1
|
De Bruyn H, Johnson M, Moretti M, Ahmed S, Mujat M, Akula JD, Glavan T, Mihalek I, Aslaksen S, Molday LL, Molday RS, Berkowitz BA, Fulton AB. The Surviving, Not Thriving, Photoreceptors in Patients with ABCA4 Stargardt Disease. Diagnostics (Basel) 2024; 14:1545. [PMID: 39061682 PMCID: PMC11275370 DOI: 10.3390/diagnostics14141545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/25/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Stargardt disease (STGD1), associated with biallelic variants in the ABCA4 gene, is the most common heritable macular dystrophy and is currently untreatable. To identify potential treatment targets, we characterized surviving STGD1 photoreceptors. We used clinical data to identify macular regions with surviving STGD1 photoreceptors. We compared the hyperreflective bands in the optical coherence tomographic (OCT) images that correspond to structures in the STGD1 photoreceptor inner segments to those in controls. We used adaptive optics scanning light ophthalmoscopy (AO-SLO) to study the distribution of cones and AO-OCT to evaluate the interface of photoreceptors and retinal pigment epithelium (RPE). We found that the profile of the hyperreflective bands differed dramatically between patients with STGD1 and controls. AO-SLOs showed patches in which cone densities were similar to those in healthy retinas and others in which the cone population was sparse. In regions replete with cones, there was no debris at the photoreceptor-RPE interface. In regions with sparse cones, there was abundant debris. Our results raise the possibility that pharmaceutical means may protect surviving photoreceptors and so mitigate vision loss in patients with STGD1.
Collapse
Affiliation(s)
- Hanna De Bruyn
- Department of Ophthalmology, Boston Children’s Hospital, Boston, MA 02115, USA; (H.D.B.)
| | - Megan Johnson
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Madelyn Moretti
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Saleh Ahmed
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Mircea Mujat
- Physical Sciences, Inc., 20 New England Business Center, Andover, MA 01810, USA;
| | - James D. Akula
- Department of Ophthalmology, Boston Children’s Hospital, Boston, MA 02115, USA; (H.D.B.)
- Department of Ophthalmology, Harvard Medical School, Boston, MA 02115, USA
| | - Tomislav Glavan
- Department of Molecular Medicine and Biotechnology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Ivana Mihalek
- Department of Molecular Medicine and Biotechnology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Sigrid Aslaksen
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Clinical Science, University of Bergen, 5007 Bergen, Norway
- Department of Medical Genetics, Haukeland University Hospital, 5009 Bergen, Norway
| | - Laurie L. Molday
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Robert S. Molday
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Bruce A. Berkowitz
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Anne B. Fulton
- Department of Ophthalmology, Boston Children’s Hospital, Boston, MA 02115, USA; (H.D.B.)
