1
|
Vescovo E, Cardellicchio P, Tomassini A, Fadiga L, D'Ausilio A. Excitatory/inhibitory motor balance reflects individual differences during joint action coordination. Eur J Neurosci 2024; 59:3403-3421. [PMID: 38666628 DOI: 10.1111/ejn.16365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/07/2024] [Accepted: 04/06/2024] [Indexed: 06/15/2024]
Abstract
Joint action (JA) is a continuous process of motor co-regulation based on the integration of contextual (top-down) and kinematic (bottom-up) cues from partners. The fine equilibrium between excitation and inhibition in sensorimotor circuits is, thus, central to such a dynamic process of action selection and execution. In a bimanual task adapted to become a unimanual JA task, the participant held a bottle (JA), while a confederate had to reach and unscrew either that bottle or another stabilized by a mechanical clamp (No_JA). Prior knowledge was manipulated in each trial such that the participant knew (K) or not (No_K) the target bottle in advance. Online transcranial magnetic stimulation (TMS) was administered at action-relevant landmarks to explore corticospinal excitability (CSE) and inhibition (cortical silent period [cSP]). CSE was modulated early on before the action started if prior information was available. In contrast, cSP modulation emerged later during the reaching action, regardless of prior information. These two indexes could thus reflect the concurrent elaboration of contextual priors (top-down) and the online sampling of partner's kinematic cues (bottom-up). Furthermore, participants selected either one of two possible behavioural strategies, preferring early or late force exertion on the bottle. One translates into a reduced risk of motor coordination failure and the other into reduced metabolic expenditure. Each strategy was characterised by a specific excitatory/inhibitory profile. In conclusion, the study of excitatory/inhibitory balance paves the way for the neurophysiological determination of individual differences in the combination of top-down and bottom-up processing during JA coordination.
Collapse
Affiliation(s)
- Enrico Vescovo
- Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, Ferrara, Italy
- Department of Neuroscience and Rehabilitation, Section of Physiology, University of Ferrara, Ferrara, Italy
| | - Pasquale Cardellicchio
- Department of Neuroscience and Rehabilitation, Section of Physiology, University of Ferrara, Ferrara, Italy
- Physical Medicine and Rehabilitation Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Alice Tomassini
- Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, Ferrara, Italy
| | - Luciano Fadiga
- Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, Ferrara, Italy
- Department of Neuroscience and Rehabilitation, Section of Physiology, University of Ferrara, Ferrara, Italy
| | - Alessandro D'Ausilio
- Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, Ferrara, Italy
- Department of Neuroscience and Rehabilitation, Section of Physiology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
2
|
Casarotto A, Dolfini E, Cardellicchio P. Stop affordance task: a measure of the motor interference effect. Cogn Process 2024; 25:259-266. [PMID: 38060055 DOI: 10.1007/s10339-023-01172-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 11/16/2023] [Indexed: 12/08/2023]
Abstract
The term affordance refers to the property or quality of an object that indicates the ways in which it could potentially be used. Affordances elicit automatic motor representations that sometimes differ from the current action representation, resulting in behavioural interference effects. This affordance-induces interference could result in automatic and involuntary behavioural inhibition, probably according to the same mechanism that controls the voluntary motor inhibition. Nevertheless, few studies have considered how voluntary response inhibition is modulated by affordance. In this study, we assess the effect of affordance on voluntary action inhibition using a stop-signal task with an affordance object as a Stop Signal. An image of a mug, with the handle orientated in the same or in the opposite direction of the hand recruited to respond at the target, was used as Stop Signal. Our results showed a reduction of the time necessary to withhold the response when the handle of the mug was pointed toward the hand pre-activated to respond. This effect indicates an increased inhibition due to the mismatch between the motor representation elicited by the affordance and the motor representation pre-activated by the target. This suggests a specific interference effect, reflected in an enhanced ability to inhibit an ongoing action.
