1
|
Skagenholt M, Skagerlund K, Träff U. Numerical cognition across the lifespan: A selective review of key developmental stages and neural, cognitive, and affective underpinnings. Cortex 2025; 184:263-286. [PMID: 39919570 DOI: 10.1016/j.cortex.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 11/29/2024] [Accepted: 01/22/2025] [Indexed: 02/09/2025]
Abstract
Numerical cognition constitutes a set of hierarchically related skills and abilities that develop-and may subsequently begin to decline-over developmental time. An innate "number sense" has long been argued to provide a foundation for the development of increasingly complex and applied numerical cognition, such as symbolic numerical reference, arithmetic, and financial literacy. However, evidence for a direct link between basic perceptual mechanisms that allow us to determine numerical magnitude (e.g., "how many" objects are in front of us and whether some of these are of a "greater" or "lesser" quantity), and later symbolic applications for counting and mathematics, has recently been challenged. Understanding how one develops an increasingly precise sense of number and which neurocognitive mechanisms support arithmetic development and achievement is crucial for developing successful mathematics curricula, supporting individual financial literacy and decision-making, and designing appropriate intervention and remediation programs for mathematical learning disabilities as well as mathematics anxiety. The purpose of this review is to provide a broad overview of the cognitive, neural, and affective underpinnings of numerical cognition-spanning the earliest hours of infancy to senior adulthood-and highlight gaps in our knowledge that remain to be addressed.
Collapse
Affiliation(s)
- Mikael Skagenholt
- Department of Behavioral Sciences and Learning, Linköping University, Linköping, Sweden; Department of Management and Engineering, JEDI-Lab, Linköping University, Linköping, Sweden.
| | - Kenny Skagerlund
- Department of Behavioral Sciences and Learning, Linköping University, Linköping, Sweden; Department of Management and Engineering, JEDI-Lab, Linköping University, Linköping, Sweden; Center for Social and Affective Neuroscience (CSAN), Linköping University, Linköping, Sweden
| | - Ulf Träff
- Department of Behavioral Sciences and Learning, Linköping University, Linköping, Sweden
| |
Collapse
|
2
|
Abstract
The human brain possesses neural networks and mechanisms enabling the representation of numbers, basic arithmetic operations, and mathematical reasoning. Without the ability to represent numerical quantity and perform calculations, our scientifically and technically advanced culture would not exist. However, the origins of numerical abilities are grounded in an intuitive understanding of quantity deeply rooted in biology. Nevertheless, more advanced symbolic arithmetic skills require a cultural background with formal mathematical education. In the past two decades, cognitive neuroscience has seen significant progress in understanding the workings of the calculating brain through various methods and model systems. This review begins by exploring the mental and neuronal representations of nonsymbolic numerical quantity and then progresses to symbolic representations acquired in childhood. During arithmetic operations (addition, subtraction, multiplication, and division), these representations are processed and transformed according to arithmetic rules and principles, leveraging different mental strategies and types of arithmetic knowledge that can be dissociated in the brain. Although it was once believed that number processing and calculation originated from the language faculty, it is now evident that mathematical and linguistic abilities are primarily processed independently in the brain. Understanding how the healthy brain processes numerical information is crucial for gaining insights into debilitating numerical disorders, including acquired conditions like acalculia and learning-related calculation disorders such as developmental dyscalculia.
Collapse
Affiliation(s)
- Andreas Nieder
- Animal Physiology Unit, Institute of Neurobiology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
3
|
Istomina A, Arsalidou M. Add, subtract and multiply: Meta-analyses of brain correlates of arithmetic operations in children and adults. Dev Cogn Neurosci 2024; 69:101419. [PMID: 39098250 PMCID: PMC11342769 DOI: 10.1016/j.dcn.2024.101419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 05/24/2024] [Accepted: 07/21/2024] [Indexed: 08/06/2024] Open
Abstract
Mathematical operations are cognitive actions we take to calculate relations among numbers. Arithmetic operations, addition, subtraction, multiplication, and division are elemental in education. Addition is the first one taught in school and is most popular in functional magnetic resonance imaging (fMRI) studies. Division, typically taught last is least studied with fMRI. fMRI meta-analyses show that arithmetic operations activate brain areas in parietal, cingulate and insular cortices for children and adults. Critically, no meta-analysis examines concordance across brain correlates of separate arithmetic operations in children and adults. We review and examine using quantitative meta-analyses data from fMRI articles that report brain coordinates separately for addition, subtraction, multiplication, and division in children and adults. Results show that arithmetic operations elicit common areas of concordance in fronto-parietal and cingulo-opercular networks in adults and children. Between operations differences are observed primarily for adults. Interestingly, higher within-group concordance, expressed in activation likelihood estimates, is found in brain areas associated with the cingulo-opercular network rather than the fronto-parietal network in children, areas also common between adults and children. Findings are discussed in relation to constructivist cognitive theory and practical directions for future research.