- Department of Ophthalmology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
2
|
Berkowitz BA, Paruchuri A, Stanek J, Abdul-Nabi M, Podolsky RH, Bustos AH, Childers KL, Murphy GG, Stangis K, Roberts R. Biomarker evidence of early vision and rod energy-linked pathophysiology benefits from very low dose DMSO in 5xFAD mice. Acta Neuropathol Commun 2024; 12:85. [PMID: 38822433 PMCID: PMC11140992 DOI: 10.1186/s40478-024-01799-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/20/2024] [Indexed: 06/03/2024] Open
Abstract
Here, we test whether early visual and OCT rod energy-linked biomarkers indicating pathophysiology in nicotinamide nucleotide transhydrogenase (Nnt)-null 5xFAD mice also occur in Nnt-intact 5xFAD mice and whether these biomarkers can be pharmacologically treated. Four-month-old wild-type or 5xFAD C57BL/6 substrains with either a null (B6J) Nnt or intact Nnt gene (B6NTac) and 5xFAD B6J mice treated for one month with either R-carvedilol + vehicle or only vehicle (0.01% DMSO) were studied. The contrast sensitivity (CS), external limiting membrane-retinal pigment epithelium (ELM-RPE) thickness (a proxy for low pH-triggered water removal), profile shape of the hyperreflective band just posterior to the ELM (i.e., the mitochondrial configuration within photoreceptors per aspect ratio [MCP/AR]), and retinal laminar thickness were measured. Both wild-type substrains showed similar visual performance indices and dark-evoked ELM-RPE contraction. The lack of a light-dark change in B6NTac MCP/AR, unlike in B6J mice, is consistent with relatively greater mitochondrial efficiency. 5xFAD B6J mice, but not 5xFAD B6NTac mice, showed lower-than-WT CS. Light-adapted 5xFAD substrains both showed abnormal ELM-RPE contraction and greater-than-WT MCP/AR contraction. The inner retina and superior outer retina were thinner. Treating 5xFAD B6J mice with R-carvedilol + DMSO or DMSO alone corrected CS and ELM-RPE contraction but not supernormal MCP/AR contraction or laminar thinning. These results provide biomarker evidence for prodromal photoreceptor mitochondrial dysfunction/oxidative stress/oxidative damage, which is unrelated to visual performance, as well as the presence of the Nnt gene. This pathophysiology is druggable in 5xFAD mice.
Collapse
Affiliation(s)
- Bruce A Berkowitz
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, 540 E. Canfield, Detroit, MI, 48201, USA.
| | - Anuhya Paruchuri
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, 540 E. Canfield, Detroit, MI, 48201, USA
| | - Josh Stanek
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, 540 E. Canfield, Detroit, MI, 48201, USA
| | - Mura Abdul-Nabi
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, 540 E. Canfield, Detroit, MI, 48201, USA
| | - Robert H Podolsky
- Biostatistics and Study Methodology, Children's National Hospital, Silver Spring, MD, USA
| | | | | | - Geoffrey G Murphy
- Department of Molecular and Integrative Physiology, Molecular Behavioral Neuroscience Institute, University of Michigan Medical School, Ann Arbor, MI, USA
- Michigan Neuroscience Institute, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Katherine Stangis
- Michigan Neuroscience Institute, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Robin Roberts
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, 540 E. Canfield, Detroit, MI, 48201, USA
| |
Collapse
|
3
|
Messner A, Aranha dos Santos V, Puchner S, Stegmann H, Schlatter A, Schmidl D, Leitgeb R, Schmetterer L, Werkmeister RM. The Impact of Photopigment Bleaching on the Human Rod Photoreceptor Subretinal Space Measured Via Optical Coherence Tomography. Invest Ophthalmol Vis Sci 2024; 65:20. [PMID: 38470325 PMCID: PMC10941995 DOI: 10.1167/iovs.65.3.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 02/27/2024] [Indexed: 03/13/2024] Open
Abstract
Purpose The purpose of this study was to investigate rod photopigment bleaching-driven intrinsic optical signals (IOS) in the human outer retina and its measurement repeatability based on a commercial optical coherence tomography (OCT) platform. Methods The optical path length of the rod photoreceptor subretinal space (SRS), that is, the distance between signal bands of rod outer segment tips and retinal pigment epithelium, was measured in 15 healthy subjects in ambient light and during a long-duration bleaching white-light exposure. Results On 2 identical study days (day 1 and day 2 [D1 and D2]), light stimulation resulted in a significant decrease in rod SRS by 21.3 ± 7.6% and 19.8 ± 8.5% (both P < 0.001), respectively. The test-retest reliability of the SRS maximum change of an individual subject was moderate for single measures (intraclass correlation coefficient [ICC] = 0.730, 95% confidence interval [CI] = 0.376, 0.900, P < 0.001) and good for average measures (ICC = 0.844, 95% CI = 0.546, 0.947, P < 0.001). The mean area under the stimulus response curve with values of 14.8 ± 9.4 and 15.5 ± 7.5 µm × minutes (P = 0.782) showed excellent agreement between the stimulus response on D1 and D2. Intermittent dark adaptation of the retina led to an initial increase of the SRS by 6.1% (P = 0.018) and thereafter showed a decrease toward baseline, despite continued dark adaptation. Conclusions The data indicate the potential of commercial OCT in measuring slow IOS in the outer retina suggesting that the rod SRS could serve as a biomarker for photoreceptor function. The presented approach could provide an easily implementable clinical tool for the early detection of diseases affecting photoreceptor health.
