1
|
Stojan R, Bock O, Mack M, Voelcker-Rehage C. Effect of additional tasks on the reaction time of braking responses in simulated car driving: beyond the PRP effect. PSYCHOLOGICAL RESEARCH 2024; 88:2096-2106. [PMID: 38914809 DOI: 10.1007/s00426-024-01988-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 06/08/2024] [Indexed: 06/26/2024]
Abstract
The presentation of one task increases the reaction time on a subsequent task, if stimulus onset asynchrony (SOA) between tasks is short. This psychological refractory period (PRP) effect is typically leveling off as SOA approaches 1 s, which has been documented both in classical laboratory paradigms and in simulated car driving. Here we report a more persistent effect on the subsequent task that goes well beyond the typical duration of the PRP effect. In a driving simulator, 120 healthy older participants followed a lead car that mostly drove at a constant speed. They had to maintain a regular distance from the lead car and had to brake when the lead car braked. Participants also engaged in several additional tasks during driving (two types of tasks: typing three-digit numbers, stating arguments on public issues). SOA between the braking task and the last preceding additional task was 11.49 s ± 1.99 (mean and standard deviation). In a control condition, the braking task was administered without additional tasks. Main performance outcome was Braking Reaction Time (RT, in s), as the interval between onset of brake lights of the lead car and the moment participants released the gas pedal. Additionally, foot movement time (MT, in s), i.e., the difference between gas pedal release and brake pedal onset, was considered for possible compensation behavior. Inter-vehicle distance to the lead car (in m) was taken into account as a moderator. We found that RT averaged 0.77 s without additional tasks, but averaged 1.45 s with additional tasks. This RT difference was less pronounced at smaller inter-vehicle distances, and was not compensated for by faster MT from the gas pedal to the brake pedal. We conclude that detrimental effects of additional tasks on subsequent braking responses can be more persistent than suggested by the PRP effect, possibly because of maintaining multiple task sets, requiring increased executive control. We further conclude that potential detrimental effects can be ameliorated at small inter-vehicle distances by mobilizing extra cognitive resources when response urgency is higher. As a practical implication of our study, distracting stimuli can have persisting detrimental effects on traffic safety.
Collapse
Affiliation(s)
- Robert Stojan
- Institute of Sport and Exercise Sciences, Neuromotor Behavior and Exercise, University of Muenster, Muenster, Germany.
- Institute of Human Movement Science and Health, Chemnitz University of Technology, Chemnitz, Germany.
| | - Otmar Bock
- Institute of Human Movement Science and Health, Chemnitz University of Technology, Chemnitz, Germany
- Institute of Exercise Training and Sport Informatics, German Sport University Cologne, Cologne, Germany
| | - Melanie Mack
- Institute of Sport and Exercise Sciences, Neuromotor Behavior and Exercise, University of Muenster, Muenster, Germany
- Centre for the Interdisciplinary Study of Gerontology and Vulnerability, University of Geneva, Geneva, Switzerland
| | - Claudia Voelcker-Rehage
- Institute of Sport and Exercise Sciences, Neuromotor Behavior and Exercise, University of Muenster, Muenster, Germany
- Institute of Human Movement Science and Health, Chemnitz University of Technology, Chemnitz, Germany
| |
Collapse
|
2
|
Zhang H, Guo Y, Yuan W, Li K. On the importance of working memory in the driving safety field: A systematic review. ACCIDENT; ANALYSIS AND PREVENTION 2023; 187:107071. [PMID: 37060663 DOI: 10.1016/j.aap.2023.107071] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 03/18/2023] [Accepted: 04/07/2023] [Indexed: 05/12/2023]
Abstract
In recent years, many studies have used poor cognitive functions to explain risk safety differences among drivers. Working memory is a cognitive function with information storage and attentional control that plays a crucial role in driver information processing. Furthermore, it is inextricably linked to parameters such as driving performance, driving eye movements and driving neurophysiology, which have a significant impact on drivers' risky behavior and crash risk. In particular, crash risk is a serious risk to social safety and economic development. For this reason, it is necessary to understand how risk-related working memory affects driving so that pre-driving safety pre-training programs and