1
|
Chen B, Jiang L, Lu G, Li Y, Zhang S, Huang X, Xu P, Li F, Yao D. Altered dynamic network interactions in children with ASD during face recognition revealed by time-varying EEG networks. Cereb Cortex 2023; 33:11170-11180. [PMID: 37750334 DOI: 10.1093/cercor/bhad355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/27/2023] Open
Abstract
Although the electrophysiological event-related potential in face processing (e.g. N170) is widely accepted as a face-sensitivity biomarker that is deficient in children with autism spectrum disorders, the time-varying brain networks during face recognition are still awaiting further investigation. To explore the social deficits in autism spectrum disorder, especially the time-varying brain networks during face recognition, the current study analyzed the N170, cortical activity, and time-varying networks under 3 tasks (face-upright, face-inverted, and house-upright) in autism spectrum disorder and typically developing children. The results revealed a smaller N170 amplitude in autism spectrum disorder compared with typically developing, along with decreased cortical activity mainly in occipitotemporal areas. Concerning the time-varying networks, the atypically stronger information flow and brain network connections across frontal, parietal, and temporal regions in autism spectrum disorder were reported, which reveals greater effort was exerted by autism spectrum disorder to obtain comparable performance to the typically developing children, although the amplitude of N170 was still smaller than that of the typically developing children. Different brain activation states and interaction patterns of brain regions during face processing were discovered between autism spectrum disorder and typically developing. These findings shed light on the face-processing mechanisms in children with autism spectrum disorder and provide new insight for understanding the social dysfunction of autism spectrum disorder.
Collapse
Affiliation(s)
- Baodan Chen
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 610054, China
- School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Lin Jiang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 610054, China
- School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Guoqing Lu
- School of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing 600054, China
| | - Yuqin Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 610054, China
- School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Shu Zhang
- School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Xunan Huang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 610054, China
- School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu 611731, China
- School of Foreign Languages, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Peng Xu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 610054, China
- School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu 611731, China
- Research Unit of Neuro Information, Chinese Academy of Medical Sciences, Chengdu 2019RU035, China
- Radiation Oncology Key Laboratory of Sichuan Province, Chengdu 610041, China
| | - Fali Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 610054, China
- School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu 611731, China
- Research Unit of Neuro Information, Chinese Academy of Medical Sciences, Chengdu 2019RU035, China
| | - Dezhong Yao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 610054, China
- School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu 611731, China
- Research Unit of Neuro Information, Chinese Academy of Medical Sciences, Chengdu 2019RU035, China
- School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
2
|
O’Hearn K, Lynn A. Age differences and brain maturation provide insight into heterogeneous results in autism spectrum disorder. Front Hum Neurosci 2023; 16:957375. [PMID: 36819297 PMCID: PMC9934814 DOI: 10.3389/fnhum.2022.957375] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 11/07/2022] [Indexed: 02/05/2023] Open
Abstract
Studies comparing individuals with autism spectrum disorder (ASD) to typically developing (TD) individuals have yielded inconsistent results. These inconsistencies reflect, in part, atypical trajectories of development in children and young adults with ASD compared to TD peers. These different trajectories alter group differences between children with and without ASD as they age. This paper first summarizes the disparate trajectories evident in our studies and, upon further investigation, laboratories using the same recruiting source. These studies indicated that cognition improves into adulthood typically, and is associated with the maturation of striatal, frontal, and temporal lobes, but these age-related improvements did not emerge in the young adults with ASD. This pattern - of improvement into adulthood in the TD group but not in the group with ASD - occurred in both social and non-social tasks. However, the difference between TD and ASD trajectories was most robust on a social task, face recognition. While tempting to ascribe this uneven deficit to the social differences in ASD, it may also reflect the prolonged typical development of social cognitive tasks such as face recognition into adulthood. This paper then reviews the evidence on age-related and developmental changes from other studies on ASD. The broader literature also suggests that individuals with ASD do not exhibit the typical improvements during adolescence on skills important for navigating the transition to adulthood. These skills include execution function, social cognition and communication, and emotional recognition and self-awareness. Relatedly, neuroimaging studies indicate arrested or atypical brain maturation in striatal, frontal, and temporal regions during adolescence in ASD. This review not only highlights the importance of a developmental framework and explicit consideration of age and/or stage when studying ASD, but also the potential importance of adolescence on outcomes in ASD.