Collapse
Affiliation(s)
- Andrea Casarotto
- IT@UniFe Center for Translational Neurophysiology, Istituto Italiano Di Tecnologia, Via Fossato di Mortara, 17-19, 44121, Ferrara, Italy
- Department of Neuroscience and Rehabilitation, Section of Physiology, Università Di Ferrara, Via Fossato di Mortara, 17-19, 44121, Ferrara, Italy
| | - Elisa Dolfini
- Department of Neuroscience and Rehabilitation, Section of Physiology, Università Di Ferrara, Via Fossato di Mortara, 17-19, 44121, Ferrara, Italy
| | - Pasquale Cardellicchio
- Department of Neuroscience and Rehabilitation, Section of Physiology, Università Di Ferrara, Via Fossato di Mortara, 17-19, 44121, Ferrara, Italy.
- Physical Medicine and Rehabilitation Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy.
| |
Collapse
|
3
|
Paci M, Cardellicchio P, Di Luzio P, Perrucci MG, Ferri F, Costantini M. When the heart inhibits the brain: Cardiac phases modulate short-interval intracortical inhibition. iScience 2024; 27:109140. [PMID: 38414850 PMCID: PMC10897847 DOI: 10.1016/j.isci.2024.109140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/18/2023] [Accepted: 02/01/2024] [Indexed: 02/29/2024] Open
Abstract
The phasic cardiovascular activity influences the central nervous system through the systolic baroreceptor inputs, inducing widespread inhibitory effects on behavior. Through transcranial magnetic stimulation (TMS) delivered during resting-state over the left primary motor cortex and across the different cardiac phases, we measured corticospinal excitability (CSE) and distinct indices of intracortical motor inhibition: short (SICI) and long (LICI) interval, corresponding to GABAA and GABAB neurotransmission, respectively. We found a significant effect of the cardiac phase on short-intracortical inhibition, without any influence on LICI. Specifically, SICI was stronger at systole compared to diastole. These results show a tight relationship between the cardiac cycle and the inhibitory neurotransmission within M1, and in particular with GABAA-ergic-mediated motor inhibition. We hypothesize that this process requires greater motor control via the gating mechanism and that this, in turn, needs to be recalibrated through the modulation of intracortical inhibition.
Collapse
Affiliation(s)
- Mario Paci
- Department of Neuroscience, Imaging and Clinical Science, University G. D’Annunzio, Chieti-Pescara, Chieti, Italy
| | - Pasquale Cardellicchio
- IIT@UniFe Center for Translational Neurophysiology, Istituto Italiano di Tecnologia, Via Fossato di Mortara, 17-19, 44121 Ferrara, Italy
- Physical Medicine and Rehabilitation Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Department of Neuroscience and Rehabilitation, Section of Physiology, Università di Ferrara, Via Fossato di Mortara, 17-19, 44121 Ferrara, Italy
| | - Paolo Di Luzio
- Department of Psychological, Health, and Territorial Sciences, University G. D’Annunzio, Chieti-Pescara, Chieti, Italy
| | - Mauro Gianni Perrucci
- Department of Neuroscience, Imaging and Clinical Science, University G. D’Annunzio, Chieti-Pescara, Chieti, Italy
- Institute for Advanced Biomedical Technologies - ITAB, University G. D’Annunzio, Chieti-Pescara, Chieti, Italy
| | - Francesca Ferri
- Department of Neuroscience, Imaging and Clinical Science, University G. D’Annunzio, Chieti-Pescara, Chieti, Italy
- Institute for Advanced Biomedical Technologies - ITAB, University G. D’Annunzio, Chieti-Pescara, Chieti, Italy
| | - Marcello Costantini
- Institute for Advanced Biomedical Technologies - ITAB, University G. D’Annunzio, Chieti-Pescara, Chieti, Italy
- Department of Psychological, Health, and Territorial Sciences, University G. D’Annunzio, Chieti-Pescara, Chieti, Italy
| |
Collapse
|
4
|
Dolfini E, Cardellicchio P, Fadiga L, D'Ausilio A. The role of dorsal premotor cortex in joint action inhibition. Sci Rep 2024; 14:4675. [PMID: 38409309 PMCID: PMC10897189 DOI: 10.1038/s41598-024-54448-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 02/13/2024] [Indexed: 02/28/2024] Open
Abstract