in-vehicle safety assistance systems for driving can be developed accordingly, contributing to the development of semi-autonomous vehicles and even autonomous vehicles. In this paper, a systematic search of the literature over the past 23 years resulted in 78 articles that met the eligibility criteria and quality assessment. The results show that higher working memory capacity, as measured neuropsychologically, is associated with more consistent and safer driving-related parameters for drivers (e.g., lane keeping) and may be related to pupil dilation during risk perception while driving, which is associated with driving outcomes (tickets, pull-overs, penalty points and fines,and driving accidents) is closely related to the perceived usefulness of the human-machine interface, reaction time, standard deviation of steering wheel corners, etc. when the autonomous driving takes over. In addition, higher working memory load interference was associated with more inconsistent and unsafe driving-related parameters (including but not limited to eye movements, electrophysiology, etc.), with higher working memory load being associated with easier driver concentration on the road, faster heart rate, lower heart rate variability, and lower oxyhemoglobin (OxyHb) and deoxyhemoglobin (DeoxyHb). Only a limited number of studies have simultaneously investigated the relationship between working memory capacity, working memory load and driving, showing an interaction between working memory capacity and working memory load on lane change initiation and lane change correctness, with working memory capacity acting as a covariate that mediated the effect of working memory load on braking reaction time. In addition, working memory-related cognitive training had a transfer effect on improving driving ability. Overall, working memory capacity determines the upper limit of the number of working memory attention resources, while working memory load occupies part of the working memory attention resources, thus influencing information perception, decision judgment, operational response, and collision avoidance in driving. Future effective interventions for safe driving can be combined with capacity training and load alerting. These findings contribute to our understanding of the role of working memory in driving and provide new insights into the design of driver safety training programs and automated driving personalized in-vehicle safety systems and roadside devices such as signage.
Collapse
Affiliation(s)
- Huiming Zhang
- School of Automobile, Chang'an University, South 2nd Ring Road, 710064 Xi'an, Shaanxi, People's Republic of China
| | - Yingshi Guo
- School of Automobile, Chang'an University, South 2nd Ring Road, 710064 Xi'an, Shaanxi, People's Republic of China.
| | - Wei Yuan
- School of Automobile, Chang'an University, South 2nd Ring Road, 710064 Xi'an, Shaanxi, People's Republic of China
| | - Kunchen Li
- School of Automobile, Chang'an University, South 2nd Ring Road, 710064 Xi'an, Shaanxi, People's Republic of China
| |
Collapse
|
3
|
Okada H, Sawamura D, Kunita K, Ogasawara H, Maeda K, Morimoto T, Ikeda N. Prefrontal activation during simulated driving in people with schizophrenia: A functional near-infrared spectroscopy study. Psychiatry Res 2023; 326:115285. [PMID: 37327651 DOI: 10.1016/j.psychres.2023.115285] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/31/2023] [Accepted: 06/03/2023] [Indexed: 06/18/2023]
Abstract
People with schizophrenia (PWS) could be at risk when driving, yet this remains to be confirmed. In this study, we used functional near-infrared spectroscopy (fNIRS) and a driving simulator to assess potential driving skill difficulties as reflected by brain activity in PWS and compared them with those of healthy controls (HCs). Twenty PWS and 20 HCs were evaluated. Four tasks were performed: 50-kph and 100-kph sudden braking and 50-kph left and right curve tasks. The hemodynamic activity and driving performance of the two groups were compared. No significant differences were found in the performance of the four tasks. However, significant differences in hemodynamic activity were observed in the left and right dorsolateral prefrontal cortex (DLPFC) during the 100-kph sudden braking task. In addition, a significant negative correlation was found between brake reaction time and brain activity in the left DLPFC during the 100-kph sudden braking task in both groups. The brain mechanisms involved in processing the mental load associated with driving a car are possibly similar in PWS and HCs. Our results suggest that PWS may be able to drive their vehicles safely in the community.
