1
|
Zhu Y, Liao L, Gao S, Tao Y, Huang H, Fang X, Yuan C, Gao C. Neuroprotective effects of repetitive transcranial magnetic stimulation on Alzheimer's disease: Undetermined therapeutic protocols and mechanisms. NEUROPROTECTION 2024; 2:16-32. [DOI: 10.1002/nep3.40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 01/24/2024] [Indexed: 01/03/2025]
Abstract
AbstractAlzheimer's disease (AD) is a prevalent neurodegenerative disorder characterized by gradual deterioration of cognitive functions, for which an effective treatment is currently unavailable. Repetitive transcranial magnetic stimulation (rTMS), a well‐established noninvasive brain stimulation method, is utilized in clinical settings to address various neuropsychiatric conditions, such as depression, neuropathic pain, and poststroke dysfunction. Increasing evidence suggests that rTMS may enhance cognitive abilities in individuals with AD. However, its optimal therapeutic protocols and precise mechanisms are currently unknown, impeding its clinical implementation. In the present review, we aimed to summarize and discuss the efficacy‐related parameters in rTMS treatment, encompassing stimulus frequency, stimulus pattern, stimulus intensity, and the configuration of the stimulus coil. Furthermore, we reviewed promising rTMS therapeutic protocols involving various combinations of these factors, that were examined in clinical studies. Based on our analysis, we propose that a multisite high‐frequency rTMS (HF‐rTMS) regimen has value in AD therapy, and that promising single‐site protocols, such as HF‐rTMS, applied over the left dorsolateral prefrontal cortex, precuneus, or cerebellum are required to be validated in larger clinical studies. Lastly, we provide a comprehensive review of the potential mechanisms underlying the neuroprotective effects of rTMS on cognition in AD in terms of brain network modulation as well as cellular and molecular reactions. In conclusion, the interaction of diverse mechanisms may be responsible for the total therapeutic effect of rTMS on AD. This review provides theoretical and practical evidence for the future clinical application and scientific research of rTMS in AD.
Collapse
Affiliation(s)
- Yang Zhu
- Department of Rehabilitation Medicine, Daping Hospital Army Medical University Chongqing China
| | - Lingyi Liao
- Department of Rehabilitation Medicine, Daping Hospital Army Medical University Chongqing China
| | - Shihao Gao
- Department of Rehabilitation Medicine, Daping Hospital Army Medical University Chongqing China
| | - Yong Tao
- Department of Rehabilitation Medicine, Daping Hospital Army Medical University Chongqing China
| | - Hao Huang
- Department of Rehabilitation Medicine, Daping Hospital Army Medical University Chongqing China
- Department of Rehabilitation Medicine General Hospital of Southern Theatre Command of PLA Guangzhou China
| | - Xiangqin Fang
- Department of Rehabilitation Medicine, Daping Hospital Army Medical University Chongqing China
| | - Changyan Yuan
- Department of Rehabilitation Medicine, Daping Hospital Army Medical University Chongqing China
| | - Changyue Gao
- Department of Rehabilitation Medicine, Daping Hospital Army Medical University Chongqing China
| |
Collapse
|
2
|
Snytte J, Setton R, Mwilambwe-Tshilobo L, Natasha Rajah M, Sheldon S, Turner GR, Spreng RN. Structure-Function Interactions in the Hippocampus and Prefrontal Cortex Are Associated with Episodic Memory in Healthy Aging. eNeuro 2024; 11:ENEURO.0418-23.2023. [PMID: 38479810 PMCID: PMC10972739 DOI: 10.1523/eneuro.0418-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/11/2023] [Accepted: 12/15/2023] [Indexed: 04/01/2024] Open
Abstract
Aging comes with declines in episodic memory. Memory decline is accompanied by structural and functional alterations within key brain regions, including the hippocampus and lateral prefrontal cortex, as well as their affiliated default and frontoparietal control networks. Most studies have examined how structural or functional differences relate to memory independently. Here we implemented a multimodal, multivariate approach to investigate how interactions between individual differences in structural integrity and functional connectivity relate to episodic memory performance in healthy aging. In a sample of younger (N = 111; mean age, 22.11 years) and older (N = 78; mean age, 67.29 years) adults, we analyzed structural MRI and multiecho resting-state fMRI data. Participants completed measures of list recall (free recall of words from a list), associative memory (cued recall of paired words), and source memory (cued recall of the trial type, or the sensory modality in which a word was presented). The findings revealed that greater structural integrity of the posterior hippocampus and middle frontal gyrus were linked with a pattern of increased within-network connectivity, which together were related to better associative and source memory in older adulthood. Critically, older adults displayed better memory performance in the context of decreased hippocampal volumes when structural differences were accompanied by functional reorganization. This functional reorganization was characterized by a pruning of connections between the hippocampus and the limbic and frontoparietal control networks. Our work provides insight into the neural mechanisms that underlie age-related compensation, revealing that the functional architecture associated with better memory performance in healthy aging is tied to the structural integrity of the hippocampus and prefrontal cortex.
