alpha power in the central region may be used as a measurable and quantitative indicator of chronic pain for clinical applications.
Collapse
|
12
|
Tan LL, Oswald MJ, Kuner R. Neurobiology of brain oscillations in acute and chronic pain. Trends Neurosci 2021; 44:629-642. [PMID: 34176645 DOI: 10.1016/j.tins.2021.05.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/19/2021] [Accepted: 05/07/2021] [Indexed: 01/08/2023]
Abstract
Pain is a complex perceptual phenomenon. Coordinated activity among local and distant brain networks is a central element of the neural underpinnings of pain. Brain oscillatory rhythms across diverse frequency ranges provide a functional substrate for coordinating activity across local neuronal ensembles and anatomically distant brain areas in pain networks. This review addresses parallels between insights from human and rodent analyses of oscillatory rhythms in acute and chronic pain and discusses recent rodent-based studies that have shed light on mechanistic underpinnings of brain oscillatory dynamics in pain-related behaviors. We highlight the potential for therapeutic modulation of oscillatory rhythms, and identify outstanding questions and challenges to be addressed in future research.
Collapse
Affiliation(s)
- Linette Liqi Tan
- Institute of Pharmacology, Heidelberg University, Im Neuenheimer Feld 366, D-69120 Heidelberg, Germany.
| | - Manfred Josef Oswald
- Institute of Pharmacology, Heidelberg University, Im Neuenheimer Feld 366, D-69120 Heidelberg, Germany
| | - Rohini Kuner
- Institute of Pharmacology, Heidelberg University, Im Neuenheimer Feld 366, D-69120 Heidelberg, Germany.
| |
Collapse
|
13
|
Zhang X, Li L, Huang G, Zhang L, Liang Z, Shi L, Zhang Z. A Multisensory fMRI Investigation of Nociceptive-Preferential Cortical Regions and Responses. Front Neurosci 2021; 15:635733. [PMID: 33935632 PMCID: PMC8079658 DOI: 10.3389/fnins.2021.635733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/23/2021] [Indexed: 11/13/2022] Open
Abstract
The existence of nociceptive-specific brain regions has been a controversial issue for decades. Multisensory fMRI studies, which examine fMRI activities in response to various types of sensory stimulation, could help identify nociceptive-specific brain regions, but previous studies are limited by sample size and they did not differentiate nociceptive-specific regions and nociceptive-preferential regions, which have significantly larger responses to nociceptive input. In this study, we conducted a multisensory fMRI experiment on 80 healthy participants, with the aim to determine whether there are certain brain regions that specifically or preferentially respond to nociceptive stimulation. By comparing the evoked fMRI responses across four sensory modalities, we found a series of brain regions specifically or preferentially involved in nociceptive sensory input. Particularly, we found different parts of some cortical regions, such as insula and cingulate gyrus, play different functional roles in the processing of nociceptive stimulation. Hence, this multisensory study improves our understanding of the functional integrations and segregations of the nociceptive-related regions.
Collapse
Affiliation(s)
- Xiaoxia Zhang
- Health Science Center, School of Biomedical Engineering, Shenzhen University, Shenzhen, China.,Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen, China.,Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen, China
| | - Linling Li
- Health Science Center, School of Biomedical Engineering, Shenzhen University, Shenzhen, China.,Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen, China.,Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen, China
| | - Gan Huang
- Health Science Center, School of Biomedical Engineering, Shenzhen University, Shenzhen, China.,Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen, China.,Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen, China
| | - Li Zhang
- Health Science Center, School of Biomedical Engineering, Shenzhen University, Shenzhen, China.,Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen, China.,Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen, China
| | - Zhen Liang
- Health Science Center, School of Biomedical Engineering, Shenzhen University, Shenzhen, China.,Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen, China.,Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen, China
| | - Li Shi
- Health Science Center, School of Biomedical Engineering, Shenzhen University, Shenzhen, China.,Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen, China.,Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen, China
| | - Zhiguo Zhang
- Health Science Center, School of Biomedical Engineering, Shenzhen University, Shenzhen, China.,Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen, China.,Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen, China.,Peng Cheng Laboratory, Shenzhen, China
| |
Collapse
|
14
|
Liberati G, Mulders D, Algoet M, van den Broeke EN, Santos SF, Ribeiro Vaz JG, Raftopoulos C, Mouraux A. Insular responses to transient painful and non-painful thermal and mechanical spinothalamic stimuli recorded using intracerebral EEG. Sci Rep 2020; 10:22319. [PMID: 33339884 PMCID: PMC7749115 DOI: 10.1038/s41598-020-79371-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/03/2020] [Indexed: 11/09/2022] Open
Abstract
Brief thermo-nociceptive stimuli elicit low-frequency phase-locked local field potentials (LFPs) and high-frequency gamma-band oscillations (GBOs) in the human insula. Although neither of these responses constitute a direct correlate of pain perception, previous findings suggest that insular GBOs may be strongly related to the activation of the spinothalamic system and/or to the processing of thermal information. To disentangle these different features of the stimulation, we compared the insular responses to brief painful thermonociceptive stimuli, non-painful cool stimuli, mechano-nociceptive stimuli, and innocuous vibrotactile stimuli, recorded using intracerebral electroencephalograpic activity in 7 epileptic patients (9 depth electrodes, 58 insular contacts). All four types of stimuli elicited consistent low-frequency phase-locked LFPs throughout the insula, possibly reflecting supramodal activity. The latencies of thermo-nociceptive and cool low-frequency phase-locked LFPs were shorter in the posterior insula compared to the anterior insula, suggesting a similar processing of thermal input initiating in the posterior insula, regardless of whether the input produces pain and regardless of thermal modality. In contrast, only thermo-nociceptive stimuli elicited an enhancement of insular GBOs, suggesting that these activities are not simply related to the activation of the spinothalamic system or to the conveyance of thermal information.