Behavioral interpersonal coordination requires smooth negotiation of actions in time and space (joint action-JA). Inhibitory control may play a role in fine-tuning appropriate coordinative responses. To date, little research has been conducted on motor inhibition during JA and on the modulatory influence that premotor areas might exert on inhibitory control. Here, we used an interactive task in which subjects were required to reach and open a bottle using one hand. The bottle was held and stabilized by a co-actor (JA) or by a mechanical holder (vice clamp, no-JA). We recorded two TMS-based indices of inhibition (short-interval intracortical inhibition-sICI; cortical silent period-cSP) during the reaching phase of the task. These reflect fast intracortical (GABAa-mediated) and slow corticospinal (GABAb-mediated) inhibition. Offline continuous theta burst stimulation (cTBS) was used to interfere with dorsal premotor cortex (PMd), ventral premotor cortex (PMv), and control site (vertex) before the execution of the task. Our results confirm a dissociation between fast and slow inhibition during JA coordination and provide evidence that premotor areas drive only slow inhibitory mechanisms, which in turn may reflect behavioral co-adaptation between trials. Exploratory analyses further suggest that PMd, more than PMv, is the key source of modulatory drive sculpting movements, according to the socio-interactive context.
Collapse
Affiliation(s)
- Elisa Dolfini
- Department of Neurosciences and Rehabilitation Section of Physiology, Università di Ferrara, Via Fossato di Mortara, 17-19, 44121, Ferrara, Italy.
| | - Pasquale Cardellicchio
- Department of Neurosciences and Rehabilitation Section of Physiology, Università di Ferrara, Via Fossato di Mortara, 17-19, 44121, Ferrara, Italy
- Physical Medicine and Rehabilitation Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Luciano Fadiga
- IIT@UniFe Center for Translational Neurophysiology, Istituto Italiano di Tecnologia, Via Fossato di Mortara, 17-19, 44121, Ferrara, Italy
- Department of Neurosciences and Rehabilitation Section of Physiology, Università di Ferrara, Via Fossato di Mortara, 17-19, 44121, Ferrara, Italy
| | - Alessandro D'Ausilio
- IIT@UniFe Center for Translational Neurophysiology, Istituto Italiano di Tecnologia, Via Fossato di Mortara, 17-19, 44121, Ferrara, Italy
- Department of Neurosciences and Rehabilitation Section of Physiology, Università di Ferrara, Via Fossato di Mortara, 17-19, 44121, Ferrara, Italy
| |
Collapse
|
5
|
Mezzarobba S, Bonassi G, Avanzino L, Pelosin E. Action Observation and Motor Imagery as a Treatment in Patients with Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2024; 14:S53-S64. [PMID: 38250785 PMCID: PMC11380291 DOI: 10.3233/jpd-230219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Action observation (AO) and motor imagery (MI) has emerged as promising tool for physiotherapy intervention in Parkinson's disease (PD). This narrative review summarizes why, how, and when applying AO and MI training in individual with PD. We report the neural underpinning of AO and MI and their effects on motor learning. We examine the characteristics and the current evidence regarding the effectiveness of physiotherapy interventions and we provide suggestions about their implementation with technologies. Neurophysiological data suggest a substantial correct activation of brain networks underlying AO and MI in people with PD, although the occurrence of compensatory mechanisms has been documented. Regarding the efficacy of training, in general evidence indicates that both these techniques improve mobility and functional activities in PD. However, these findings should be interpreted with caution due to variety of the study designs, training characteristics, and the modalities in which AO and MI were applied. Finally, results on long-term effects are still uncertain. Several elements should be considered to optimize the use of AO and MI in clinical setting, such as the selection of the task, the imagery or the video perspectives, the modalities of training. However, a comprehensive individual assessment, including motor and cognitive abilities, is essential to select which between AO and MI suite the best to each PD patients. Much unrealized potential exists for the use AO and MI training to provide personalized intervention aimed at fostering motor learning in both the clinic and home setting.