Collapse
Affiliation(s)
- Kirsten O’Hearn
- Department of Physiology and Pharmacology, Atrium Health Wake Forest Baptist Medical Center, Winston-Salem, NC, United States,*Correspondence: Kirsten O’Hearn,
| | - Andrew Lynn
- Department of Special Education, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
3
|
Hartston M, Avidan G, Pertzov Y, Hadad BS. Weaker face recognition in adults with autism arises from perceptually based alterations. Autism Res 2023; 16:723-733. [PMID: 36691922 DOI: 10.1002/aur.2893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 01/06/2023] [Indexed: 01/25/2023]
Abstract
Face recognition has been shown to be impaired in autism spectrum disorders (ASD). However, it is still debated whether these face processing deficits arise from perceptually based alterations. We tested individuals with ASD and matched typically developing (TD) individuals using a delayed estimation task in which a single target face was shown either upright or inverted. Participants selected a face that best resembled the target face out of a cyclic space of morphed faces. To enable the disentanglement of visual from mnemonic processing, reports were required either following a 1 and 6 second retention interval, or simultaneously while the target face was still visible. Individuals with ASD made significantly more errors than TD individuals in both the simultaneous and delayed intervals, indicating that face recognition deficits in autism are also perceptual rather than strictly memory based. Moreover, individuals with ASD exhibited weaker inversion effects than the TD individuals, on all retention intervals. This finding, that was mostly evident in precision errors, suggests that contrary to the more precise representations of upright faces in TD individuals, individuals with ASD exhibit similar levels of precision for inverted and upright faces, for both simultaneous and delayed conditions. These results suggest that weakened memory for faces reported in ASD may be secondary to an underlying perceptual deficit in face processing.
Collapse
Affiliation(s)
- Marissa Hartston
- Department of Special Education, Faculty of Education, University of Haifa, Haifa, Israel
| | - Galia Avidan
- Department of Psychology, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Yoni Pertzov
- Department of Psychology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Bat-Sheva Hadad
- Department of Special Education, Faculty of Education, University of Haifa, Haifa, Israel.,Edmond J. Safra Brain Research Centre, University of Haifa, Haifa, Israel
| |
Collapse
|
4
|
Desaunay P, Guillery B, Moussaoui E, Eustache F, Bowler DM, Guénolé F. Brain correlates of declarative memory atypicalities in autism: a systematic review of functional neuroimaging findings. Mol Autism 2023; 14:2. [PMID: 36627713 PMCID: PMC9832704 DOI: 10.1186/s13229-022-00525-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 11/29/2022] [Indexed: 01/11/2023] Open
Abstract
The long-described atypicalities of memory functioning experienced by people with autism have major implications for daily living, academic learning, as well as cognitive remediation. Though behavioral studies have identified a robust profile of memory strengths and weaknesses in autism spectrum disorder (ASD), few works have attempted to establish a synthesis concerning their neural bases. In this systematic review of functional neuroimaging studies, we highlight functional brain asymmetries in three anatomical planes during memory processing between individuals with ASD and typical development. These asymmetries consist of greater activity of the left hemisphere than the right in ASD participants, of posterior brain regions-including hippocampus-rather than anterior ones, and presumably of the ventral (occipito-temporal) streams rather than the dorsal (occipito-parietal) ones. These functional alterations may be linked to atypical memory processes in ASD, including the pre-eminence of verbal over spatial information, impaired active maintenance in working memory, and preserved relational memory despite poor context processing in episodic memory.