Collapse
|
4
|
Castaldi E, Tinelli F, Filippo G, Bartoli M, Anobile G. Auditory time perception impairment in children with developmental dyscalculia. RESEARCH IN DEVELOPMENTAL DISABILITIES 2024; 149:104733. [PMID: 38663331 PMCID: PMC11155440 DOI: 10.1016/j.ridd.2024.104733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 02/19/2024] [Accepted: 04/09/2024] [Indexed: 05/21/2024]
Abstract
Developmental dyscalculia (DD) is a specific learning disability which prevents children from acquiring adequate numerical and arithmetical competences. We investigated whether difficulties in children with DD spread beyond the numerical domain and impact also their ability to perceive time. A group of 37 children/adolescent with and without DD were tested with an auditory categorization task measuring time perception thresholds in the sub-second (0.25-1 s) and supra-second (0.75-3 s) ranges. Results showed that auditory time perception was strongly impaired in children with DD at both time scales. The impairment remained even when age, non-verbal reasoning, and gender were regressed out. Overall, our results show that the difficulties of DD can affect magnitudes other than numerical and contribute to the increasing evidence that frames dyscalculia as a disorder affecting multiple neurocognitive and perceptual systems.
Collapse
Affiliation(s)
- Elisa Castaldi
- Department of Neuroscience, Psychology, Pharmacology, and Child Health, University of Florence, Florence, Italy.
| | - Francesca Tinelli
- Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, Pisa, Italy
| | - Gasperini Filippo
- Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, Pisa, Italy
| | - Mariaelisa Bartoli
- Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, Pisa, Italy
| | - Giovanni Anobile
- Department of Neuroscience, Psychology, Pharmacology, and Child Health, University of Florence, Florence, Italy
| |
Collapse
|
5
|
Schwizer Ashkenazi S, Roell M, McCaskey U, Cachia A, Borst G, O'Gorman Tuura R, Kucian K. Are numerical abilities determined at early age? A brain morphology study in children and adolescents with and without developmental dyscalculia. Dev Cogn Neurosci 2024; 67:101369. [PMID: 38642426 PMCID: PMC11046253 DOI: 10.1016/j.dcn.2024.101369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 02/17/2024] [Accepted: 03/17/2024] [Indexed: 04/22/2024] Open
Abstract
The intraparietal sulcus (IPS) has been associated with numerical processing. A recent study reported that the IPS sulcal pattern was associated with arithmetic and symbolic number abilities in children and adults. In the present study, we evaluated the link between numerical abilities and the IPS sulcal pattern in children with Developmental Dyscalculia (DD) and typically developing children (TD), extending previous analyses considering other sulcal features and the postcentral sulcus (PoCS). First, we confirm the longitudinal sulcal pattern stability of the IPS and the PoCS. Second, we found a lower proportion of left sectioned IPS and a higher proportion of a double-horizontal IPS shape bilaterally in DD compared to TD. Third, our analyses revealed that arithmetic is the only aspect of numerical processing that is significantly related to the IPS sulcal pattern (sectioned vs not sectioned), and that this relationship is specific to the left hemisphere. And last, correlation analyses of age and arithmetic in children without a sectioned left IPS indicate that although they may have an inherent disadvantage in numerical abilities, these may improve with age. Thus, our results indicate that only the left IPS sulcal pattern is related to numerical abilities and that other factors co-determine numerical abilities.
Collapse
Affiliation(s)
- Simone Schwizer Ashkenazi
- Neuropsychology, Dept. of Psychology, University of Zurich, Zurich, Switzerland; Center for MR-Research, University Children's Hospital Zurich, Zurich, Switzerland.
| | - Margot Roell
- Université de Paris, LaPsyDÉ, CNRS, Paris F-75005, France
| | - Ursina McCaskey
- Center for MR-Research, University Children's Hospital Zurich, Zurich, Switzerland; Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Arnaud Cachia
- Université de Paris, LaPsyDÉ, CNRS, Paris F-75005, France; Université de Paris, Imaging biomarkers for brain development and disorders, UMR INSERM 1266, GHU Paris Psychiatrie & Neurosciences, Paris F-75005, France
| | - Gregoire Borst
- Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Ruth O'Gorman Tuura
- Center for MR-Research, University Children's Hospital Zurich, Zurich, Switzerland; Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland; Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Karin Kucian
- Center for MR-Research, University Children's Hospital Zurich, Zurich, Switzerland; Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| |
Collapse
|
6
|
Czajko S, Vignaud A, Eger E. Human brain representations of internally generated outcomes of approximate calculation revealed by ultra-high-field brain imaging. Nat Commun 2024; 15:572. [PMID: 38233387 PMCID: PMC10794709 DOI: 10.1038/s41467-024-44810-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 01/03/2024] [Indexed: 01/19/2024] Open
Abstract
Much of human culture's advanced technology owes its existence to the ability to mentally manipulate quantities. Neuroscience has described the brain regions overall recruited by numerical tasks and the neuronal codes representing individual quantities during perceptual tasks. Nevertheless, it remains unknown how quantity representations are combined or transformed during mental computations and how specific quantities are coded in the brain when generated as the result of internal computations rather than evoked by a stimulus. Here, we imaged the brains of adult human subjects at 7 Tesla during an approximate calculation task designed to disentangle in- and outputs of the computation from the operation itself. While physically presented sample numerosities were distinguished in activity patterns along the dorsal visual pathway and within frontal and occipito-temporal regions, a representation of the internally generated result was most prominently detected in higher order regions such as angular gyrus and lateral prefrontal cortex. Behavioral precision in the task was related to cross-decoding performance between sample and result representations in medial IPS regions. This suggests the transformation of sample into result may be carried out within dorsal stream sensory-motor integration regions, and resulting outputs maintained for task purposes in higher-level regions in a format possibly detached from sensory-evoked inputs.