Collapse
Affiliation(s)
- Jamie Snytte
- Department of Psychology, McGill University, Montreal, Quebec H3A 1G1, Canada
| | - Roni Setton
- Department of Psychology, Harvard University, Cambridge, Massachusetts 02138
| | - Laetitia Mwilambwe-Tshilobo
- Annenberg School for Communication, University of Pennsylvania, Philadelphia, Pennsylvania 19104
- Department of Psychology, Princeton University, Princeton, New Jersey 08540
| | - M Natasha Rajah
- Department of Psychology, McGill University, Montreal, Quebec H3A 1G1, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec H3A 1A1, Canada
| | - Signy Sheldon
- Department of Psychology, McGill University, Montreal, Quebec H3A 1G1, Canada
| | - Gary R Turner
- Department of Psychology, York University, Toronto, Ontario M3J 1P3, Canada
| | - R Nathan Spreng
- Department of Psychology, McGill University, Montreal, Quebec H3A 1G1, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec H3A 1A1, Canada
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec H3A 2B4, Canada
- McConnell Brain Imaging Centre, McGill University, Montreal, Quebec H3A 2B4, Canada
| |
Collapse
|
3
|
Wei JM, Xia LX. Neural Correlates of Positive Outcome Expectancy for Aggression: Evidence from Voxel-Based Morphometry and Resting-State Functional Connectivity Analysis. Brain Sci 2023; 14:43. [PMID: 38248258 PMCID: PMC10813425 DOI: 10.3390/brainsci14010043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/23/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
Positive outcome expectancy is a crucial cognitive factor influencing aggression, yet its neural basis remains unclear. Therefore, the present study combined voxel-based morphometry (VBM) with a resting-state functional connectivity (RSFC) analysis to investigate the brain correlates of positive outcome expectancy in aggression in young people. In the VBM analysis, multiple linear regression was conducted to explore the relationship between individual differences in aggressive positive outcome expectancy and regional gray matter volume (GMV) among 325 undergraduate students. For the RSFC analysis, seed regions were selected based on the results of the VBM analysis. Subsequently, multiple linear regression was employed to examine whether a significant correlation existed between individual differences in aggressive positive outcome expectancy and the RSFC of seed regions with other brain regions in 304 undergraduate students. The findings indicated that aggressive positive outcome expectancy was positively correlated with GMV in the posterior cingulate cortex (PCC), right temporoparietal junction (TPJ), and medial prefrontal cortex (MPFC). Moreover, it was also positively associated with RSFC between the PCC and the left dorsolateral prefrontal cortex (DLPFC). The prediction analysis indicated robust relationships between aggressive positive outcome expectancy and the GMV in the PCC, right TPJ, as well as the RSFC between the PCC and the left DLPFC. Our research provides the initial evidence for the neural basis of positive outcome expectancy in aggression, suggesting the potential role of the PCC as a hub in its neural network.
