1
|
Serrano ME, Kim E, Siow B, Ma D, Rojo L, Simmons C, Hayward D, Gibbins D, Singh N, Strydom A, Fisher EM, Tybulewicz VL, Cash D. Investigating brain alterations in the Dp1Tyb mouse model of Down syndrome. Neurobiol Dis 2023; 188:106336. [PMID: 38317803 PMCID: PMC7615598 DOI: 10.1016/j.nbd.2023.106336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024] Open
Abstract
Down syndrome (DS) is one of the most common birth defects and the most prevalent genetic form of intellectual disability. DS arises from trisomy of chromosome 21, but its molecular and pathological consequences are not fully understood. In this study, we compared Dp1Tyb mice, a DS model, against their wild-type (WT) littermates of both sexes to investigate the impact of DS-related genetic abnormalities on the brain phenotype. We performed in vivo whole brain magnetic resonance imaging (MRI) and hippocampal 1H magnetic resonance spectroscopy (MRS) on the animals at 3 months of age. Subsequently, ex vivo MRI scans and histological analyses were conducted post-mortem. Our findings unveiled the following neuroanatomical and biochemical alterations in the Dp1Tyb brains: a smaller surface area and a rounder shape compared to WT brains, with DS males also presenting smaller global brain volume compared with the counterpart WT. Regional volumetric analysis revealed significant changes in 26 out of 72 examined brain regions, including the medial prefrontal cortex and dorsal hippocampus. These alterations were consistently observed in both in vivo and ex vivo imaging data. Additionally, high-resolution ex vivo imaging enabled us to investigate cerebellar layers and hippocampal sub-regions, revealing selective areas of decrease and remodelling in these structures. An analysis of hippocampal metabolites revealed an elevation in glutamine and the glutamine/glutamate ratio in the Dp1Tyb mice compared to controls, suggesting a possible imbalance in the excitation/inhibition ratio. This was accompanied by the decreased levels of taurine. Histological analysis revealed fewer neurons in the hippocampal CA3 and DG layers, along with an increase in astrocytes and microglia. These findings recapitulate multiple neuroanatomical and biochemical features associated with DS, enriching our understanding of the potential connection between chromosome 21 trisomy and the resultant phenotype.
Collapse
Affiliation(s)
- Maria Elisa Serrano
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| | - Eugene Kim
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| | - Bernard Siow
- The Francis Crick Institute, London, United Kingdom
| | - Da Ma
- Department of Internal Medicine Section of Gerontology and Geriatric Science, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Loreto Rojo
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| | - Camilla Simmons
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| | | | | | - Nisha Singh
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
| | - Andre Strydom
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Elizabeth M.C. Fisher
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK
| | | | - Diana Cash
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| |
Collapse
|
2
|
Thomson SB, Stam A, Brouwers C, Fodale V, Bresciani A, Vermeulen M, Mostafavi S, Petkau TL, Hill A, Yung A, Russell-Schulz B, Kozlowski P, MacKay A, Ma D, Beg MF, Evers MM, Vallès A, Leavitt BR. AAV5-miHTT-mediated huntingtin lowering improves brain health in a Huntington's disease mouse model. Brain 2023; 146:2298-2315. [PMID: 36508327 PMCID: PMC10232253 DOI: 10.1093/brain/awac458] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 06/23/2022] [Accepted: 10/30/2022] [Indexed: 04/12/2024] Open
Abstract