Collapse
Affiliation(s)
- Sébastien Czajko
- Cognitive Neuroimaging Unit, INSERM, CEA, CNRS, Université Paris-Saclay, NeuroSpin center, Gif-sur-Yvette, France
- EDUWELL team, Lyon Neuroscience Research Centre, INSERM U1028, CNRS UMR5292, Lyon 1 University, Lyon, France
| | - Alexandre Vignaud
- UNIRS, CEA, Université Paris-Saclay, NeuroSpin center, Gif-sur-Yvette, France
| | - Evelyn Eger
- Cognitive Neuroimaging Unit, INSERM, CEA, CNRS, Université Paris-Saclay, NeuroSpin center, Gif-sur-Yvette, France.
| |
Collapse
|
7
|
Castaldi E, Bonaudo C, Maduli G, Anobile G, Pedone A, Capelli F, Arrighi R, Della Puppa A. Neurocognitive Assessment of Mathematics-Related Capacities in Neurosurgical Patients. Brain Sci 2024; 14:69. [PMID: 38248284 PMCID: PMC10813954 DOI: 10.3390/brainsci14010069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 12/27/2023] [Accepted: 01/03/2024] [Indexed: 01/23/2024] Open
Abstract
A precise neuropsychological assessment is of the utmost importance for neurosurgical patients undergoing the surgical excision of cerebral lesions. The assessment of mathematical abilities is usually limited to arithmetical operations while other fundamental visuo-spatial aspects closely linked to mathematics proficiency, such as the perception of numerical quantities and geometrical reasoning, are completely neglected. We evaluated these abilities with two objective and reproducible psychophysical tests, measuring numerosity perception and non-symbolic geometry, respectively. We tested sixteen neuro-oncological patients before the operation and six after the operation with classical neuropsychological tests and with two psychophysical tests. The scores of the classical neuropsychological tests were very heterogeneous, possibly due to the distinct location and histology of the tumors that might have spared (or not) brain areas subserving these abilities or allowed for plastic reorganization. Performance in the two non-symbolic tests reflected, on average, the presumed functional role of the lesioned areas, with participants with parietal and frontal lesions performing worse on these tests than patients with occipital and temporal lesions. Single-case analyses not only revealed some interesting exceptions to the group-level results (e.g., patients with parietal lesions performing well in the numerosity test), but also indicated that performance in the two tests was independent of non-verbal reasoning and visuo-spatial working memory. Our results highlight the importance of assessing non-symbolic numerical and geometrical abilities to complement typical neuropsychological batteries. However, they also suggest an avoidance of reliance on an excessively rigid localizationist approach when evaluating the neuropsychological profile of oncological patients.
Collapse
Affiliation(s)
- Elisa Castaldi
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, 50135 Florence, Italy (G.A.); (R.A.)
| | - Camilla Bonaudo
- Neurosurgery, Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, University Hospital of Careggi, 50134 Florence, Italy; (C.B.); (A.P.); (F.C.); (A.D.P.)
| | - Giuseppe Maduli
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, 50135 Florence, Italy (G.A.); (R.A.)
| | - Giovanni Anobile
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, 50135 Florence, Italy (G.A.); (R.A.)
| | - Agnese Pedone
- Neurosurgery, Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, University Hospital of Careggi, 50134 Florence, Italy; (C.B.); (A.P.); (F.C.); (A.D.P.)
| | - Federico Capelli
- Neurosurgery, Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, University Hospital of Careggi, 50134 Florence, Italy; (C.B.); (A.P.); (F.C.); (A.D.P.)
| | - Roberto Arrighi
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, 50135 Florence, Italy (G.A.); (R.A.)
| | - Alessandro Della Puppa
- Neurosurgery, Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, University Hospital of Careggi, 50134 Florence, Italy; (C.B.); (A.P.); (F.C.); (A.D.P.)
| |
Collapse
|
8
|
Boeken OJ, Markett S. Systems-level decoding reveals the cognitive and behavioral profile of the human intraparietal sulcus. FRONTIERS IN NEUROIMAGING 2023; 1:1074674. [PMID: 37555176 PMCID: PMC10406318 DOI: 10.3389/fnimg.2022.1074674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/19/2022] [Indexed: 08/10/2023]
Abstract
INTRODUCTION The human intraparietal sulcus (IPS) covers large portions of the posterior cortical surface and has been implicated in a variety of cognitive functions. It is, however, unclear how cognitive functions dissociate between the IPS's heterogeneous subdivisions, particularly in perspective to their connectivity profile. METHODS We applied a neuroinformatics driven system-level decoding on three cytoarchitectural distinct subdivisions (hIP1, hIP2, hIP3) per hemisphere, with the aim to disentangle the cognitive profile of the IPS in conjunction with functionally connected cortical regions. RESULTS The system-level decoding revealed nine functional systems based on meta-analytical associations of IPS subdivisions and their cortical coactivations: Two systems-working memory and numeric cognition-which are centered on all IPS subdivisions, and seven systems-attention, language, grasping, recognition memory, rotation, detection of motions/shapes and navigation-with varying degrees of dissociation across subdivisions and hemispheres. By probing the spatial overlap between systems-level co-activations of the IPS and seven canonical intrinsic resting state networks, we observed a trend toward more co-activation between hIP1 and the front parietal network, between hIP2 and hIP3 and the dorsal attention network, and between hIP3 and the visual and somatomotor network. DISCUSSION Our results confirm previous findings on the IPS's role in cognition but also point to previously unknown differentiation along the IPS, which present viable starting points for future work. We also present the systems-level decoding as promising approach toward functional decoding of the human connectome.