Collapse
Affiliation(s)
- Susanna Mezzarobba
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, and "RAISE Ecosystem", Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Gaia Bonassi
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, and "RAISE Ecosystem", Genova, Italy
| | - Laura Avanzino
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Experimental Medicine, Section of Human Physiology, University of Genoa, Genoa, Italy
| | - Elisa Pelosin
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, and "RAISE Ecosystem", Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
6
|
Chen S, Zhou Z, Ren M, Chen X, Shi X, Zhang S, Xu S, Zhang X, Zhang X, Lin W, Shan C. Case report: High-frequency repetitive transcranial magnetic stimulation for treatment of hereditary spastic paraplegia type 11. Front Neurol 2023; 14:1162149. [PMID: 37273711 PMCID: PMC10232891 DOI: 10.3389/fneur.2023.1162149] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/02/2023] [Indexed: 06/06/2023] Open
Abstract
Hereditary spastic paraplegia (HSP) is a heterogeneous group of inherited neurodegenerative disorders that currently have no cure. HSP type 11 (SPG11-HSP) is a complex form carrying mutations in the SPG11 gene. Neuropathological studies demonstrate that motor deficits in these patients are mainly attributed to axonal degeneration of the corticospinal tract (CST). Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive technique that can induce central nervous system plasticity and promote neurological recovery by modulating the excitability of cortical neuronal cells. Although rTMS is expected to be a therapeutic tool for neurodegenerative diseases, no previous studies have applied rTMS to treat motor symptoms in SPG11-HSP. Here, we report a case of SPG11-HSP with lower extremity spasticity and gait instability, which were improved by applying high-frequency rTMS (HF-rTMS) at the primary motor cortex (M1). Clinical and physiological features were measured throughout the treatment, including the Modified Ashworth Scale (MAS), Berg Balance Scale (BBS), the timed up and go (TUG) test and the 10-meter walk test time (10 MWT). The structure and excitability of the CST were assessed by diffusion tensor imaging (DTI) and transcranial magnetic stimulation (TMS), respectively. After treatment, the patient gained 17 points of BBS, along with a gradual decrease in MAS scores of the bilateral lower extremity. In addition, the TUG test and 10 MWT improved to varying degrees. TMS assessment showed increased motor evoked potential (MEP) amplitude, decreased resting motor threshold (RMT), decreased central motor conduction time (CMCT), and decreased difference in the cortical silent period (CSP) between bilateral hemispheres. Using the DTI technique, we observed increased fractional anisotropy (FA) values and decreased mean diffusivity (MD) and radial diffusivity (RD) values in the CST. It suggests that applying HF-rTMS over the bilateral leg area of M1 (M1-LEG) is beneficial for SPG11-HSP. In this study, we demonstrate the potential of rTMS to promote neurological recovery from both functional and structural perspectives. It may provide a clinical rationale for using rTMS in the rehabilitation of HSP patients.