Collapse
Affiliation(s)
- Hiroki Okada
- Department of Rehabilitation of Sciences, Hokkaido University, Kita 14-jo Nishi 5-chome, Kita-ku, Sapporo, Hokkaido, Japan.
| | - Daisuke Sawamura
- Department of Rehabilitation of Sciences, Hokkaido University, Kita 14-jo Nishi 5-chome, Kita-ku, Sapporo, Hokkaido, Japan
| | - Koji Kunita
- Forensic Psychiatry Center, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
| | | | - Kentaro Maeda
- Medical Corporation Ohyachi Hospital, Sapporo, Hokkaido, Japan
| | - Takafumi Morimoto
- Department of Occupational Therapy, School of Health Sciences, Sapporo Medical University, Hokkaido, Japan
| | - Nozomu Ikeda
- Department of Occupational Therapy, School of Health Sciences, Sapporo Medical University, Hokkaido, Japan
| |
Collapse
|
4
|
Stojan R, Mack M, Bock O, Voelcker-Rehage C. Inefficient frontal and parietal brain activation during dual-task walking in a virtual environment in older adults. Neuroimage 2023; 273:120070. [PMID: 37004827 DOI: 10.1016/j.neuroimage.2023.120070] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Walking while performing an additional cognitive task (dual-task walking; DT walking) is a common yet highly demanding behavior in daily life. Previous neuroimaging studies have shown that performance declines from single- (ST) to DT conditions are accompanied by increased prefrontal cortex (PFC) activity. This increment is particularly pronounced in older adults and has been explained either by compensation, dedifferentiation, or ineffective task processing in fronto-parietal circuits. However, there is only limited evidence for the hypothesized fronto-parietal activity changes measured under real life conditions such as walking. In this study, we therefore assessed brain activity in PFC and parietal lobe (PL), to investigate whether higher PFC activation during DT walking in older adults is related to compensation, dedifferentiation, or neural inefficiency. Fifty-six healthy older adults (69.11 ± 4.19 years, 30 female) completed three tasks (treadmill walking at 1 m/s, Stroop task, Serial 3's task) under ST and DT conditions (Walking + Stroop, Walking + Serial 3's), and a baseline Standing task. Behavioral outcomes were step time variability (Walking), Balance Integration Score BIS (Stroop), and number of correct calculations S3corr (Serial 3's). Brain activity was measured using functional near-infrared spectroscopy (fNIRS) over ventrolateral and dorsolateral PFC (vlPFC, dlPFC) and inferior and superior PL (iPL, sPL). Neurophysiological outcome measures were oxygenated (HbO2) and deoxygenated hemoglobin (HbR). Linear mixed models with follow-up estimated marginal means contrasts were applied to investigate region-specific upregulations of brain activation from ST to DT conditions. Furthermore, the relationships of DT-specific activations across all brain regions was analyzed as well as the relationship between changes in brain activation and changes in behavioral performance from ST to DT. Data indicated the expected upregulation from ST to DT and that DT-related upregulation was more pronounced in PFC (particularly in vlPFC) than in PL regions. Activation increases from ST to DT were positively correlated between all brain regions, and higher brain activation changes predicted higher declines in behavioral performance from ST to DT. Results were largely consistent for both DTs (Stroop and Serial 3's). These findings more likely suggest neural inefficiency and dedifferentiation in PFC and PL rather than fronto-parietal compensation during DT walking in older adults. Findings have implications for interpreting and promoting efficacy of long-term interventions to improve DT walking in older persons.
Collapse
|
5
|
Hirano D, Kimura N, Yano H, Enoki M, Aikawa M, Goto Y, Taniguchi T. Different brain activation patterns in the prefrontal area between self-paced and high-speed driving tasks. JOURNAL OF BIOPHOTONICS 2022; 15:e202100295. [PMID: 35103406 DOI: 10.1002/jbio.202100295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 01/18/2022] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
The purpose of this study was to investigate the effects on prefrontal cortex brain activity when participants attempted to stop a car accurately at a stop line when driving at different speeds using functional near-infrared spectroscopy (fNIRS). Twenty healthy subjects with driving experience drove their own cars for a distance of 60 m five times each at their own pace or as fast as possible. The variation in the distance between the stop line and the car was not significantly different between the self-paced and high-speed tasks. However, oxygenated hemoglobin concentration in the prefrontal cortex was significantly higher in the high-speed task than in the self-paced task. These findings suggest that driving at high speed requires more divided attention than driving at self-paced speed, even though the participants were able to stop the car at the same distance from the target. This study shows the advantages and usefulness of fNIRS .