Collapse
Affiliation(s)
- Ole Jonas Boeken
- Department of Molecular Psychology, Institute for Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| | | |
Collapse
|
9
|
Conrad BN, Pollack C, Yeo DJ, Price GR. Structural and functional connectivity of the inferior temporal numeral area. Cereb Cortex 2022; 33:6152-6170. [PMID: 36587366 PMCID: PMC10183753 DOI: 10.1093/cercor/bhac492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 01/02/2023] Open
Abstract
A growing body of evidence suggests that in adults, there is a spatially consistent "inferior temporal numeral area" (ITNA) in the occipitotemporal cortex that appears to preferentially process Arabic digits relative to non-numerical symbols and objects. However, very little is known about why the ITNA is spatially segregated from regions that process other orthographic stimuli such as letters, and why it is spatially consistent across individuals. In the present study, we used diffusion-weighted imaging and functional magnetic resonance imaging to contrast structural and functional connectivity between left and right hemisphere ITNAs and a left hemisphere letter-preferring region. We found that the left ITNA had stronger structural and functional connectivity than the letter region to inferior parietal regions involved in numerical magnitude representation and arithmetic. Between hemispheres, the left ITNA showed stronger structural connectivity with the left inferior frontal gyrus (Broca's area), while the right ITNA showed stronger structural connectivity to the ipsilateral inferior parietal cortex and stronger functional coupling with the bilateral IPS. Based on their relative connectivity, our results suggest that the left ITNA may be more readily involved in mapping digits to verbal number representations, while the right ITNA may support the mapping of digits to quantity representations.
Collapse
Affiliation(s)
- Benjamin N Conrad
- Department of Psychology & Human Development, Peabody College, Vanderbilt University, 230 Appleton Place, Nashville, TN, 37203, USA
| | - Courtney Pollack
- Department of Psychology & Human Development, Peabody College, Vanderbilt University, 230 Appleton Place, Nashville, TN, 37203, USA
| | - Darren J Yeo
- Department of Psychology & Human Development, Peabody College, Vanderbilt University, 230 Appleton Place, Nashville, TN, 37203, USA.,Division of Psychology, School of Social Sciences, Nanyang Technological University, 48 Nanyang Avenue, Singapore, 639818
| | - Gavin R Price
- Department of Psychology & Human Development, Peabody College, Vanderbilt University, 230 Appleton Place, Nashville, TN, 37203, USA.,Department of Psychology, University of Exeter, Washington Singer Building Perry Road, Exeter, EX4 4QG, United Kingdom
| |
Collapse
|
10
|
Suárez-Pellicioni M, Prado J, Booth JR. Neurocognitive mechanisms underlying multiplication and subtraction performance in adults and skill development in children: a scoping review. Curr Opin Behav Sci 2022. [DOI: 10.1016/j.cobeha.2022.101228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
11
|
Maldonado Moscoso PA, Anobile G, Burr DC, Arrighi R, Castaldi E. Symmetry as a grouping cue for numerosity perception. Sci Rep 2022; 12:14418. [PMID: 36002617 PMCID: PMC9402546 DOI: 10.1038/s41598-022-18386-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/10/2022] [Indexed: 11/09/2022] Open
Abstract
To estimate the number of objects in an image, each element needs to be segregated as a single unit. Several principles guide the process of element identification, one of the strongest being symmetry. In the current study, we investigated how symmetry affects the ability to rapidly estimate the number of objects (numerosity). Participants judged the numerosity of asymmetric or symmetric arrays of various numerosities. The results show that the numerosity of symmetrical arrays was significantly underestimated at low numerosities, but the effect was greatly reduced at higher numerosities. Adding an additional axis of symmetry (double symmetry) further reduced perceived numerosity. The magnitude of the symmetry-driven underestimation was inversely correlated with autistic personality traits, consistent with previous work associating autistic traits with perceptual grouping. Overall, these results support the idea that perceived numerosity relies on object segmentation and grouping cues, with symmetry playing a key role.