Collapse
Affiliation(s)
- Songmei Chen
- Department of Rehabilitation Medicine, Shanghai No. 3 Rehabilitation Hospital, Shanghai, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhiqing Zhou
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Meng Ren
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xixi Chen
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaolong Shi
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Sicong Zhang
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Center of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shutian Xu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China
| | - Xiaolin Zhang
- Department of Rehabilitation Medicine, Shanghai No. 3 Rehabilitation Hospital, Shanghai, China
| | - Xingyuan Zhang
- Department of Rehabilitation Medicine, Shanghai No. 3 Rehabilitation Hospital, Shanghai, China
| | - Wanlong Lin
- Department of Rehabilitation Medicine, Shanghai No. 3 Rehabilitation Hospital, Shanghai, China
| | - Chunlei Shan
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Center of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China
| |
Collapse
|
7
|
Betti S, Zani G, Guerra S, Granziol U, Castiello U, Begliomini C, Sartori L. When Corticospinal Inhibition Favors an Efficient Motor Response. BIOLOGY 2023; 12:biology12020332. [PMID: 36829607 PMCID: PMC9953307 DOI: 10.3390/biology12020332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/25/2022] [Accepted: 02/18/2023] [Indexed: 02/23/2023]
Abstract
Many daily activities involve responding to the actions of other people. However, the functional relationship between the motor preparation and execution phases still needs to be clarified. With the combination of different and complementary experimental techniques (i.e., motor excitability measures, reaction times, electromyography, and dyadic 3-D kinematics), we investigated the behavioral and neurophysiological signatures characterizing different stages of a motor response in contexts calling for an interactive action. Participants were requested to perform an action (i.e., stirring coffee or lifting a coffee cup) following a co-experimenter's request gesture. Another condition, in which a non-interactive gesture was used, was also included. Greater corticospinal inhibition was found when participants prepared their motor response after observing an interactive request, compared to a non-interactive gesture. This, in turn, was associated with faster and more efficient action execution in kinematic terms (i.e., a social motor priming effect). Our results provide new insights on the inhibitory and facilitatory drives guiding social motor response generation. Altogether, the integration of behavioral and neurophysiological indexes allowed us to demonstrate that a more efficient action execution followed a greater corticospinal inhibition. These indexes provide a full picture of motor activity at both planning and execution stages.
Collapse
Affiliation(s)
- Sonia Betti
- Department of Psychology, Centre for Studies and Research in Cognitive Neuroscience, University of Bologna, Viale Rasi e Spinelli 176, 47521 Cesena, Italy
- Department of General Psychology, University of Padova, Via Venezia 8, 35131 Padova, Italy
- Correspondence:
| | - Giovanni Zani
- School of Psychology, Victoria University of Wellington, Kelburn Parade 20, Wellington 6012, New Zealand
| | - Silvia Guerra
- Department of General Psychology, University of Padova, Via Venezia 8, 35131 Padova, Italy
| | - Umberto Granziol
- Department of General Psychology, University of Padova, Via Venezia 8, 35131 Padova, Italy
| | - Umberto Castiello
- Department of General Psychology, University of Padova, Via Venezia 8, 35131 Padova, Italy
- Padua Center for Network Medicine, University of Padova, Via Francesco Marzolo 8, 35131 Padova, Italy
| | - Chiara Begliomini
- Department of General Psychology, University of Padova, Via Venezia 8, 35131 Padova, Italy
- Padova Neuroscience Center, University of Padova, Via Giuseppe Orus 2, 35131 Padova, Italy
| | - Luisa Sartori
- Department of General Psychology, University of Padova, Via Venezia 8, 35131 Padova, Italy
- Padova Neuroscience Center, University of Padova, Via Giuseppe Orus 2, 35131 Padova, Italy
| |
Collapse
|
8
|
Emuk Y, Kahraman T, Sengul Y. The acute effects of action observation training on upper extremity functions, cognitive processes and reaction times: a randomized controlled trial. J Comp Eff Res 2022; 11:987-998. [PMID: 35770659 DOI: 10.2217/cer-2022-0079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To investigate the acute effects of action observation training on upper extremity functions, cognitive functions and response time in healthy, young adults. Materials & methods: A total of 60 participants were randomly divided into five groups: the self-action observation group, action observation group, action practice group, non-action observation group and control group. The Jebsen-Taylor hand function test (JTHFT), nine-hole peg test, serial reaction time task and d2 test of attention were applied to the participants before and after the interventions. Results: JTHFT performance with both non-dominant and dominant hands improved significantly compared with baseline in all groups (p < 0.001). JTHFT performance with non-dominant and dominant hands differed between the groups (p < 0.001). Conclusion: Action observation training seems to enhance the performance of upper extremity-related functions. Observing self-actions resulted in statistically significant positive changes in more variables compared with other methods. However, its clinical effectiveness over the other methods should be investigated in future long-term studies. Clinical Trial Registration: NCT04932057 (ClinicalTrials.gov).