Collapse
Affiliation(s)
- Pierre Desaunay
- grid.411149.80000 0004 0472 0160Service de Psychiatrie de l’Enfant et de l’Adolescent, CHU de Caen Normandie, 27 rue des compagnons, 14000 Caen, France ,grid.412043.00000 0001 2186 4076EPHE, INSERM, U1077, Pôle des Formations et de Recherche en Santé, CHU de Caen Normandie, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, Normandie Univ, UNICAEN, PSL Research University, 2 rue des Rochambelles, 14032 Caen Cedex CS, France
| | - Bérengère Guillery
- grid.412043.00000 0001 2186 4076EPHE, INSERM, U1077, Pôle des Formations et de Recherche en Santé, CHU de Caen Normandie, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, Normandie Univ, UNICAEN, PSL Research University, 2 rue des Rochambelles, 14032 Caen Cedex CS, France
| | - Edgar Moussaoui
- grid.411149.80000 0004 0472 0160Service de Psychiatrie de l’Enfant et de l’Adolescent, CHU de Caen Normandie, 27 rue des compagnons, 14000 Caen, France
| | - Francis Eustache
- grid.412043.00000 0001 2186 4076EPHE, INSERM, U1077, Pôle des Formations et de Recherche en Santé, CHU de Caen Normandie, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, Normandie Univ, UNICAEN, PSL Research University, 2 rue des Rochambelles, 14032 Caen Cedex CS, France
| | - Dermot M. Bowler
- grid.28577.3f0000 0004 1936 8497Autism Research Group, City University of London, DG04 Rhind Building, Northampton Square, EC1V 0HB London, UK
| | - Fabian Guénolé
- grid.411149.80000 0004 0472 0160Service de Psychiatrie de l’Enfant et de l’Adolescent, CHU de Caen Normandie, 27 rue des compagnons, 14000 Caen, France ,grid.412043.00000 0001 2186 4076EPHE, INSERM, U1077, Pôle des Formations et de Recherche en Santé, CHU de Caen Normandie, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, Normandie Univ, UNICAEN, PSL Research University, 2 rue des Rochambelles, 14032 Caen Cedex CS, France ,grid.412043.00000 0001 2186 4076Faculté de Médecine, Pôle des Formation et de Recherche en Santé, Université de Caen Normandie, 2 rue des Rochambelles, 14032 Caen cedex CS, France
| |
Collapse
|
5
|
Hao Z, Shi Y, Huang L, Sun J, Li M, Gao Y, Li J, Wang Q, Zhan L, Ding Q, Jia X, Li H. The Atypical Effective Connectivity of Right Temporoparietal Junction in Autism Spectrum Disorder: A Multi-Site Study. Front Neurosci 2022; 16:927556. [PMID: 35924226 PMCID: PMC9340667 DOI: 10.3389/fnins.2022.927556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/21/2022] [Indexed: 11/13/2022] Open
Abstract
Social function impairment is the core deficit of autism spectrum disorder (ASD). Although many studies have investigated ASD through a variety of neuroimaging tools, its brain mechanism of social function remains unclear due to its complex and heterogeneous symptoms. The present study aimed to use resting-state functional magnetic imaging data to explore effective connectivity between the right temporoparietal junction (RTPJ), one of the key brain regions associated with social impairment of individuals with ASD, and the whole brain to further deepen our understanding of the neuropathological mechanism of ASD. This study involved 1,454 participants from 23 sites from the Autism Brain Imaging Data Exchange (ABIDE) public dataset, which included 618 individuals with ASD and 836 with typical development (TD). First, a voxel-wise Granger causality analysis (GCA) was conducted with the RTPJ selected as the region of interest (ROI) to investigate the differences in effective connectivity between the ASD and TD groups in every site. Next, to obtain further accurate and representative results, an image-based meta-analysis was implemented to further analyze the GCA results of each site. Our results demonstrated abnormal causal connectivity between the RTPJ and the widely distributed brain regions and that the connectivity has been associated with social impairment in individuals with ASD. The current study could help to further elucidate the pathological mechanisms of ASD and provides a new perspective for future research.