Collapse
Affiliation(s)
| | - Giovanni Anobile
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Florence, Italy
| | - David C Burr
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Florence, Italy.,Institute of Neuroscience, National Research Council, Pisa, Italy
| | - Roberto Arrighi
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Florence, Italy
| | - Elisa Castaldi
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Florence, Italy.
| |
Collapse
|
12
|
Fu W, Dolfi S, Decarli G, Spironelli C, Zorzi M. Electrophysiological Signatures of Numerosity Encoding in a Delayed Match-to-Sample Task. Front Hum Neurosci 2022; 15:750582. [PMID: 35058763 PMCID: PMC8764258 DOI: 10.3389/fnhum.2021.750582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/29/2021] [Indexed: 11/13/2022] Open
Abstract
The number of elements in a small set of items is appraised in a fast and exact manner, a phenomenon called subitizing. In contrast, humans provide imprecise responses when comparing larger numerosities, with decreasing precision as the number of elements increases. Estimation is thought to rely on a dedicated system for the approximate representation of numerosity. While previous behavioral and neuroimaging studies associate subitizing to a domain-general system related to object tracking and identification, the nature of small numerosity processing is still debated. We investigated the neural processing of numerosity across subitizing and estimation ranges by examining electrophysiological activity during the memory retention period in a delayed numerical match-to-sample task. We also assessed potential differences in the neural signature of numerical magnitude in a fully non-symbolic or cross-format comparison. In line with behavioral performance, we observed modulation of parietal-occipital neural activity as a function of numerosity that differed in two ranges, with distinctive neural signatures of small numerosities showing clear similarities with those observed in visuospatial working memory tasks. We also found differences in neural activity related to numerical information in anticipation of single vs. cross-format comparison, suggesting a top-down modulation of numerical processing. Finally, behavioral results revealed enhanced performance in the mixed-format conditions and a significant correlation between task performance and symbolic mathematical skills. Overall, we provide evidence for distinct mechanisms related to small and large numerosity and differences in numerical encoding based on task demands.
Collapse
Affiliation(s)
- Wanlu Fu
- Department of General Psychology, University of Padova, Padua, Italy
| | - Serena Dolfi
- Department of Developmental Psychology and Socialisation, University of Padova, Padua, Italy
| | - Gisella Decarli
- Department of General Psychology, University of Padova, Padua, Italy
| | - Chiara Spironelli
- Department of General Psychology, University of Padova, Padua, Italy
- Padova Neuroscience Center (PNC), University of Padova, Padua, Italy
| | - Marco Zorzi
- Department of General Psychology, University of Padova, Padua, Italy
- IRCCS San Camillo Hospital, Venice, Italy
- *Correspondence: Marco Zorzi,
| |
Collapse
|
13
|
Castaldi E, Turi M, Cicchini GM, Gassama S, Eger E. Reduced 2D form coherence and 3D structure from motion sensitivity in developmental dyscalculia. Neuropsychologia 2022; 166:108140. [PMID: 34990696 DOI: 10.1016/j.neuropsychologia.2021.108140] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 10/04/2021] [Accepted: 12/31/2021] [Indexed: 10/19/2022]
Abstract
Developmental dyscalculia (DD) is a specific learning disability affecting the development of numerical and arithmetical skills. The origin of DD is typically attributed to the suboptimal functioning of key regions within the dorsal visual stream (parietal cortex) which support numerical cognition. While DD individuals are often impaired in visual numerosity perception, the extent to which they also show a wider range of visual dysfunctions is poorly documented. In the current study we measured sensitivity to global motion (translational and flow), 2D static form (Glass patterns) and 3D structure from motion in adults with DD and control subjects. While sensitivity to global motion was comparable across groups, thresholds for static form and structure from motion were higher in the DD compared to the control group, irrespective of associated reading impairments. Glass pattern sensitivity predicted numerical abilities, and this relation could not be explained by recently reported differences in visual crowding. Since global form sensitivity has often been considered an index of ventral stream function, our findings could indicate a cortical dysfunction extending beyond the dorsal visual stream. Alternatively, they would fit with a role of parietal cortex in form perception under challenging conditions requiring multiple element integration.
Collapse
Affiliation(s)
- Elisa Castaldi
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Florence, Italy; Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy; Cognitive Neuroimaging Unit, INSERM, CEA DRF/JOLIOT, Université Paris-Saclay, NeuroSpin Center, Gif-sur-Yvette, France.
| | - Marco Turi
- Fondazione Stella Maris Mediterraneo, Potenza, Italy
| | | | - Sahawanatou Gassama
- Paris Santé Réussite, Diagnostic Center for Learning Disabilities, Paris, France
| | - Evelyn Eger
- Cognitive Neuroimaging Unit, INSERM, CEA DRF/JOLIOT, Université Paris-Saclay, NeuroSpin Center, Gif-sur-Yvette, France
| |
Collapse
|
14
|
Maldonado Moscoso PA, Greenlee MW, Anobile G, Arrighi R, Burr DC, Castaldi E. Groupitizing modifies neural coding of numerosity. Hum Brain Mapp 2021; 43:915-928. [PMID: 34877718 PMCID: PMC8764479 DOI: 10.1002/hbm.25694] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/10/2021] [Accepted: 10/10/2021] [Indexed: 02/06/2023] Open
Abstract
Numerical estimation of arrays of objects is faster and more accurate when items can be clustered into groups, a phenomenon termed “groupitizing.” Grouping can facilitate segregation into subitizable “chunks,” each easily estimated, then summed. The current study investigates whether spatial grouping of arrays drives specific neural responses during numerical estimation, reflecting strategies such as exact calculation and fact retrieval. Fourteen adults were scanned with fMRI while estimating either the numerosity or shape of arrays of items, either randomly distributed or spatially grouped. Numerosity estimation of both classes of stimuli elicited common activation of a right lateralized frontoparietal network. Grouped stimuli additionally recruited regions in the left hemisphere and bilaterally in the angular gyrus. Multivariate pattern analysis showed that classifiers trained with the pattern of neural activations read out from parietal regions, but not from the primary visual areas, can decode different numerosities both within and across spatial arrangements. The behavioral numerical acuity correlated with the decoding performance of the parietal but not with occipital regions. Overall, this experiment suggests that the estimation of grouped stimuli relies on the approximate number system for numerosity estimation, but additionally recruits regions involved in calculation.