Collapse
Affiliation(s)
- Yusuf Emuk
- Dokuz Eylul University, Graduate School of Health Sciences, Izmir, Turkey.,Izmir Katip Celebi University, Faculty of Health Sciences, Department of Physiotherapy and Rehabilitation, Izmir, Turkey
| | - Turhan Kahraman
- Izmir Katip Celebi University, Faculty of Health Sciences, Department of Physiotherapy and Rehabilitation, Izmir, Turkey
| | - Yesim Sengul
- Dokuz Eylul University, Faculty of Physical Therapy and Rehabilitation, Izmir, Turkey
| |
Collapse
|
9
|
Cardellicchio P, Dolfini E, D'Ausilio A. The role of dorsal premotor cortex in joint action stopping. iScience 2021; 24:103330. [PMID: 34805791 PMCID: PMC8586805 DOI: 10.1016/j.isci.2021.103330] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 07/08/2021] [Accepted: 10/20/2021] [Indexed: 11/30/2022] Open
Abstract
Human sensorimotor interaction requires mutual behavioral adaptation as well as shared cognitive task representations (Joint Action, JA). Yet, an under-investigated aspect of JA is the neurobehavioral mechanisms employed to stop actions if the context calls for it. Sparse evidence points to the possible contribution of the left dorsal premotor cortex (lPMd) in sculpting movements according to the socio-interactive context. To clarify this issue, we ran two experiments integrating a classical stop signal paradigm with an ecological JA task. The first behavioral study shows longer Stop performance in the JA condition. In the second, we use transcranial magnetic stimulation to inhibit the lPMd or a control site (vertex). Results show that lPMd modulates the JA stopping performance. Action stopping is an important component of JA coordination, and here we provide evidence that lPMd is a key node of a brain network recruited for online mutual co-adaptation in social contexts. Interaction requires mutual adaptation and a shared cognitive task representation Sensorimotor representations must be negotiated between partners to achieve the goal Motor suppression mechanisms might be essential in Joint Action coordination Dorsal premotor cortex (PMd) plays a key role in guiding Joint Action coordination
Collapse
Affiliation(s)
- Pasquale Cardellicchio
- IIT@UniFe Center for Translational Neurophysiology, Istituto Italiano di Tecnologia, Via Fossato di Mortara, 17-19, 44121 Ferrara, Italy
| | - Elisa Dolfini
- IIT@UniFe Center for Translational Neurophysiology, Istituto Italiano di Tecnologia, Via Fossato di Mortara, 17-19, 44121 Ferrara, Italy.,Department of Neuroscience and Rehabilitation, Section of Physiology, Università di Ferrara, Via Fossato di Mortara, 17-19, 44121 Ferrara, Italy
| | - Alessandro D'Ausilio
- IIT@UniFe Center for Translational Neurophysiology, Istituto Italiano di Tecnologia, Via Fossato di Mortara, 17-19, 44121 Ferrara, Italy.,Department of Neuroscience and Rehabilitation, Section of Physiology, Università di Ferrara, Via Fossato di Mortara, 17-19, 44121 Ferrara, Italy
| |
Collapse
|
10
|
Motor overload: GABAergic index of parallel buffer costs. Brain Stimul 2021; 14:1106-1108. [PMID: 34339890 DOI: 10.1016/j.brs.2021.07.061] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 10/20/2022] Open
|
11
|
Paci M, Di Cosmo G, Perrucci MG, Ferri F, Costantini M. Cortical silent period reflects individual differences in action stopping performance. Sci Rep 2021; 11:15158. [PMID: 34312403 PMCID: PMC8313697 DOI: 10.1038/s41598-021-94494-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/05/2021] [Indexed: 11/08/2022] Open
Abstract
Inhibitory control is the ability to suppress inappropriate movements and unwanted actions, allowing to regulate impulses and responses. This ability can be measured via the Stop Signal Task, which provides a temporal index of response inhibition, namely the stop signal reaction time (SSRT). At the neural level, Transcranial Magnetic Stimulation (TMS) allows to investigate motor inhibition within the primary motor cortex (M1), such as the cortical silent period (CSP) which is an index of GABAB-mediated intracortical inhibition within M1. Although there is strong evidence that intracortical inhibition varies during action stopping, it is still not clear whether differences in the neurophysiological markers of intracortical inhibition contribute to behavioral differences in actual inhibitory capacities. Hence, here we explored the relationship between intracortical inhibition within M1 and behavioral response inhibition. GABABergic-mediated inhibition in M1 was determined by the duration of CSP, while behavioral inhibition was assessed by the SSRT. We found a significant positive correlation between CSP's duration and SSRT, namely that individuals with greater levels of GABABergic-mediated inhibition seem to perform overall worse in inhibiting behavioral responses. These results support the assumption that individual differences in intracortical inhibition are mirrored by individual differences in action stopping abilities.