Collapse
Affiliation(s)
- Zeqi Hao
- School of Teacher Education, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application, Zhejiang Normal University, Jinhua, China
| | - Yuyu Shi
- School of Teacher Education, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application, Zhejiang Normal University, Jinhua, China
| | - Lina Huang
- Department of Radiology, Changshu No. 2 People's Hospital, The Affiliated Changshu Hospital of Xuzhou Medical University, Changshu, China
| | - Jiawei Sun
- School of Information and Electronics Technology, Jiamusi University, Jiamusi, China
| | - Mengting Li
- School of Teacher Education, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application, Zhejiang Normal University, Jinhua, China
| | - Yanyan Gao
- School of Teacher Education, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application, Zhejiang Normal University, Jinhua, China
| | - Jing Li
- School of Teacher Education, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application, Zhejiang Normal University, Jinhua, China
| | - Qianqian Wang
- School of Teacher Education, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application, Zhejiang Normal University, Jinhua, China
| | - Linlin Zhan
- School of Western Languages, Heilongjiang University, Harbin, China
| | - Qingguo Ding
- Department of Radiology, Changshu No. 2 People's Hospital, The Affiliated Changshu Hospital of Xuzhou Medical University, Changshu, China
| | - Xize Jia
- School of Teacher Education, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application, Zhejiang Normal University, Jinhua, China
| | - Huayun Li
- School of Teacher Education, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application, Zhejiang Normal University, Jinhua, China
| |
Collapse
|
6
|
Ji S, Zhang Y, Chen N, Liu X, Li Y, Shao X, Yang Z, Yao Z, Hu B. Shared increased entropy of brain signals across patients with different mental illnesses: A coordinate-based activation likelihood estimation meta-analysis. Brain Imaging Behav 2022; 16:336-343. [PMID: 34997426 DOI: 10.1007/s11682-021-00507-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2021] [Indexed: 11/25/2022]
Abstract
Entropy is a measurement of brain signal complexity. Studies have found increased/decreased entropy of brain signals in psychiatric patients. There is no consistent conclusion regarding the relationship between the entropy of brain signals and mental illness. Therefore, this meta-analysis aimed to identify consistent abnormalities in the brain signal entropy in patients with different mental illnesses. We conducted a systematic search to collect resting-state functional magnetic resonance imaging (rs-fMRI) studies in patients with psychiatric disorders. This work identified 9 eligible rs-fMRI studies, which included a total of 14 experiments, 67 activation foci, and 1383 subjects. We tested the convergence across their findings by using the activation likelihood estimation method. P-value maps were corrected by using cluster-level family-wise error p < 0.05 and permuting 2000 times. Results showed that patients with different psychiatric disorders shared commonly increased entropy of brain signals in the left inferior and middle frontal gyri, and the right fusiform gyrus, cuneus, precuneus. No shared alterations were found in the subcortical regions and cerebellum in the patient group. Our findings suggested that the increased entropy of brain signals in the cortex, not subcortical regions and cerebellum, might have associations with the pathophysiology across mental illnesses. This meta-analysis study provided the first comprehensive understanding of the abnormality in brain signal complexity across patients with different psychiatric disorders.
Collapse
Affiliation(s)
- Shanling Ji
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Gansu Province, 730000, Lanzhou, China
| | - Yinghui Zhang
- Mental Health Center Hospital of Guangyuan, Guangyuan, China
| | - Nan Chen
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Gansu Province, 730000, Lanzhou, China
| | - Xia Liu
- School of Computer Science, Qinghai Normal University, Xining, China
| | - Yongchao Li
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Gansu Province, 730000, Lanzhou, China
| | - Xuexiao Shao
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Gansu Province, 730000, Lanzhou, China
| | - Zhengwu Yang
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Gansu Province, 730000, Lanzhou, China
| | - Zhijun Yao
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Gansu Province, 730000, Lanzhou, China.
| | - Bin Hu
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Gansu Province, 730000, Lanzhou, China.
- CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.
- Joint Research Center for Cognitive Neurosensor Technology of Lanzhou University & Institute of Semiconductors, Chinese Academy of Sciences, Lanzhou, China.