Huntingtin (HTT)-lowering therapies show great promise in treating Huntington's disease. We have developed a microRNA targeting human HTT that is delivered in an adeno-associated serotype 5 viral vector (AAV5-miHTT), and here use animal behaviour, MRI, non-invasive proton magnetic resonance spectroscopy and striatal RNA sequencing as outcome measures in preclinical mouse studies of AAV5-miHTT. The effects of AAV5-miHTT treatment were evaluated in homozygous Q175FDN mice, a mouse model of Huntington's disease with severe neuropathological and behavioural phenotypes. Homozygous mice were used instead of the more commonly used heterozygous strain, which exhibit milder phenotypes. Three-month-old homozygous Q175FDN mice, which had developed acute phenotypes by the time of treatment, were injected bilaterally into the striatum with either formulation buffer (phosphate-buffered saline + 5% sucrose), low dose (5.2 × 109 genome copies/mouse) or high dose (1.3 × 1011 genome copies/mouse) AAV5-miHTT. Wild-type mice injected with formulation buffer served as controls. Behavioural assessments of cognition, T1-weighted structural MRI and striatal proton magnetic resonance spectroscopy were performed 3 months after injection, and shortly afterwards the animals were sacrificed to collect brain tissue for protein and RNA analysis. Motor coordination was assessed at 1-month intervals beginning at 2 months of age until sacrifice. Dose-dependent changes in AAV5 vector DNA level, miHTT expression and mutant HTT were observed in striatum and cortex of AAV5-miHTT-treated Huntington's disease model mice. This pattern of microRNA expression and mutant HTT lowering rescued weight loss in homozygous Q175FDN mice but did not affect motor or cognitive phenotypes. MRI volumetric analysis detected atrophy in four brain regions in homozygous Q175FDN mice, and treatment with high dose AAV5-miHTT rescued this effect in the hippocampus. Like previous magnetic resonance spectroscopy studies in Huntington's disease patients, decreased total N-acetyl aspartate and increased myo-inositol levels were found in the striatum of homozygous Q175FDN mice. These neurochemical findings were partially reversed with AAV5-miHTT treatment. Striatal transcriptional analysis using RNA sequencing revealed mutant HTT-induced changes that were partially reversed by HTT lowering with AAV5-miHTT. Striatal proton magnetic resonance spectroscopy analysis suggests a restoration of neuronal function, and striatal RNA sequencing analysis shows a reversal of transcriptional dysregulation following AAV5-miHTT in a homozygous Huntington's disease mouse model with severe pathology. The results of this study support the use of magnetic resonance spectroscopy in HTT-lowering clinical trials and strengthen the therapeutic potential of AAV5-miHTT in reversing severe striatal dysfunction in Huntington's disease.
Collapse
Affiliation(s)
- Sarah B Thomson
- Department of Medical Genetics, Centre for Molecular Medicine & Therapeutics, University of British Columbia and BC Children’s Hospital, Vancouver, BC V5Z4H4, Canada
| | - Anouk Stam
- Department of Research & Development, uniQure Biopharma B.V., 1105BP Amsterdam, The Netherlands
| | - Cynthia Brouwers
- Department of Research & Development, uniQure Biopharma B.V., 1105BP Amsterdam, The Netherlands
| | - Valentina Fodale
- Department of Translational Biology, IRBM S.p.A., Pomezia 00071, Italy
| | - Alberto Bresciani
- Department of Translational Biology, IRBM S.p.A., Pomezia 00071, Italy
| | - Michael Vermeulen
- Department of Medical Genetics, Centre for Molecular Medicine & Therapeutics, University of British Columbia and BC Children’s Hospital, Vancouver, BC V5Z4H4, Canada
| | - Sara Mostafavi