Collapse
Affiliation(s)
- Alina Messner
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | | | - Stefan Puchner
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Hannes Stegmann
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Andreas Schlatter
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
- Vienna Institute for Research in Ocular Surgery (VIROS), Department of Ophthalmology, Hanusch Hospital, Vienna, Austria
| | - Doreen Schmidl
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Rainer Leitgeb
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Leopold Schmetterer
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
- Singapore Eye Research Institute, The Academia, Singapore, Singapore
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore
- SERI-NTU Advanced Ocular Engineering (STANCE), Singapore, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore
| | - René M. Werkmeister
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
4
|
Lavekar SS, Harkin J, Hernandez M, Gomes C, Patil S, Huang KC, Puntambekar SS, Lamb BT, Meyer JS. Development of a three-dimensional organoid model to explore early retinal phenotypes associated with Alzheimer's disease. Sci Rep 2023; 13:13827. [PMID: 37620502 PMCID: PMC10449801 DOI: 10.1038/s41598-023-40382-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 08/09/2023] [Indexed: 08/26/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by the accumulation of Aβ plaques and neurofibrillary tangles, resulting in synaptic loss and neurodegeneration. The retina is an extension of the central nervous system within the eye, sharing many structural similarities with the brain, and previous studies have observed AD-related phenotypes within the retina. Three-dimensional retinal organoids differentiated from human pluripotent stem cells (hPSCs) can effectively model some of the earliest manifestations of disease states, yet early AD-associated phenotypes have not yet been examined. Thus, the current study focused upon the differentiation of hPSCs into retinal organoids for the analysis of early AD-associated alterations. Results demonstrated the robust differentiation of retinal organoids from both familial AD and unaffected control cell lines, with familial AD retinal organoids exhibiting a significant increase in the Aβ42:Aβ40 ratio as well as phosphorylated Tau protein, characteristic of AD pathology. Further, transcriptional analyses demonstrated the differential expression of many genes and cellular pathways, including those associated with synaptic dysfunction. Taken together, the current study demonstrates the ability of retinal organoids to serve as a powerful model for the identification of some of the earliest retinal alterations associated with AD.
Collapse
Affiliation(s)
- Sailee S Lavekar
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Jade Harkin
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Melody Hernandez
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Cátia Gomes
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Shruti Patil
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Kang-Chieh Huang
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Shweta S Puntambekar
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Bruce T Lamb
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Jason S Meyer
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- Department of Ophthalmology, Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
5
|
Berkowitz BA, Podolsky RH, Childers KL, Roberts R, Waseem R. Multiple Bioenergy-Linked OCT Biomarkers Suggest Greater-Than-Normal Rod Mitochondria Activity Early in Experimental Alzheimer's Disease. Invest Ophthalmol Vis Sci 2023; 64:12. [PMID: 36867132 PMCID: PMC9988708 DOI: 10.1167/iovs.64.3.12] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023] Open
Abstract