Collapse
Affiliation(s)
- Paula A Maldonado Moscoso
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Florence, Italy.,Institut für Psychologie, Universität Regensburg, Regensburg, Germany
| | - Mark W Greenlee
- Institut für Psychologie, Universität Regensburg, Regensburg, Germany
| | - Giovanni Anobile
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Florence, Italy
| | - Roberto Arrighi
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Florence, Italy
| | - David C Burr
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Florence, Italy
| | - Elisa Castaldi
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Florence, Italy.,Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| |
Collapse
|
15
|
Castaldi E, Piazza M, Eger E. Resources Underlying Visuo-Spatial Working Memory Enable Veridical Large Numerosity Perception. Front Hum Neurosci 2021; 15:751098. [PMID: 34867244 PMCID: PMC8634845 DOI: 10.3389/fnhum.2021.751098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 10/21/2021] [Indexed: 11/13/2022] Open
Abstract
Humans can quickly approximate how many objects are in a visual image, but no clear consensus has been achieved on the cognitive resources underlying this ability. Previous work has lent support to the notion that mechanisms which explicitly represent the locations of multiple objects in the visual scene within a mental map are critical for both visuo-spatial working memory and enumeration (at least for relatively small numbers of items). Regarding the cognitive underpinnings of large numerosity perception, an issue currently subject to much controversy is why numerosity estimates are often non-veridical (i.e., susceptible to biases from non-numerical quantities). Such biases have been found to be particularly pronounced in individuals with developmental dyscalculia (DD), a learning disability affecting the acquisition of arithmetic skills. Motivated by findings showing that DD individuals are also often impaired in visuo-spatial working memory, we hypothesized that resources supporting this type of working memory, which allow for the simultaneous identification of multiple objects, might also be critical for precise and unbiased perception of larger numerosities. We therefore tested whether loading working memory of healthy adult participants during discrimination of large numerosities would lead to increased interference from non-numerical quantities. Participants performed a numerosity discrimination task on multi-item arrays in which numerical and non-numerical stimulus dimensions varied congruently or incongruently relative to each other, either in isolation or in the context of a concurrent visuo-spatial or verbal working memory task. During performance of the visuo-spatial, but not verbal, working memory task, precision in numerosity discrimination decreased, participants' choices became strongly biased by item size, and the strength of this bias correlated with measures of arithmetical skills. Moreover, the interference between numerosity and working memory tasks was bidirectional, with number discrimination impacting visuo-spatial (but not verbal) performance. Overall, these results suggest that representing visual numerosity in a way that is unbiased by non-numerical quantities relies on processes which explicitly segregate/identify the locations of multiple objects that are shared with visuo-spatial (but not verbal) working memory. This shared resource may potentially be impaired in DD, explaining the observed co-occurrence of working memory and numerosity discrimination deficits in this clinical population.
Collapse
Affiliation(s)
- Elisa Castaldi
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Florence, Italy
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Manuela Piazza
- Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy
| | - Evelyn Eger
- Cognitive Neuroimaging Unit, INSERM, CEA DRF/JOLIOT, Université Paris-Saclay, NeuroSpin Center, Gif-sur-Yvette, France
| |
Collapse
|
16
|
Automatic integration of numerical formats examined with frequency-tagged EEG. Sci Rep 2021; 11:21405. [PMID: 34725370 PMCID: PMC8560945 DOI: 10.1038/s41598-021-00738-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 10/13/2021] [Indexed: 01/23/2023] Open
Abstract
How humans integrate and abstract numerical information across different formats is one of the most debated questions in human cognition. We addressed the neuronal signatures of the numerical integration using an EEG technique tagged at the frequency of visual stimulation. In an oddball design, participants were stimulated with standard sequences of numbers (< 5) depicted in single (digits, dots, number words) or mixed notation (dots-digits, number words-dots, digits-number words), presented at 10 Hz. Periodically, a deviant stimulus (> 5) was inserted at 1.25 Hz. We observed significant oddball amplitudes for all single notations, showing for the first time using this EEG technique, that the magnitude information is spontaneously and unintentionally abstracted, irrespectively of the numerical format. Significant amplitudes were also observed for digits-number words and number words-dots, but not for digits-dots, suggesting an automatic integration across some numerical formats. These results imply that direct and indirect neuro-cognitive links exist across the different numerical formats.