- Department of Medical Genetics, Centre for Molecular Medicine & Therapeutics, University of British Columbia and BC Children’s Hospital, Vancouver, BC V5Z4H4, Canada
| | - Terri L Petkau
- Department of Medical Genetics, Centre for Molecular Medicine & Therapeutics, University of British Columbia and BC Children’s Hospital, Vancouver, BC V5Z4H4, Canada
| | - Austin Hill
- Department of Medical Genetics, Centre for Molecular Medicine & Therapeutics, University of British Columbia and BC Children’s Hospital, Vancouver, BC V5Z4H4, Canada
| | - Andrew Yung
- UBC MRI Research Centre, Department of Radiology, University of British Columbia, Vancouver, BC V6T2B5, Canada
| | - Bretta Russell-Schulz
- UBC MRI Research Centre, Department of Radiology, University of British Columbia, Vancouver, BC V6T2B5, Canada
| | - Piotr Kozlowski
- UBC MRI Research Centre, Department of Radiology, University of British Columbia, Vancouver, BC V6T2B5, Canada
| | - Alex MacKay
- UBC MRI Research Centre, Department of Radiology, University of British Columbia, Vancouver, BC V6T2B5, Canada
| | - Da Ma
- Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27101, USA
| | - Mirza Faisal Beg
- School of Engineering Science, Simon Fraser University, Burnaby, BC V5A0A7, Canada
| | - Melvin M Evers
- Department of Research & Development, uniQure Biopharma B.V., 1105BP Amsterdam, The Netherlands
| | - Astrid Vallès
- Department of Research & Development, uniQure Biopharma B.V., 1105BP Amsterdam, The Netherlands
| | - Blair R Leavitt
- Department of Medical Genetics, Centre for Molecular Medicine & Therapeutics, University of British Columbia and BC Children’s Hospital, Vancouver, BC V5Z4H4, Canada
| |
Collapse
|
3
|
Hendrix JA, Amon A, Abbeduto L, Agiovlasitis S, Alsaied T, Anderson HA, Bain LJ, Baumer N, Bhattacharyya A, Bogunovic D, Botteron KN, Capone G, Chandan P, Chase I, Chicoine B, Cieuta-Walti C, DeRuisseau LR, Durand S, Esbensen A, Fortea J, Giménez S, Granholm AC, Hahn LJ, Head E, Hillerstrom H, Jacola LM, Janicki MP, Jasien JM, Kamer AR, Kent RD, Khor B, Lawrence JB, Lemonnier C, Lewanda AF, Mobley W, Moore PE, Nelson LP, Oreskovic NM, Osorio RS, Patterson D, Rasmussen SA, Reeves RH, Roizen N, Santoro S, Sherman SL, Talib N, Tapia IE, Walsh KM, Warren SF, White AN, Wong GW, Yi JS. Opportunities, barriers, and recommendations in down syndrome research. TRANSLATIONAL SCIENCE OF RARE DISEASES 2021; 5:99-129. [PMID: 34268067 PMCID: PMC8279178 DOI: 10.3233/trd-200090] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Recent advances in medical care have increased life expectancy and improved the quality of life for people with Down syndrome (DS). These advances are the result of both pre-clinical and clinical research but much about DS is still poorly understood. In 2020, the NIH announced their plan to update their DS research plan and requested input from the scientific and advocacy community. OBJECTIVE The National Down Syndrome Society (NDSS) and the LuMind IDSC Foundation worked together with scientific and medical experts to develop recommendations for the NIH research plan. METHODS NDSS and LuMind IDSC assembled over 50 experts across multiple disciplines and organized them in eleven working groups focused on specific issues for people with DS. RESULTS This review article summarizes the research gaps and recommendations that have the potential to improve the health and quality of life for people with DS within the next decade. CONCLUSIONS This review highlights many of the scientific gaps that exist in DS research. Based on these gaps, a multidisciplinary group of DS experts has made recommendations to advance DS research. This paper may also aid policymakers and the DS community to build a comprehensive national DS research strategy.
