1
|
Wu D, Li Y, Zhang S, Chen Q, Fang J, Cho J, Wang Y, Yan S, Zhu W, Lin J, Wang Z, Zhang Y. Trajectories and sex differences of brain structure, oxygenation and perfusion functions in normal aging. Neuroimage 2024; 302:120903. [PMID: 39461605 DOI: 10.1016/j.neuroimage.2024.120903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/07/2024] [Accepted: 10/23/2024] [Indexed: 10/29/2024] Open
Abstract
BACKGROUND Brain structure, oxygenation and perfusion are important factors in aging. Coupling between regional cerebral oxygen consumption and perfusion also reflects functions of neurovascular unit (NVU). Their trajectories and sex differences during normal aging important for clinical interpretation are still not well defined. In this study, we aim to investigate the relationship between brain structure, functions and age, and exam the sex disparities. METHOD A total of 137 healthy subjects between 20∼69 years old were enrolled with conventional MRI, structural three-dimensional T1-weighted imaging (3D-T1WI), 3D multi-echo gradient echo sequence (3D-mGRE), and 3D pseudo-continuous arterial spin labeling (3D-pCASL). Oxygen extraction fraction (OEF) and cerebral blood flow (CBF) were respectively reconstructed from 3D-mGRE and 3D-pCASL images. Cerebral metabolic rate of oxygen (CMRO2) were calculated as follows: CMRO2=CBF·OEF·[H]a, [H]a=7.377 μmol/mL. Brains were segmented into global gray matter (GM), global white matter (WM), and 148 cortical subregions. OEF, CBF, CMRO2, and volumes of GM/WM relative to intracranial volumes (rel_GM/rel_WM) were compared between males and females. Generalized additive models were used to evaluate the aging trajectories of brain structure and functions. The coupling between OEF and CBF was analyzed by correlation analysis. P or PFDR < 0.05 was considered statistically significant. RESULTS Females had larger rel_GM, higher CMRO2 and CBF of GM/WM than males (P < 0.05). With control of sex, CBF of GM significantly declined between 20 and 32 years, CMRO2 of GM declined subsequently from 33 to 41 years and rel_GM decreased significantly at all ages (R2 = 0.27, P < 0.001; R2 = 0.17, P < 0.001; R2 = 0.52, P < 0.001). In subregion analysis, CBF declined dispersedly while CMRO2 declined widely across most subregions of the cortex during aging. Robust negative coupling between OEF and CBF was found in most of the subregions (r range = -0.12∼-0.48, PFDR < 0.05). CONCLUSION The sex disparities, age trajectories of brain structure and functions as well as the coupling of NVU in healthy individuals provide insights into normal aging which are potential targets for study of pathological conditions.
Collapse
Affiliation(s)
- Di Wu
- Department of Radiology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| | - Yuanhao Li
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shun Zhang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiuyue Chen
- Department of Radiology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| | - Jiayu Fang
- Department of Radiology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| | - Junghun Cho
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Yi Wang
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA; Department of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Su Yan
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenzhen Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junyu Lin
- Department of Radiology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| | - Zhenxiong Wang
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, China.
| | - Yaqin Zhang
- Department of Radiology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong 519000, China.
| |
Collapse
|
2
|
Li H, Wang C, Yu X, Luo Y, Wang H. Measurement of Cerebral Oxygen Extraction Fraction Using Quantitative BOLD Approach: A Review. PHENOMICS (CHAM, SWITZERLAND) 2023; 3:101-118. [PMID: 36939794 PMCID: PMC9883382 DOI: 10.1007/s43657-022-00081-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/29/2022] [Accepted: 10/11/2022] [Indexed: 12/12/2022]
Abstract
Quantification of brain oxygenation and metabolism, both of which are indicators of the level of brain activity, plays a vital role in understanding the cerebral perfusion and the pathophysiology of brain disorders. Magnetic resonance imaging (MRI), a widely used clinical imaging technique, which is very sensitive to magnetic susceptibility, has the possibility of substituting positron emission tomography (PET) in measuring oxygen metabolism. This review mainly focuses on the quantitative blood oxygenation level-dependent (qBOLD) method for the evaluation of oxygen extraction fraction (OEF) in the brain. Here, we review the theoretic basis of qBOLD, as well as existing acquisition and quantification methods. Some published clinical studies are also presented, and the pros and cons of qBOLD method are discussed as well.