Collapse
Affiliation(s)
- Giulia Liberati
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium.
| | - Dounia Mulders
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Maxime Algoet
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | | | | | | | | | - André Mouraux
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
15
|
Mulders D, de Bodt C, Lejeune N, Courtin A, Liberati G, Verleysen M, Mouraux A. Dynamics of the perception and EEG signals triggered by tonic warm and cool stimulation. PLoS One 2020; 15:e0231698. [PMID: 32324752 PMCID: PMC7179871 DOI: 10.1371/journal.pone.0231698] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 03/31/2020] [Indexed: 12/27/2022] Open
Abstract
Thermosensation is crucial for humans to probe the environment and detect threats arising from noxious heat or cold. Over the last years, EEG frequency-tagging using long-lasting periodic radiant heat stimulation has been proposed as a means to study the cortical processes underlying tonic heat perception. This approach is based on the notion that periodic modulation of a sustained stimulus can elicit synchronized periodic activity in the neuronal populations responding to the stimulus, known as a steady-state response (SSR). In this paper, we extend this approach using a contact thermode to generate both heat- and cold-evoked SSRs. Furthermore, we characterize the temporal dynamics of the elicited responses, relate these dynamics to perception, and assess the effects of displacing the stimulated skin surface to gain insight on the heat- and cold-sensitive afferents conveying these responses. Two experiments were conducted in healthy volunteers. In both experiments, noxious heat and innocuous cool stimuli were applied during 75 seconds to the forearm using a Peltier-based contact thermode, with intensities varying sinusoidally at 0.2 Hz. Displacement of the thermal stimulation on the skin surface was achieved by independently controlling the Peltier elements of the thermal probe. Continuous intensity ratings to sustained heat and cold stimulation were obtained in the first experiment with 14 subjects, and the EEG was recorded in the second experiment on 15 subjects. Both contact heat and cool stimulation elicited periodic EEG responses and percepts. Compared to heat stimulation, the responses to cool stimulation had a lower magnitude and shorter latency. All responses tended to habituate along time, and this response attenuation was most pronounced for cool compared to warm stimulation, and for stimulation delivered using a fixed surface compared to a variable surface.
Collapse
Affiliation(s)
- Dounia Mulders
- ICTEAM institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
- IONS institute, Université Catholique de Louvain, Brussels, Belgium
- * E-mail:
| | - Cyril de Bodt
- ICTEAM institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Nicolas Lejeune
- IONS institute, Université Catholique de Louvain, Brussels, Belgium
| | - Arthur Courtin
- IONS institute, Université Catholique de Louvain, Brussels, Belgium
| | - Giulia Liberati
- IONS institute, Université Catholique de Louvain, Brussels, Belgium
| | - Michel Verleysen
- ICTEAM institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - André Mouraux
- IONS institute, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
16
|
Nickel MM, Ta Dinh S, May ES, Tiemann L, Hohn VD, Gross J, Ploner M. Neural oscillations and connectivity characterizing the state of tonic experimental pain in humans. Hum Brain Mapp 2019; 41:17-29. [PMID: 31498948 PMCID: PMC7267966 DOI: 10.1002/hbm.24784] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/26/2019] [Accepted: 08/26/2019] [Indexed: 01/07/2023] Open
Abstract
Pain is a complex phenomenon that is served by neural oscillations and connectivity involving different brain areas and frequencies. Here, we aimed to systematically and comprehensively assess the pattern of neural oscillations and connectivity characterizing the state of tonic experimental pain in humans. To this end, we applied 10-min heat pain stimuli consecutively to the right and left hand of 39 healthy participants and recorded electroencephalography. We systematically analyzed global and local measures of oscillatory brain activity, connectivity, and graph theory-based network measures during tonic pain and compared them to a nonpainful control condition. Local measures showed suppressions of oscillatory activity at alpha frequencies together with stronger connectivity at alpha and beta frequencies in sensorimotor areas during tonic pain. Furthermore, sensorimotor areas contralateral to stimulation showed significantly increased connectivity to a common area in the medial prefrontal cortex at alpha frequencies. Together, these observations indicate that the state of tonic experimental pain is associated with a sensorimotor-prefrontal network connected at alpha frequencies. These findings represent a step further toward understanding the brain mechanisms underlying long-lasting pain states in health and disease.
Collapse
Affiliation(s)
- Moritz M Nickel
- Department of Neurology and TUM-Neuroimaging Center, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Son Ta Dinh
- Department of Neurology and TUM-Neuroimaging Center, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Elisabeth S May
- Department of Neurology and TUM-Neuroimaging Center, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Laura Tiemann
- Department of Neurology and TUM-Neuroimaging Center, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Vanessa D Hohn
- Department of Neurology and TUM-Neuroimaging Center, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Joachim Gross
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK.,Institute for Biomagnetism and Biosignalanalysis, University of Münster, Münster, Germany
| | - Markus Ploner
- Department of Neurology and TUM-Neuroimaging Center, TUM School of Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|