Collapse
Affiliation(s)
| | - Angelika Amon
- Deceased. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Leonard Abbeduto
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, CA, USA; MIND Institute, University of California, Davis, CA, USA
| | | | - Tarek Alsaied
- Heart Institute Department of Pediatrics Cincinnati Children’s Hospital Medical Center University of Cincinnati, Cincinnati, OH, USA
| | | | | | - Nicole Baumer
- Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA; Down Syndrome Program, Developmental Medicine Center, Boston Children’s Hospital, Boston, MA, USA
| | - Anita Bhattacharyya
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Dusan Bogunovic
- Department of Microbiology, Icahn School of Medicine at Mt. Sinai, New York, NY, USA; Department of Pediatrics, Icahn School of Medicine at Mt. Sinai, New York, NY; Precision Immunology Institute, Icahn School of Medicine at Mt. Sinai, New York, NY, USA; Mindich Child Health and Development Institute, Icahn School of Medicine at Mt. Sinai, New York, NY, USA
| | - Kelly N. Botteron
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA; Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Priya Chandan
- Department of Neurosurgery, Division of Physical Medicine and Rehabilitation, University of Louisville School of Medicine, Louisville, KY, USA
| | - Isabelle Chase
- Department of Pediatric Dentistry, Boston Children’s Hospital, Boston, MA, USA
| | - Brian Chicoine
- Advocate Medical Group Adult Down Syndrome Center, Park Ridge, IL, USA
| | | | | | | | - Anna Esbensen
- Department of Pediatrics, University of Cincinnati College of Medicine & Division of Developmental and Behavioral Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Juan Fortea
- Barcelona Down Medical Center, Fundació Catalana de Síndrome de Down, Barcelona, Spain; Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; Center of Biomedical Investigation Network for Neurodegenerative Diseases, Madrid, Spain
| | - Sandra Giménez
- Multidisciplinary Sleep Unit, Respiratory Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Ann-Charlotte Granholm
- Knoebel Institute for Healthy Aging, University of Denver, Denver, CO, USA
- Department of Neurobiology, Care Sciences and Society (NVS), Karolinska Institutet, Stockholm, Sweden
| | - Laura J. Hahn
- Department of Speech and Hearing Science, University of Illinois Urbana Champaign, Champaign, IL, USA
| | - Elizabeth Head
- Department of Pathology and Laboratory Medicine, UC Irvine School of Medicine, Orange, CA, USA
| | | | - Lisa M. Jacola
- Department of Psychology, St Jude Children’s Research Hospital, Memphis, TN, USA
| | | | - Joan M. Jasien
- Division of Pediatric Neurology, Duke University Health System, Durham, NC, USA
| | - Angela R. Kamer
- Department of Periodontology and Implant Dentistry, New York University, College of Dentistry, New York, NY, USA
| | - Raymond D. Kent
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Bernard Khor
- Benaroy Research Institute at Virginia Mason, Seattle, WA, USA
| | - Jeanne B. Lawrence
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA; Department of Pediatrics, University of Massachusetts Medical School, Worcester, MA, USA
| | | | - Amy Feldman Lewanda
- Children s National Rare Disease Institute, Children’s National Health System, Washington, DC., USA
| | - William Mobley
- Department of Neurosciences, University of California, San Diego, CA, USA
| | - Paul E. Moore
- Division of Allergy, Immunology, and Pulmonology, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Nicolas M. Oreskovic
- Department of Pediatrics, Massachusetts General Hospital, Boston, MA, USA; Department of Internal Medicine, Massachusetts General Hospital, Boston, Mass
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Ricardo S. Osorio
- Center for Brain Health, Department of Psychiatry, NYU Langone Medical Center, New York, NY, USA
| | - David Patterson
- Knoebel Institute for Healthy Aging, University of Denver, Denver, CO, USA
- Eleanor Roosevelt Institute, University of Denver, Denver, CO, USA; Department of Biological Sciences, University of Denver, Denver, CO, USA; Molecular and Cellular Biophysics Program, University of Denver, Denver, CO, USA
| | - Sonja A. Rasmussen
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL; Department of Epidemiology, University of Florida College of Public Health and Health Professions and College of Medicine, Gainesville, FL
| | - Roger H. Reeves
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nancy Roizen
- Department of Pediatrics, UH/Rainbow Babies and Children’s Hospital and Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA
| | - Stephanie Santoro
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Down Syndrome Program, Division of Medical Genetics and Metabolism, Department of Pediatrics, Massachusetts General Hospital, Boston, MA, USA
| | - Stephanie L. Sherman
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Nasreen Talib
- Division of General Pediatrics, Children’s Mercy Kansas City, 2401 Gillham Road, Kansas City, MO, USA
| | - Ignacio E. Tapia
- Sleep Center, Division of Pulmonary Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kyle M. Walsh
- Division of Neuro-epidemiology, Department of Neurosurgery, Duke University, Durham, NC, USA
| | - Steven F. Warren
- Institute for Life Span Studies, University of Kansas, Lawrence, KS, USA
| | - A. Nicole White
- Research Foundation, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Guang William Wong
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Center for Metabolism and Obesity Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - John S. Yi
- Division of Surgical Sciences, Department of Surgery, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|