- Engineering Research Center of Open Source Software and Real-Time System, (Lanzhou University), Ministry of Education, Lanzhou, Gansu Province, 730000, China.
| |
Collapse
|
7
|
Spectral Pattern Similarity Analysis: Tutorial and Application in Developmental Cognitive Neuroscience. Dev Cogn Neurosci 2022; 54:101071. [PMID: 35063811 PMCID: PMC8784303 DOI: 10.1016/j.dcn.2022.101071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 12/06/2021] [Accepted: 01/14/2022] [Indexed: 11/23/2022] Open
Abstract
The human brain encodes information in neural activation patterns. While standard approaches to analyzing neural data focus on brain (de-)activation (e.g., regarding the location, timing, or magnitude of neural responses), multivariate neural pattern similarity analyses target the informational content represented by neural activity. In adults, a number of representational properties have been identified that are linked to cognitive performance, in particular the stability, distinctiveness, and specificity of neural patterns. However, although growing cognitive abilities across childhood suggest advancements in representational quality, developmental studies still rarely utilize information-based pattern similarity approaches, especially in electroencephalography (EEG) research. Here, we provide a comprehensive methodological introduction and step-by-step tutorial for pattern similarity analysis of spectral (frequency-resolved) EEG data including a publicly available pipeline and sample dataset with data from children and adults. We discuss computation of single-subject pattern similarities and their statistical comparison at the within-person to the between-group level as well as the illustration and interpretation of the results. This tutorial targets both novice and more experienced EEG researchers and aims to facilitate the usage of spectral pattern similarity analyses, making these methodologies more readily accessible for (developmental) cognitive neuroscientists.
Collapse
|
8
|
The Effect of Comorbid Attention-Deficit/Hyperactivity Disorder Symptoms on Face Memory in Children with Autism Spectrum Disorder: Insights from Transdiagnostic Profiles. Brain Sci 2021; 11:brainsci11070859. [PMID: 34203375 PMCID: PMC8301798 DOI: 10.3390/brainsci11070859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/20/2021] [Accepted: 06/23/2021] [Indexed: 11/17/2022] Open
Abstract
Face memory impairments are common but heterogeneous in autism spectrum disorder (ASD), which may be influenced by co-occurrence with attention-deficit/hyperactivity disorder (ADHD). Here, we aimed to investigate the phenotype change of face memory in children with ASD comorbid ADHD symptoms, and discuss the potential role of executive function (EF). Ninety-eight children were analyzed in the present study, including ASD- (ASD-only, n = 24), ADHD (n = 23), ASD+ (with ADHD symptoms, n = 23) and neurotypical controls (NTC, n = 28). All participants completed two tests: face encoding and retrieving task and Wisconsin Card Sorting Test (WCST) for measuring face memory and EF, respectively. Results revealed that: compared with the NTC group, children with ASD- exhibited lower accuracy in both face encoding and retrieving, and participants with ASD+ showed lower accuracy only in the retrieving, whereas no differences were found among participants with ADHD. Moreover, in the ASD+ group, face encoding performance was correlated with response perseverative errors (RPE) and failure to maintain sets (FMS) of WCST; significantly, there were no group differences between ASD+ and NTC in these two indices. The transdiagnostic profiles indicated that comorbid ADHD symptoms could modulate the face encoding deficiency of ASD, which may be partially compensated by EF. Shared and distinct intervention strategies to improve social cognition are recommended for children undergoing treatment for each condition.
Collapse
|
9
|
Levine SM, Schwarzbach JV. Individualizing Representational Similarity Analysis. Front Psychiatry 2021; 12:729457. [PMID: 34707520 PMCID: PMC8542717 DOI: 10.3389/fpsyt.2021.729457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/10/2021] [Indexed: 11/13/2022] Open
Abstract
Representational similarity analysis (RSA) is a popular multivariate analysis technique in cognitive neuroscience that uses functional neuroimaging to investigate the informational content encoded in brain activity. As RSA is increasingly being used to investigate more clinically-geared questions, the focus of such translational studies turns toward the importance of individual differences and their optimization within the experimental design. In this perspective, we focus on two design aspects: applying individual vs. averaged behavioral dissimilarity matrices to multiple participants' neuroimaging data and ensuring the congruency between tasks when measuring behavioral and neural representational spaces. Incorporating these methods permits the detection of individual differences in representational spaces and yields a better-defined transfer of information from representational spaces onto multivoxel patterns. Such design adaptations are prerequisites for optimal translation of RSA to the field of precision psychiatry.
Collapse
Affiliation(s)
- Seth M Levine
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jens V Schwarzbach
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| |
Collapse
|