Collapse
Affiliation(s)
- Hongwei Li
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, 220 Handan Road, Yangpu District, Shanghai, 200433 China
| | - Chengyan Wang
- Human Phenome Institute, Fudan University, Shanghai, 201203 China
| | - Xuchen Yu
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, 220 Handan Road, Yangpu District, Shanghai, 200433 China
| | - Yu Luo
- Department of Radiology, Shanghai Fourth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai, 200434 China
| | - He Wang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, 220 Handan Road, Yangpu District, Shanghai, 200433 China
- Human Phenome Institute, Fudan University, Shanghai, 201203 China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, (Fudan University), Ministry of Education, Shanghai, 200433 China
| |
Collapse
|
3
|
Meng F, Yang Y, Jin G. Research Progress on MRI for White Matter Hyperintensity of Presumed Vascular Origin and Cognitive Impairment. Front Neurol 2022; 13:865920. [PMID: 35873763 PMCID: PMC9301233 DOI: 10.3389/fneur.2022.865920] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 06/14/2022] [Indexed: 11/17/2022] Open
Abstract
White matter hyperintensity of presumed vascular origin (WMH) is a common medical imaging manifestation in the brains of middle-aged and elderly individuals. WMH can lead to cognitive decline and an increased risk of cognitive impairment and dementia. However, the pathogenesis of cognitive impairment in patients with WMH remains unclear. WMH increases the risk of cognitive impairment, the nature and severity of which depend on lesion volume and location and the patient's cognitive reserve. Abnormal changes in microstructure, cerebral blood flow, metabolites, and resting brain function are observed in patients with WMH with cognitive impairment. Magnetic resonance imaging (MRI) is an indispensable tool for detecting WMH, and novel MRI techniques have emerged as the key approaches for exploring WMH and cognitive impairment. This article provides an overview of the association between WMH and cognitive impairment and the application of dynamic contrast-enhanced MRI, structural MRI, diffusion tensor imaging, 3D-arterial spin labeling, intravoxel incoherent motion, magnetic resonance spectroscopy, and resting-state functional MRI for examining WMH and cognitive impairment.
Collapse
Affiliation(s)
- Fanhua Meng
- North China University of Science and Technology, Tangshan, China
| | - Ying Yang
- Department of Radiology, China Emergency General Hospital, Beijing, China
| | - Guangwei Jin
- Department of Radiology, China Emergency General Hospital, Beijing, China
- *Correspondence: Guangwei Jin
| |
Collapse
|
4
|
Yin Y, Shu S, Qin L, Shan Y, Gao JH, Lu J. Effects of mild hypoxia on oxygen extraction fraction responses to brain stimulation. J Cereb Blood Flow Metab 2021; 41:2216-2228. [PMID: 33563081 PMCID: PMC8393298 DOI: 10.1177/0271678x21992896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Characterizing the effect of limited oxygen availability on brain metabolism during brain activation is an essential step towards a better understanding of brain homeostasis and has obvious clinical implications. However, how the cerebral oxygen extraction fraction (OEF) depends on oxygen availability during brain activation remains unclear, which is mostly attributable to the scarcity and safety of measurement techniques. Recently, a magnetic resonance imaging (MRI) method that enables noninvasive and dynamic measurement of the OEF has been developed and confirmed to be applicable to functional MRI studies. Using this novel method, the present study investigated the motor-evoked OEF response in both normoxia (21% O2) and hypoxia (12% O2). Our results showed that OEF activation decreased in the brain areas involved in motor task execution. Decreases in the motor-evoked OEF response were greater under hypoxia (-21.7% ± 5.5%) than under normoxia (-11.8% ± 3.7%) and showed a substantial decrease as a function of arterial oxygen saturation. These findings suggest a different relationship between oxygen delivery and consumption during hypoxia compared to normoxia. This methodology may provide a new perspective on the effects of mild hypoxia on brain function.
Collapse
Affiliation(s)
- Yayan Yin
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
| | - Su Shu
- Beijing City Key Lab for Medical Physics and Engineering, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing, China.,Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Lang Qin
- Beijing City Key Lab for Medical Physics and Engineering, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing, China.,Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Yi Shan
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
| | - Jia-Hong Gao
- Beijing City Key Lab for Medical Physics and Engineering, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing, China.,Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.,McGovern Institution for Brain Research, Peking University, Beijing, China
| | - Jie Lu
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China.,Department of Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|