Collapse
Affiliation(s)
- Daisuke Hirano
- Graduate School of Health and Welfare Sciences, International University of Health and Welfare, Minato, Tokyo, Japan
- Department of Occupational Therapy, School of Health Sciences, International University of Health and Welfare, Otawara, Tochigi, Japan
| | - Naotoshi Kimura
- Graduate School of Health and Welfare Sciences, International University of Health and Welfare, Minato, Tokyo, Japan
- Department of Rehabilitation, International University of Health and Welfare Ichikawa Hospital, Ichikawa, Chiba, Japan
| | - Hana Yano
- Graduate School of Health and Welfare Sciences, International University of Health and Welfare, Minato, Tokyo, Japan
- Department of Occupational Therapy, School of Health Sciences, International University of Health and Welfare, Otawara, Tochigi, Japan
| | - Miku Enoki
- Graduate School of Health and Welfare Sciences, International University of Health and Welfare, Minato, Tokyo, Japan
- Department of Rehabilitation, International University of Health and Welfare Shioya Hospital, Yaita, Tochigi, Japan
| | - Maya Aikawa
- Graduate School of Health and Welfare Sciences, International University of Health and Welfare, Minato, Tokyo, Japan
- Department of Rehabilitation, International University of Health and Welfare Shioya Hospital, Yaita, Tochigi, Japan
| | - Yoshinobu Goto
- Graduate School of Health and Welfare Sciences, International University of Health and Welfare, Minato, Tokyo, Japan
- Faculty of Medicine, School of Medicine, International University of Health and Welfare, Narita, Chiba, Japan
- Department of Occupational Therapy, School of Health Sciences at Fukuoka, International University of Health and Welfare, Okawa, Fukuoka, Japan
| | - Takamichi Taniguchi
- Graduate School of Health and Welfare Sciences, International University of Health and Welfare, Minato, Tokyo, Japan
- Department of Occupational Therapy, School of Health Sciences, International University of Health and Welfare, Otawara, Tochigi, Japan
| |
Collapse
|
6
|
Asci F, Scardapane S, Zampogna A, D’Onofrio V, Testa L, Patera M, Falletti M, Marsili L, Suppa A. Handwriting Declines With Human Aging: A Machine Learning Study. Front Aging Neurosci 2022; 14:889930. [PMID: 35601625 PMCID: PMC9120912 DOI: 10.3389/fnagi.2022.889930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundHandwriting is an acquired complex cognitive and motor skill resulting from the activation of a widespread brain network. Handwriting therefore may provide biologically relevant information on health status. Also, handwriting can be collected easily in an ecological scenario, through safe, cheap, and largely available tools. Hence, objective handwriting analysis through artificial intelligence would represent an innovative strategy for telemedicine purposes in healthy subjects and people affected by neurological disorders.Materials and MethodsOne-hundred and fifty-six healthy subjects (61 males; 49.6 ± 20.4 years) were enrolled and divided according to age into three subgroups: Younger adults (YA), middle-aged adults (MA), and older adults (OA). Participants performed an ecological handwriting task that was digitalized through smartphones. Data underwent the DBNet algorithm for measuring and comparing the average stroke sizes in the three groups. A convolutional neural network (CNN) was also used to classify handwriting samples. Lastly, receiver operating characteristic (ROC) curves and sensitivity, specificity, positive, negative predictive values (PPV, NPV), accuracy and area under the curve (AUC) were calculated to report the performance of the algorithm.ResultsStroke sizes were significantly smaller in OA than in MA and YA. The CNN classifier objectively discriminated YA vs. OA (sensitivity = 82%, specificity = 80%, PPV = 78%, NPV = 79%, accuracy = 77%, and AUC = 0.84), MA vs. OA (sensitivity = 84%, specificity = 56%, PPV = 78%, NPV = 73%, accuracy = 74%, and AUC = 0.7), and YA vs. MA (sensitivity = 75%, specificity = 82%, PPV = 79%, NPV = 83%, accuracy = 79%, and AUC = 0.83).DiscussionHandwriting progressively declines with human aging. The effect of physiological aging on handwriting abilities can be detected remotely and objectively by using machine learning algorithms.