Purpose In Alzheimer's disease, central brain neurons show evidence for early hyperactivity. It is unclear if this occurs in the retina, another disease target. Here, we tested for imaging biomarker manifestation of prodromal hyperactivity in rod mitochondria in vivo in experimental Alzheimer's disease. Methods Light- and dark-adapted 4-month-old 5xFAD and wild-type (WT) mice, both on a C57BL/6J background, were studied with optical coherence tomography (OCT). We measured the reflectivity profile shape of the inner segment ellipsoid zone (EZ) as a proxy for mitochondria distribution. Two additional indices responsive to mitochondria activity were also measured: the thickness of the external limiting membrane-retinal pigment epithelium (ELM-RPE) region and the signal magnitude of a hyporeflective band (HB) between photoreceptor tips and apical RPE. Retinal laminar thickness and visual performance were evaluated. Results In response to low energy demand (light), WT mice showed the expected elongation in EZ reflectivity profile shape, relatively thicker ELM-RPE, and greater HB signal. Under high energy demand (dark), the EZ reflectivity profile shape was rounder, the ELM-RPE was thinner, and the HB was reduced. These OCT biomarker patterns for light-adapted 5xFAD mice did not match those of light-adapted WT mice but rather that of dark-adapted WT mice. Dark-adapted 5xFAD and WT mice showed the same biomarker pattern. The 5xFAD mice exhibited modest nuclear layer thinning and lower-than-normal contrast sensitivity. Conclusions Results from three OCT bioenergy biomarkers raise the novel possibility of early rod hyperactivity in vivo in a common Alzheimer's disease model.
Collapse
Affiliation(s)
- Bruce A Berkowitz
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Robert H Podolsky
- Biostatistics and Study Methodology, Children's National Hospital, Silver Spring, Maryland, United States
| | - Karen L Childers
- Beaumont Research Institute, Beaumont Health, Royal Oak, Michigan, United States
| | - Robin Roberts
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Rida Waseem
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| |
Collapse
|
6
|
Gao S, Zeng Y, Li Y, Cohen ED, Berkowitz BA, Qian H. Fast and slow light-induced changes in murine outer retina optical coherence tomography: complementary high spatial resolution functional biomarkers. PNAS NEXUS 2022; 1:pgac208. [PMID: 36338188 PMCID: PMC9615127 DOI: 10.1093/pnasnexus/pgac208] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/21/2022] [Indexed: 11/18/2022]
Abstract
Fast (seconds) and slow (minutes to hours) optical coherence tomography (OCT) responses to light stimulation have been developed to probe outer retinal function with higher spatial resolution than the classical full-field electroretinogram (ERG). However, the relationships between functional information revealed by OCT and ERG are largely unexplored. In this study, we directly compared the fast and slow OCT responses with the ERG. Fast responses [i.e. the optoretinogram (ORG)] are dominated by reflectance changes in the outer segment (OS) and the inner segment ellipsoid zone (ISez). The ORG OS response has faster kinetics and a higher light sensitivity than the ISez response, and both differ significantly with ERG parameters. Sildenafil-inhibition of phototransduction reduced the ORG light sensitivity, suggesting a complete phototransduction pathway is needed for ORG responses. Slower OCT responses were dominated by light-induced changes in the external limiting membrane to retinal pigment epithelium (ELM-RPE) thickness and photoreceptor-tip hyporeflective band (HB) magnitudes, with the biggest changes occurring after prolonged light stimulation. Mice with high (129S6/ev) vs. low (C57BL/6 J) ATP(adenosine triphosphate) synthesis efficiency show similar fast ORG, but dissimilar slow OCT responses. We propose that the ORG reflects passive physiology, such as water movement from photoreceptors, in response to the photocurrent response (measurable by ERG), whereas the slow OCT responses measure mitochondria-driven physiology in the outer retina, such as dark-provoked water removal from the subretinal space.