Collapse
Affiliation(s)
- Jia-Ming Wei
- Research Center of Psychology and Social Development, Faculty of Psychology, Southwest University, Chongqing 400715, China;
- Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, Chongqing 400715, China
| | - Ling-Xiang Xia
- Research Center of Psychology and Social Development, Faculty of Psychology, Southwest University, Chongqing 400715, China;
- Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, Chongqing 400715, China
| |
Collapse
|
4
|
Snytte J, Fenerci C, Rajagopal S, Beaudoin C, Hooper K, Sheldon S, Olsen RK, Rajah MN. Volume of the posterior hippocampus mediates age-related differences in spatial context memory and is correlated with increased activity in lateral frontal, parietal and occipital regions in healthy aging. Neuroimage 2022; 254:119164. [PMID: 35381338 DOI: 10.1016/j.neuroimage.2022.119164] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 10/18/2022] Open
Abstract
Healthy aging is associated with episodic memory decline, particularly in the ability to encode and retrieve object-context associations (context memory). Neuropsychological and neuroimaging studies have highlighted the importance of the medial temporal lobes (MTL) in supporting episodic memory across the lifespan. However, given the functional heterogeneity of the MTL, volumetric declines in distinct regions may impact performance on specific episodic memory tasks, and affect the function of the large-scale neurocognitive networks supporting episodic memory encoding and retrieval. In the current study, we investigated how MTL structure may mediate age-related differences in performance on spatial and temporal context memory tasks, in a sample of 125 healthy adults aged 19-76 years old. Standard T1-weighted MRIs were segmented into the perirhinal, entorhinal and parahippocampal cortices, as well as the anterior and posterior hippocampal subregions. We observed negative linear and quadratic associations between age and volume of the parahippocampal cortex, and anterior and posterior hippocampal subregions. We also found that volume of the posterior hippocampus fully mediated the association between age and spatial, but not temporal context memory performance. Further, we employed a multivariate behavior partial-least-squares analysis to assess how age and regional MTL volumes correlated with brain activity during the encoding and retrieval of spatial context memories. We found that greater activity within lateral prefrontal, parietal, and occipital regions, as well as within the anterior MTL was related to older age and smaller volume of the posterior hippocampus. Our results highlight the heterogeneity of MTL contributions to episodic memory across the lifespan and provide support for the posterior-anterior shift in aging, and scaffolding theory of aging and cognition.
Collapse
Affiliation(s)
- Jamie Snytte
- Department of Psychology, McGill University, 2001 Avenue McGill College, Montreal, QC H3A 1G1, Canada; Brain Imaging Center, Douglas Institute Research Center, 6875 LaSalle Blvd Verdun, Montreal, QC H4H 1R3, Canada.
| | - Can Fenerci
- Department of Psychology, McGill University, 2001 Avenue McGill College, Montreal, QC H3A 1G1, Canada
| | - Sricharana Rajagopal
- Brain Imaging Center, Douglas Institute Research Center, 6875 LaSalle Blvd Verdun, Montreal, QC H4H 1R3, Canada
| | - Camille Beaudoin
- Brain Imaging Center, Douglas Institute Research Center, 6875 LaSalle Blvd Verdun, Montreal, QC H4H 1R3, Canada
| | - Kiera Hooper
- Brain Imaging Center, Douglas Institute Research Center, 6875 LaSalle Blvd Verdun, Montreal, QC H4H 1R3, Canada
| | - Signy Sheldon
- Department of Psychology, McGill University, 2001 Avenue McGill College, Montreal, QC H3A 1G1, Canada
| | - Rosanna K Olsen
- Department of Psychology, University of Toronto, Toronto, ON, Canada; Rotman Research Institute, Baycrest Health Sciences, Toronto, ON, Canada
| | - M Natasha Rajah
- Brain Imaging Center, Douglas Institute Research Center, 6875 LaSalle Blvd Verdun, Montreal, QC H4H 1R3, Canada; Department of Psychiatry, Faculty of Medicine, McGill University and Douglas Mental Health University Institute, Room 2114, CIC Pavilion, 6875 LaSalle Blvd, 1033 Avenue des Pins, Verdun, H4H 1R3, Montreal, QC H3A 1A1, Canada.