Collapse
Affiliation(s)
| | - Simone Scardapane
- Department of Information, Electronic and Communication Engineering (DIET), Sapienza University of Rome, Rome, Italy
| | | | | | - Lucia Testa
- Department of Informatic, Automatic and Gestional Engineering (DIAG), Sapienza University of Rome, Rome, Italy
| | - Martina Patera
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Marco Falletti
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Luca Marsili
- Department of Neurology, Gardner Family Center for Parkinson’s Disease and Movement Disorders, University of Cincinnati, Cincinnati, OH, United States
| | - Antonio Suppa
- IRCCS Neuromed Institute, Pozzilli, Italy
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
- *Correspondence: Antonio Suppa,
| |
Collapse
|
7
|
Gökçe E, Stojan R, Mack M, Bock O, Voelcker-Rehage C. Lifestyle Matters: Effects of Habitual Physical Activity on Driving Skills in Older Age. Brain Sci 2022; 12:608. [PMID: 35624995 PMCID: PMC9139606 DOI: 10.3390/brainsci12050608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 04/30/2022] [Accepted: 05/03/2022] [Indexed: 11/16/2022] Open
Abstract
Research on multitasking driving has suggested age-related deterioration in driving performance. It has been shown that physical and cognitive functioning, which are related to driving performance and decline with aging, are positively associated with physical activity behavior. This study aimed to explore whether driving performance decline becomes severe with advancing age and whether physical activity behavior modifies age-related deterioration in driving performance. A total of one hundred forty-one healthy adults were categorized into three groups based on their age; old-old (74.21 ± 2.33 years), young-old (66.53 ± 1.50 years), and young adults (23.25 ± 2.82 years). Participants completed a realistic multitasking driving task. Physical activity and cardiorespiratory fitness levels were evaluated. Older groups drove more slowly and laterally than young adults, and old-old adults drove slower than young-old ones across the whole driving course. Physical activity level did not interact with the aging effect on driving performance, whereas cardiovascular fitness interacted. Higher-fitness young-old and young adults drove faster than higher-fitness old-old adults. Higher-fitness old adults drove more laterally than higher-fitness young adults. The present study demonstrated a gradual decline in driving performance in old adults, and cardiorespiratory fitness interacted with the aging effect on driving performance. Future research on the interaction of aging and physical activity behavior on driving performance in different age groups is of great value and may help deepen our knowledge.
Collapse
Affiliation(s)
- Evrim Gökçe
- Department of Neuromotor Behavior and Exercise, Institute of Sport and Exercise Sciences, University of Münster, Wilhelm-Schickard-Straße 8, 48149 Münster, Germany; (R.S.); (M.M.)
- Sports Health Rehabilitation Laboratory, Ankara City Hospital, Ankara 06800, Turkey
| | - Robert Stojan
- Department of Neuromotor Behavior and Exercise, Institute of Sport and Exercise Sciences, University of Münster, Wilhelm-Schickard-Straße 8, 48149 Münster, Germany; (R.S.); (M.M.)
| | - Melanie Mack
- Department of Neuromotor Behavior and Exercise, Institute of Sport and Exercise Sciences, University of Münster, Wilhelm-Schickard-Straße 8, 48149 Münster, Germany; (R.S.); (M.M.)
| | - Otmar Bock
- Institute of Exercise Training and Sport Informatics, German Sport University, Am Sportpark Muengersdorf 6, 50927 Cologne, Germany;
| | - Claudia Voelcker-Rehage
- Department of Neuromotor Behavior and Exercise, Institute of Sport and Exercise Sciences, University of Münster, Wilhelm-Schickard-Straße 8, 48149 Münster, Germany; (R.S.); (M.M.)