Collapse
Affiliation(s)
- Shasha Gao
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450001, China
- Visual Function Core, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yong Zeng
- Visual Function Core, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yichao Li
- Visual Function Core, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ethan D Cohen
- Division of Biomedical Physics, Office of Science and Engineering Labs, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD 20993-0002, USA
| | - Bruce A Berkowitz
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | - Haohua Qian
- Visual Function Core, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
7
|
Zhang J, Shi L, Shen Y. The retina: A window in which to view the pathogenesis of Alzheimer's disease. Ageing Res Rev 2022; 77:101590. [PMID: 35192959 DOI: 10.1016/j.arr.2022.101590] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 01/14/2022] [Accepted: 02/12/2022] [Indexed: 01/01/2023]
Abstract
Alzheimer's disease (AD) is the most familiar type of dementia affecting elderly populations worldwide. Studies of AD patients and AD transgenic mice have revealed alterations in the retina similar to alterations which occur in the AD brain. Moreover, AD retinal pathology occurs even earlier than AD brain pathology. Importantly, non-invasive imaging techniques can be utilized for retinal observation due to the unique optical transparency of the eye, which acts as a convenient window in which preclinical pathology in the AD brain can be monitored. In this review, we overview the existing literature covering different forms of AD retinal pathology and propose a basis for the clinical application of using the retina as a window to view AD during preclinical and clinical stages.
Collapse
Affiliation(s)
- Jie Zhang
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Neurodegenerative Disorder Research Center, School of Life Science, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Lei Shi
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Neurodegenerative Disorder Research Center, School of Life Science, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Yong Shen
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Neurodegenerative Disorder Research Center, School of Life Science, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230026, China; Center for Excellence in Brain Sciences and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
8
|
Ge YJ, Xu W, Ou YN, Qu Y, Ma YH, Huang YY, Shen XN, Chen SD, Tan L, Zhao QH, Yu JT. Retinal biomarkers in Alzheimer's disease and mild cognitive impairment: A systematic review and meta-analysis. Ageing Res Rev 2021; 69:101361. [PMID: 34000463 DOI: 10.1016/j.arr.2021.101361] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/27/2021] [Accepted: 05/12/2021] [Indexed: 12/29/2022]
Abstract
BACKGROUND Retinal changes may reflect the pathophysiological processes in the central nervous system and can be assessed by imaging modalities non-invasively. We aim to localize candidate retinal biomarkers in Alzheimer's disease (AD), mild cognitive impairment (MCI), and preclinical AD. METHODS We systematically searched PubMed, EMBASE, Scopus, and Web of Science from inception to January 2021 for observational studies that investigated retinal imaging and electrophysiological markers in AD, MCI, and preclinical AD. Between-groups standardized mean differences (SMDs) with 95 % confidence intervals were computed using random-effects models. RESULTS Of 19,727 citations identified, 126 articles were eligible for inclusion. Compared with healthy controls, the thickness of peripapillary retinal nerve fiber layer (pRNFL; SMD = -0.723, p < 0.001), total macular (SMD = -0.612, p < 0.001), and subfoveal choroid (SMD = -0.888, p < 0.001) were significantly reduced in patients with AD. Compared with healthy controls, patients with MCI also had lower thickness of pRNFL (SMD = -0.324, p < 0.001), total macular (SMD = -0.302, p < 0.001), and subfoveal choroid (SMD = -0.462, p = 0.020). Other candidate biomarkers included the optic nerve head morphology, retinal amyloid deposition, microvascular morphology and densities, blood flow, and electrophysiological markers. CONCLUSIONS Retinal structural, vascular, and electrophysiological biomarkers hold great potential for the diagnosis, prognosis and risk assessment of AD and MCI. These biomarkers warrant further development in the future, especially in diagnostic test accuracy and longitudinal studies.