Collapse
|
17
|
Castaldi E, Pomè A, Cicchini GM, Burr D, Binda P. The pupil responds spontaneously to perceived numerosity. Nat Commun 2021; 12:5944. [PMID: 34642335 PMCID: PMC8511033 DOI: 10.1038/s41467-021-26261-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 09/22/2021] [Indexed: 01/12/2023] Open
Abstract
Although luminance is the main determinant of pupil size, the amplitude of the pupillary light response is also modulated by stimulus appearance and attention. Here we ask whether perceived numerosity modulates the pupillary light response. Participants passively observed arrays of black or white dots of matched physical luminance but different physical or illusory numerosity. In half the patterns, pairs of dots were connected by lines to create dumbbell-like shapes, inducing an illusory underestimation of perceived numerosity; in the other half, connectors were either displaced or removed. Constriction to white arrays and dilation to black were stronger for patterns with higher perceived numerosity, either physical or illusory, with the strength of the pupillary light response scaling with the perceived numerosity of the arrays. Our results show that even without an explicit task, numerosity modulates a simple automatic reflex, suggesting that numerosity is a spontaneously encoded visual feature.
Collapse
Affiliation(s)
- Elisa Castaldi
- Department of Translational Research and New technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Florence, Italy
| | - Antonella Pomè
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Florence, Italy
| | | | - David Burr
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Florence, Italy.
- School of Psychology, University of Sydney, Camperdown, NSW, Australia.
| | - Paola Binda
- Department of Translational Research and New technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| |
Collapse
|
18
|
Vogel SE, De Smedt B. Developmental brain dynamics of numerical and arithmetic abilities. NPJ SCIENCE OF LEARNING 2021; 6:22. [PMID: 34301948 PMCID: PMC8302738 DOI: 10.1038/s41539-021-00099-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 06/24/2021] [Indexed: 05/07/2023]
Abstract
The development of numerical and arithmetic abilities constitutes a crucial cornerstone in our modern and educated societies. Difficulties to acquire these central skills can lead to severe consequences for an individual's well-being and nation's economy. In the present review, we describe our current broad understanding of the functional and structural brain organization that supports the development of numbers and arithmetic. The existing evidence points towards a complex interaction among multiple domain-specific (e.g., representation of quantities and number symbols) and domain-general (e.g., working memory, visual-spatial abilities) cognitive processes, as well as a dynamic integration of several brain regions into functional networks that support these processes. These networks are mainly, but not exclusively, located in regions of the frontal and parietal cortex, and the functional and structural dynamics of these networks differ as a function of age and performance level. Distinctive brain activation patterns have also been shown for children with dyscalculia, a specific learning disability in the domain of mathematics. Although our knowledge about the developmental brain dynamics of number and arithmetic has greatly improved over the past years, many questions about the interaction and the causal involvement of the abovementioned functional brain networks remain. This review provides a broad and critical overview of the known developmental processes and what is yet to be discovered.
Collapse
Affiliation(s)
- Stephan E Vogel
- Educational Neuroscience, Institute of Psychology, University of Graz, Graz, Austria.
| | - Bert De Smedt
- Faculty of Psychology and Educational Sciences, KU Leuven, University of Leuven, Leuven, Belgium
| |
Collapse
|
19
|
Castaldi E, Arrighi R, Cicchini GM, Andolfi A, Maduli G, Burr DC, Anobile G. Perception of geometric sequences and numerosity both predict formal geometric competence in primary school children. Sci Rep 2021; 11:14243. [PMID: 34244592 PMCID: PMC8271001 DOI: 10.1038/s41598-021-93710-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 06/21/2021] [Indexed: 01/29/2023] Open
Abstract
While most animals have a sense of number, only humans have developed symbolic systems to describe and organize mathematical knowledge. Some studies suggest that human arithmetical knowledge may be rooted in an ancient mechanism dedicated to perceiving numerosity, but it is not known if formal geometry also relies on basic, non-symbolic mechanisms. Here we show that primary-school children who spontaneously detect and predict geometrical sequences (non-symbolic geometry) perform better in school-based geometry tests indexing formal geometric knowledge. Interestingly, numerosity discrimination thresholds also predicted and explained a specific portion of variance of formal geometrical scores. The relation between these two non-symbolic systems and formal geometry was not explained by age or verbal reasoning skills. Overall, the results are in line with the hypothesis that some human-specific, symbolic systems are rooted in non-symbolic mechanisms.
Collapse
Affiliation(s)
- Elisa Castaldi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126, Pisa, Italy.,Department of Neuroscience, Psychology, Pharmacology, and Child Health, University of Florence, 50139, Florence, Italy
| | - Roberto Arrighi
- Department of Neuroscience, Psychology, Pharmacology, and Child Health, University of Florence, 50139, Florence, Italy.