| |
Collapse
|
8
|
Li W, Li R, Xie X, Chang Y. Evaluating mental workload during multitasking in simulated flight. Brain Behav 2022; 12:e2489. [PMID: 35290712 PMCID: PMC9014989 DOI: 10.1002/brb3.2489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 11/22/2021] [Accepted: 12/29/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Pilots must process multiple streams of information simultaneously. Mental workload is one of the main issues in man-machine interactive mode when dealing with multiple tasks. This study aimed to combine functional near-infrared spectroscopy (fNIRS) and electrocardiogram (ECG) to detect changes in mental workload during multitasking in a simulated flight. METHODS Twenty-six participants performed three multitasking tasks at different mental workload levels. These mental workload levels were set by varying the number of subtasks. fNIRS and ECG signals were recorded during tasks. Participants filled in the national aeronautics and space administration task load index (NASA-TLX) scale after each task. The effects of mental workload on scores of NASA-TLX, performance of tasks, heart rate (HR), heart rate variability (HRV), and the prefrontal cortex (PFC) activation were analyzed. RESULTS Compared to multitasking in lower mental workload conditions, participants exhibited higher scores of NASA-TLX, HR, and PFC activation when multitasking in high mental workload conditions. Their performance was worse during the high mental workload multitasking condition, as evidenced by the higher average tracking distance, smaller number of response times, and longer response time of the meter. The standard deviation of the RR intervals (SDNN) was negatively correlated with subjective mental workload in the low task load condition and PFC activation was positively correlated with HR and subjective mental workload in the medium task load condition. CONCLUSION HR and PFC activation can be used to detect changes in mental workload during simulated flight multitasking tasks.
Collapse
Affiliation(s)
- Wenbin Li
- Department of Aerospace HygieneFaculty of Aerospace MedicineAir Force Medical UniversityXi'anShaanxiP. R. China
| | - Rong Li
- Department of Internal MedicineFaculty of Clinical MedicineXi'an Medical UniversityXi'anShaanxiP. R. China
| | - Xiaoping Xie
- Department of Aerospace HygieneFaculty of Aerospace MedicineAir Force Medical UniversityXi'anShaanxiP. R. China
| | - Yaoming Chang
- Department of Aerospace HygieneFaculty of Aerospace MedicineAir Force Medical UniversityXi'anShaanxiP. R. China
| |
Collapse
|
9
|
Bock O, Stojan R, Wechsler K, Mack M, Voelcker-Rehage C. Distracting tasks have persisting effects on young and older drivers' braking performance. ACCIDENT; ANALYSIS AND PREVENTION 2021; 161:106363. [PMID: 34454282 DOI: 10.1016/j.aap.2021.106363] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 07/14/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
It is well established that car driving performance suffers when the driver concurrently engages in a distracting activity, such as talking on a cell phone. The present study investigates whether the effects of driver distraction are short-lived, or rather persist for some time. Age-related differences are evaluated as well. Sixty-three young and 61 older adults were tested in a driving simulator. They were asked to follow a lead car that drove at a constant speed, and to concurrently engage in a pseudorandom sequence of distracting tasks (typing, reasoning, memorizing). When the lead car braked, participants had to brake as well to prevent a collision. The stimulus onset asynchrony between the braking task and the last preceding distraction was 11.49 ± 1.99 s. Each person was tested once in a multitasking condition (as described above), and once in a control condition without distracting tasks. Outcome measures quantified distance keeping and lane keeping while participants braked to the lead car. We found that braking responses differed significantly between conditions; this difference could be interpreted as a combination of performance deficits and compensatory strategies in the multitasking condition compared to the control condition. We also found significant differences between age groups, which could be interpreted similarly. Differences between age groups were less pronounced in the multitasking than in the control condition. All observed effects were associated with participants' executive functioning. Our findings confirm that distractions have an impact on braking responses, and they document for the first time that this impact can persist for about 11.5 s. We attribute this persistence to a task set effect, and discuss the practical relevance of our findings.