Collapse
|
9
|
Jonnal RS. Toward a clinical optoretinogram: a review of noninvasive, optical tests of retinal neural function. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1270. [PMID: 34532407 PMCID: PMC8421939 DOI: 10.21037/atm-20-6440] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 07/12/2021] [Indexed: 11/17/2022]
Abstract
The past few years have witnessed rapid development of the optoretinogram-a noninvasive, optical measurement of neural function in the retina, and especially the photoreceptors (Ph). While its recent development has been rapid, it represents the culmination of hundreds of experiments spanning decades. Early work showed measurable and reproducible changes in the optical properties of retinal explants and suspensions of Ph, and uncovered some of the biophysical and biochemical mechanisms underlying them. That work thus provided critical motivation for more recent work based on clinical imaging platforms, whose eventual goal is the improvement of ophthalmic care and streamlining the discovery of novel therapeutics. The first part of this review consists of a selective summary of the early work, and identifies four kinds of stimulus-evoked optical signals that have emerged from it: changes in light scattered from the membranous discs of the Ph's outer segment (OS), changes in light scattered by the front and back boundaries of the OS, rearrangement of scattering material in and near the OS, and changes in the OS length. In the past decade, all four of these signals have continued to be investigated using imaging systems already used in the clinic or intended for clinical and translational use. The second part of this review discusses these imaging modalities, their potential to detect and quantify the signals of interest, and other factors influencing their translational promise. Particular attention is paid to phase-sensitive optical coherence tomography (OCT) with adaptive optics (AO), a method in which both the amplitude and the phase of light reflected from individual Ph is monitored as visible stimuli are delivered to them. The record of the light's phase is decoded to reveal a reproducible pattern of deformation in the OS, while the amplitude reveals changes in scattering and structural rearrangements. The method has been demonstrated in a few labs and has been used to measure responses from both rods and cones. With the ability to detect responses to stimuli isomerizing less than 0.01% of photopigment, this technique may prove to be a quick, noninvasive, and objective way to measure subtle disease-related dysfunction at the cellular level, and thus to provide an entirely new and complementary biomarker for retinal disease and recovery.
Collapse
|
10
|
Chen L, Tang C, Huang ZH, Xu M, Lei Z. Contrast enhancement and speckle suppression in OCT images based on a selective weighted variational enhancement model and an SP-FOOPDE algorithm. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2021; 38:973-984. [PMID: 34263753 DOI: 10.1364/josaa.422047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 05/24/2021] [Indexed: 06/13/2023]
Abstract
Simultaneous contrast enhancement and speckle suppression in optical coherence tomography (OCT) are of great significance to medical diagnosis. In this paper, we propose a selective weighted variational enhancement (SWVE) model to enhance the structural parts of OCT images, and then present a shape-preserving fourth-order-oriented partial differential equations (SP-FOOPDE) algorithm to suppress speckle noise. To be specific, in the SWVE model, we first introduce the fast and robust fuzzy c-means clustering (FRFCM) algorithm to generate masks based on the gray-level histograms of the reconstructed OCT images and utilize the masks to distinguish the structural parts from the background. Then the retinex-based weighted variational model, combined with gamma correction, is adopted to enhance the structural parts by multiplying the estimated reflectance with the adjusted illumination. In the despeckling process, we present an SP-FOOPDE algorithm with the fidelity term modified by the shearlet transform to strike a splendid balance between noise suppression and structural preservation. Experimental results show that the proposed method performs well in contrast enhancement and speckle suppression, with better quality metrics of the MSE, PSNR, CNR, ENL, EKI, and ν and better noise immunity than the related method. Moreover, the application to the segmentation preprocessing exhibits that the retinal structure of the OCT images processed by the proposed method can be completely segmented.