| | | | - Arianna Andolfi
- Department of Neuroscience, Psychology, Pharmacology, and Child Health, University of Florence, 50139, Florence, Italy
| | - Giuseppe Maduli
- Department of Neuroscience, Psychology, Pharmacology, and Child Health, University of Florence, 50139, Florence, Italy
| | - David C Burr
- Department of Neuroscience, Psychology, Pharmacology, and Child Health, University of Florence, 50139, Florence, Italy.,CNR Neuroscience Institute, 56100, Pisa, Italy
| | - Giovanni Anobile
- Department of Neuroscience, Psychology, Pharmacology, and Child Health, University of Florence, 50139, Florence, Italy
| |
Collapse
|
20
|
Anobile G, Castaldi E, Maldonado Moscoso PA, Arrighi R, Burr D. Groupitizing Improves Estimation of Numerosity of Auditory Sequences. Front Hum Neurosci 2021; 15:687321. [PMID: 34234661 PMCID: PMC8255385 DOI: 10.3389/fnhum.2021.687321] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/28/2021] [Indexed: 11/20/2022] Open
Abstract
Groupitizing is a recently described phenomenon of numerosity perception where clustering items of a set into smaller "subitizable" groups improves discrimination. Groupitizing is thought to be rooted on the subitizing system, with which it shares several properties: both phenomena accelerate counting and decrease estimation thresholds irrespective of stimulus format (for both simultaneous and sequential numerosity perception) and both rely on attention. As previous research on groupitizing has been almost completely limited to vision, the current study investigates whether it generalizes to other sensory modalities. Participants estimated the numerosity of a series of tones clustered either by proximity in time or by similarity in frequency. We found that compared with unstructured tone sequences, grouping lowered auditory estimation thresholds by up to 20%. The groupitizing advantage was similar across different grouping conditions, temporal proximity and tone frequency similarity. These results mirror the groupitizing effect for visual stimuli, suggesting that, like subitizing, groupitizing is an a-modal phenomenon.
Collapse
Affiliation(s)
- Giovanni Anobile
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Florence, Italy
| | - Elisa Castaldi
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Florence, Italy
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Paula A. Maldonado Moscoso
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Florence, Italy
| | - Roberto Arrighi
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Florence, Italy
| | - David Burr
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Florence, Italy
| |
Collapse
|
21
|
Bhat A, Biagi L, Cioni G, Tinelli F, Morrone MC. Cortical thickness of primary visual cortex correlates with motion deficits in periventricular leukomalacia. Neuropsychologia 2020; 151:107717. [PMID: 33333138 DOI: 10.1016/j.neuropsychologia.2020.107717] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 11/27/2020] [Accepted: 12/04/2020] [Indexed: 11/30/2022]
Abstract
Impairments of visual motion perception and, in particular, of flow motion have been consistently observed in premature and very low birth weight subjects during infancy. Flow motion information is analyzed at various cortical levels along the dorsal pathways, with information mainly provided by primary and early visual cortex (V1, V2 and V3). We investigated the cortical stage of the visual processing that underlies these motion impairments, measuring Grey Matter Volume and Cortical Thickness in 13 children with Periventricular Leukomalacia (PVL). The cortical thickness, but not the grey matter volume of area V1, correlates negatively with motion coherence sensitivity, indicating that the thinner the cortex, the better the performance among the patients. However, we did not find any such association with either the thickness or volume of area MT, MST and areas of the IPS, suggesting damage at the level of primary visual cortex or along the optic radiation.
Collapse
Affiliation(s)
- Akshatha Bhat
- Department of Developmental Neuroscience, Laboratory of Vision, IRCCS Fondazione Stella Maris, Pisa, Italy; Department of Neuroscience, University of Florence, Italy
| | - Laura Biagi
- Laboratory of Medical Physics and Magnetic Resonance, IRCCS Fondazione Stella Maris, Pisa, Italy
| | - Giovanni Cioni
- Department of Developmental Neuroscience, Laboratory of Vision, IRCCS Fondazione Stella Maris, Pisa, Italy; Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Francesca Tinelli
- Department of Developmental Neuroscience, Laboratory of Vision, IRCCS Fondazione Stella Maris, Pisa, Italy
| | - M Concetta Morrone
- Department of Developmental Neuroscience, Laboratory of Vision, IRCCS Fondazione Stella Maris, Pisa, Italy; Department of Translational Research on New Technologies in Medicine and Surgery, University of Pisa, Italy.
| |
Collapse
|
22
|
Anobile G, Arrighi R, Castaldi E, Burr DC. A Sensorimotor Numerosity System. Trends Cogn Sci 2020; 25:24-36. [PMID: 33221159 DOI: 10.1016/j.tics.2020.10.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/23/2020] [Accepted: 10/27/2020] [Indexed: 02/07/2023]
Abstract
Incoming sensory input provides information for the planning and execution of actions, which yield motor outcomes that are themselves sensory inputs. One dimension where action and perception strongly interact is numerosity perception. Many non-human animals can estimate approximately the number of external elements as well as their own actions, and neurons have been identified that respond to both. Recent psychophysical adaptation studies on humans also provide evidence for neural mechanisms responding to both the number of externally generated events and self-produced actions. Here we advance the idea that these strong connections may arise from dedicated sensorimotor mechanisms in the brain, part of a more generalized system interfacing action with the processing of other quantitative magnitudes such as space and time.
Collapse
Affiliation(s)
- Giovanni Anobile
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Florence, Italy
| | - Roberto Arrighi
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Florence, Italy
| | - Elisa Castaldi
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Florence, Italy; Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - David C Burr
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Florence, Italy; Institute of Neuroscience, National Research Council, Pisa, Italy.
| |
Collapse
|