Collapse
Affiliation(s)
- Mario Paci
- Department of Neuroscience, Imaging and Clinical Science, University G. D'Annunzio, Chieti-Pescara, Chieti, Italy.
| | - Giulio Di Cosmo
- Department of Neuroscience, Imaging and Clinical Science, University G. D'Annunzio, Chieti-Pescara, Chieti, Italy
| | - Mauro Gianni Perrucci
- Department of Neuroscience, Imaging and Clinical Science, University G. D'Annunzio, Chieti-Pescara, Chieti, Italy
- Institute for Advanced Biomedical Technologies - ITAB, University G. D'Annunzio, Chieti-Pescara, Chieti, Italy
| | - Francesca Ferri
- Department of Neuroscience, Imaging and Clinical Science, University G. D'Annunzio, Chieti-Pescara, Chieti, Italy
- Institute for Advanced Biomedical Technologies - ITAB, University G. D'Annunzio, Chieti-Pescara, Chieti, Italy
| | - Marcello Costantini
- Institute for Advanced Biomedical Technologies - ITAB, University G. D'Annunzio, Chieti-Pescara, Chieti, Italy
- Department of Psychological, Health, and Territorial Sciences, University G. D'Annunzio, Chieti-Pescara, Chieti, Italy
| |
Collapse
|
12
|
Ianì F. Embodied cognition: So flexible as to be "disembodied"? Conscious Cogn 2021; 88:103075. [PMID: 33493962 DOI: 10.1016/j.concog.2021.103075] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 12/21/2020] [Accepted: 12/31/2020] [Indexed: 11/20/2022]
Abstract
This review aims to explore what I call the "Embodiment Cost Hypothesis" (ECH), according to which, when humans "embody" a part of the world other than their bodies, a measurable cost is detectable on their real bodies. The review analyzes experimental evidence in favor of the ECH by examining studies from different research fields, including studies of action observation (2), tool-use (3), rubber hand illusion (4), and full-body illusions (5). In light of this literature, this review argues that embodiment effects can profitably be seen as phenomena associated with both benefits (resulting from the embodiment of external objects/bodies) and costs (resulting from the disembodiment at various levels of the subject's own body). Implications are discussed in relation to the ongoing debate on the embodied cognition (EC) approach.
Collapse
Affiliation(s)
- Francesco Ianì
- Università di Torino, Dipartimento di Psicologia, Via Verdi, 10, 10123 Turin, Italy.
| |
Collapse
|
13
|
Cardellicchio P, Dolfini E, Fadiga L, D'Ausilio A. Parallel fast and slow motor inhibition processes in Joint Action coordination. Cortex 2020; 133:346-357. [DOI: 10.1016/j.cortex.2020.09.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/22/2020] [Accepted: 09/17/2020] [Indexed: 11/30/2022]
|