Collapse
|
11
|
Gao S, Li Y, Bissig D, Cohen ED, Podolsky RH, Childers KL, Vernon G, Chen S, Berkowitz BA, Qian H. Functional regulation of an outer retina hyporeflective band on optical coherence tomography images. Sci Rep 2021; 11:10260. [PMID: 33986362 PMCID: PMC8119672 DOI: 10.1038/s41598-021-89599-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/27/2021] [Indexed: 12/30/2022] Open
Abstract
Human and animal retinal optical coherence tomography (OCT) images show a hyporeflective band (HB) between the photoreceptor tip and retinal pigment epithelium layers whose mechanisms are unclear. In mice, HB magnitude and the external limiting membrane-retinal pigment epithelium (ELM-RPE) thickness appear to be dependent on light exposure, which is known to alter photoreceptor mitochondria respiration. Here, we test the hypothesis that these two OCT biomarkers are linked to metabolic activity of the retina. Acetazolamide, which acidifies the subretinal space, had no significant impact on HB magnitude but produced ELM-RPE thinning. Mitochondrial stimulation with 2,4-dinitrophenol reduced both HB magnitude and ELM-RPE thickness in parallel, and also reduced F-actin expression in the same retinal region, but without altering ERG responses. For mice strains with relatively lower (C57BL/6J) or higher (129S6/ev) rod mitochondrial efficacy, light-induced changes in HB magnitude and ELM-RPE thickness were correlated. Humans, analyzed from published data captured with a different protocol, showed a similar light-dark change pattern in HB magnitude as in the mice. Our results indicate that mitochondrial respiration underlies changes in HB magnitude upstream of the pH-sensitive ELM-RPE thickness response. These two distinct OCT biomarkers could be useful indices for non-invasively evaluating photoreceptor mitochondrial metabolic activity.
Collapse
Affiliation(s)
- Shasha Gao
- Department of Ophthalmology, the First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
- Visual Function Core, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yichao Li
- Visual Function Core, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - David Bissig
- Department of Neurology, University of California Davis, Sacramento, CA, USA
| | - Ethan D Cohen
- Division of Biomedical Physics, Office of Science and Engineering Labs, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD, USA
| | - Robert H Podolsky
- Beaumont Research Institute, Beaumont Health, Royal Oak, MI, 48073, USA
| | | | - Gregory Vernon
- Visual Function Core, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sonia Chen
- Visual Function Core, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Bruce A Berkowitz
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Haohua Qian
- Visual Function Core, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
12
|
Vit JP, Fuchs DT, Angel A, Levy A, Lamensdorf I, Black KL, Koronyo Y, Koronyo-Hamaoui M. Color and contrast vision in mouse models of aging and Alzheimer's disease using a novel visual-stimuli four-arm maze. Sci Rep 2021; 11:1255. [PMID: 33441984 PMCID: PMC7806734 DOI: 10.1038/s41598-021-80988-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 12/31/2020] [Indexed: 12/14/2022] Open
Abstract
We introduce a novel visual-stimuli four-arm maze (ViS4M) equipped with spectrally- and intensity-controlled LED emitters and dynamic grayscale objects that relies on innate exploratory behavior to assess color and contrast vision in mice. Its application to detect visual impairments during normal aging and over the course of Alzheimer’s disease (AD) is evaluated in wild-type (WT) and transgenic APPSWE/PS1∆E9 murine models of AD (AD+) across an array of irradiance, chromaticity, and contrast conditions. Substantial color and contrast-mode alternation deficits appear in AD+ mice at an age when hippocampal-based memory and learning is still intact. Profiling of timespan, entries and transition patterns between the different arms uncovers variable AD-associated impairments in contrast sensitivity and color discrimination, reminiscent of tritanomalous defects documented in AD patients. Transition deficits are found in aged WT mice in the absence of alternation decline. Overall, ViS4M is a versatile, controlled device to measure color and contrast-related vision in aged and diseased mice.
Collapse
Affiliation(s)
- Jean-Philippe Vit
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Los Angeles, CA, 90048, USA.,Biobehavioral Research Core, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Dieu-Trang Fuchs
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ariel Angel
- Pharmaseed Ltd., 9 Hamazmera St., 74047, Ness Ziona, Israel
| | - Aharon Levy
- Pharmaseed Ltd., 9 Hamazmera St., 74047, Ness Ziona, Israel
| | | | - Keith L Black
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yosef Koronyo
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Maya Koronyo-Hamaoui
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Los Angeles, CA, 90048, USA. .,Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|