Collapse
Affiliation(s)
- Otmar Bock
- Institute of Exercise Training and Sport Informatics, German Sport University, Am Sportpark Müngersdorf 6, 50927 Köln, Germany.
| | - Robert Stojan
- Department of Neuromotor Behavior and Exercise, University of Münster, Horstmarer Landweg 62 b, 48149 Münster, Germany.
| | - Konstantin Wechsler
- Institute for Movement Therapy and Movement-Oriented Prevention and Rehabilitation, German Sport University, Am Sportpark Müngersdorf 6, 50927 Köln, Germany.
| | - Melanie Mack
- Institute of Exercise Training and Sport Informatics, German Sport University, Am Sportpark Müngersdorf 6, 50927 Köln, Germany.
| | - Claudia Voelcker-Rehage
- Department of Neuromotor Behavior and Exercise, University of Münster, Horstmarer Landweg 62 b, 48149 Münster, Germany.
| |
Collapse
|
10
|
Stojan R, Kaushal N, Bock OL, Hudl N, Voelcker-Rehage C. Benefits of Higher Cardiovascular and Motor Coordinative Fitness on Driving Behavior Are Mediated by Cognitive Functioning: A Path Analysis. Front Aging Neurosci 2021; 13:686499. [PMID: 34267646 PMCID: PMC8277437 DOI: 10.3389/fnagi.2021.686499] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 06/04/2021] [Indexed: 11/18/2022] Open
Abstract
Driving is an important skill for older adults to maintain an independent lifestyle, and to preserve the quality of life. However, the ability to drive safely in older adults can be compromised by age-related cognitive decline. Performing an additional task during driving (e.g., adjusting the radio) increases cognitive demands and thus might additionally impair driving performance. Cognitive functioning has been shown to be positively related to physical activity/fitness such as cardiovascular and motor coordinative fitness. As such, a higher fitness level might be associated with higher cognitive resources and may therefore benefit driving performance under dual-task conditions. For the first time, the present study investigated whether this association of physical fitness and cognitive functioning causes an indirect relationship between physical fitness and dual-task driving performance through cognitive functions. Data from 120 healthy older adults (age: 69.56 ± 3.62, 53 female) were analyzed. Participants completed tests on cardiovascular fitness (cardiorespiratory capacity), motor coordinative fitness (composite score: static balance, psychomotor speed, bimanual dexterity), and cognitive functions (updating, inhibition, shifting, cognitive processing speed). Further, they performed a virtual car driving scenario where they additionally engaged in cognitively demanding tasks that were modeled after typical real-life activities during driving (typing or reasoning). Structural equation modeling (path analysis) was used to investigate whether cardiovascular and motor coordinative fitness were indirectly associated with lane keeping (i.e., variability in lateral position) and speed control (i.e., average velocity) while dual-task driving via cognitive functions. Both cardiovascular and motor coordinative fitness demonstrated the hypothesized indirect effects on dual-task driving. Motor coordinative fitness showed a significant indirect effect on lane keeping, while cardiovascular fitness demonstrated a trend-level indirect effect on speed control. Moreover, both fitness domains were positively related to different cognitive functions (processing speed and/or updating), and cognitive functions (updating or inhibition), in turn, were related to dual-task driving. These findings indicate that cognitive benefits associated with higher fitness may facilitate driving performance. Given that driving with lower cognitive capacity can result in serious consequences, this study emphasizes the importance for older adults to engage in a physically active lifestyle as it might serve as a preventive measure for driving safety.
Collapse
Affiliation(s)
- Robert Stojan
- Institute of Sport and Exercise Sciences, University of Muenster, Muenster, Germany
- Institute of Human Movement Science and Health, Chemnitz University of Technology, Chemnitz, Germany
| | - Navin Kaushal
- School of Health & Human Sciences, Indiana University, Bloomington, IA, United States
| | - Otmar Leo Bock
- Institute of Human Movement Science and Health, Chemnitz University of Technology, Chemnitz, Germany
- Institute of Exercise Training and Sport Informatics, German Sport University Cologne, Cologne, Germany
| | - Nicole Hudl
- Institute of Human Movement Science and Health, Chemnitz University of Technology, Chemnitz, Germany
| | - Claudia Voelcker-Rehage
- Institute of Sport and Exercise Sciences, University of Muenster, Muenster, Germany
- Institute of Human Movement Science and Health, Chemnitz University of Technology, Chemnitz, Germany
| |
Collapse
|