| |
Collapse
|
5
|
Accelerated intermittent theta-burst stimulation broadly ameliorates symptoms and cognition in Alzheimer's disease: A randomized controlled trial. Brain Stimul 2021; 15:35-45. [PMID: 34752934 DOI: 10.1016/j.brs.2021.11.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 10/03/2021] [Accepted: 11/04/2021] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Deficits in associative memory (AM) are the earliest and most prominent feature of Alzheimer's disease (AD) and demonstrate a clear cause of distress for patients and their families. OBJECTIVE The present study aimed to determine AM enhancements following accelerated intermittent theta-burst stimulation (iTBS) in patients with AD. METHODS In a randomized, double-blind, sham-controlled design, iTBS was administered to the left dorsolateral prefrontal cortex (DLPFC) of patients with AD for 14 days. Measurements included AM (primary outcome) and a comprehensive neuropsychological battery. Patients were evaluated at baseline, following the intervention (week 2), and 8 weeks after treatment cessation (week 10). RESULTS Sixty patients with AD were initially enrolled; 47 completed the trial. The active group displayed greater AM improvements compared with the sham group at week 2 (P = 0.003), which was sustained at week 10. Furthermore, higher Mini-Mental State Examination (MMSE) scores at baseline were associated with greater AM improvements at weeks 2 and 10. For the independent iTBS group, this correlation predicted improvements in AM (P < 0.001) and identified treatment responders with 92% accuracy. Most of the neuropsychological tests were markedly improved in the active group. In particular, the Montreal Cognitive Assessment and MMSE in the active group increased by 2.8 and 2.3 points, respectively, at week 2, while there was no marked change in the sham group. CONCLUSION In the present study, accelerated iTBS of the DLPFC demonstrated an effective and well-tolerated complementary treatment for patients with AD, especially for individuals with relatively high MMSE scores.
Collapse
|
6
|
Snytte J, Elshiekh A, Subramaniapillai S, Manning L, Pasvanis S, Devenyi GA, Olsen RK, Rajah MN. The ratio of posterior–anterior medial temporal lobe volumes predicts source memory performance in healthy young adults. Hippocampus 2020; 30:1209-1227. [DOI: 10.1002/hipo.23251] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 07/02/2020] [Accepted: 07/10/2020] [Indexed: 02/01/2023]
Affiliation(s)
- Jamie Snytte
- Integrated Program in Neuroscience, Faculty of Medicine McGill University Montreal Quebec Canada
| | - Abdelhalim Elshiekh
- Integrated Program in Neuroscience, Faculty of Medicine McGill University Montreal Quebec Canada
| | | | - Lyssa Manning
- Massachusetts General Hospital Boston Massachusetts USA
| | - Stamatoula Pasvanis
- Cerebral Imaging Centre Douglas Mental Health University Institute Montreal Quebec Canada
| | - Gabriel A. Devenyi
- Cerebral Imaging Centre Douglas Mental Health University Institute Montreal Quebec Canada
- Department of Psychiatry McGill University Montreal Quebec Canada
| | - Rosanna K. Olsen
- Department of Psychology University of Toronto Toronto Ontario Canada
- Rotman Research Institute Baycrest Health Sciences Toronto Ontario Canada
| | - Maria Natasha Rajah
- Cerebral Imaging Centre Douglas Mental Health University Institute Montreal Quebec Canada
- Department of Psychiatry McGill University Montreal Quebec Canada
| |
Collapse
|
7
|
Sander MC, Fandakova Y, Grandy TH, Shing YL, Werkle-Bergner M. Oscillatory Mechanisms of Successful Memory Formation in Younger and Older Adults Are Related to Structural Integrity. Cereb Cortex 2020; 30:3744-3758. [PMID: 31989153 PMCID: PMC7232990 DOI: 10.1093/cercor/bhz339] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/01/2019] [Indexed: 01/21/2023] Open
Abstract
We studied oscillatory mechanisms of memory formation in 48 younger and 51 older adults in an intentional associative memory task with cued recall. While older adults showed lower memory performance than young adults, we found subsequent memory effects (SME) in alpha/beta and theta frequency bands in both age groups. Using logistic mixed effects models, we investigated whether interindividual differences in structural integrity of key memory regions could account for interindividual differences in the strength of the SME. Structural integrity of inferior frontal gyrus (IFG) and hippocampus was reduced in older adults. SME in the alpha/beta band were modulated by the cortical thickness of IFG, in line with its hypothesized role for deep semantic elaboration. Importantly, this structure–function relationship did not differ by age group. However, older adults were more frequently represented among the participants with low cortical thickness and consequently weaker SME in the alpha band. Thus, our results suggest that differences in the structural integrity of the IFG contribute not only to interindividual, but also to age differences in memory formation.
Collapse
Affiliation(s)
- Myriam C Sander
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin 14195, Germany
| | - Yana Fandakova
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin 14195, Germany
| | - Thomas H Grandy
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin 14195, Germany
| | - Yee Lee Shing
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin 14195, Germany.,Department of Developmental Psychology, Goethe University Frankfurt, Frankfurt am Main 60323, Germany
| | - Markus Werkle-Bergner
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin 14195, Germany
| |
Collapse
|