1
|
Tsurugizawa T, Taki A, Zalesky A, Kasahara K. Increased interhemispheric functional connectivity during non-dominant hand movement in right-handed subjects. iScience 2023; 26:107592. [PMID: 37705959 PMCID: PMC10495657 DOI: 10.1016/j.isci.2023.107592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/15/2023] [Accepted: 08/07/2023] [Indexed: 09/15/2023] Open
Abstract
Hand preference is one of the behavioral expressions of lateralization in the brain. Previous fMRI studies showed the activation in several regions including the motor cortex and the cerebellum during single-hand movement. However, functional connectivity related to hand preference has not been investigated. Here, we used the generalized psychophysiological interaction (gPPI) approach to investigate the alteration of functional connectivity during single-hand movement from the resting state in right-hand subjects. The functional connectivity in interhemispheric motor-related regions including the supplementary motor area, the precentral gyrus, and the cerebellum was significantly increased during non-dominant hand movement, while functional connectivity was not increased during dominant hand movement. The general linear model (GLM) showed activation in contralateral supplementary motor area, contralateral precentral gyrus, and ipsilateral cerebellum during right- or left-hand movement. These results indicate that a combination of GLM and gPPI analysis can detect the lateralization of hand preference more clearly.
Collapse
Affiliation(s)
- Tomokazu Tsurugizawa
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba-City, Ibaraki 305-8568, Japan
- Faculty of Engineering, Information and Systems, University of Tsukuba, Tsukuba 305-8573, Japan
| | - Ai Taki
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba-City, Ibaraki 305-8568, Japan
- Faculty of Engineering, Information and Systems, University of Tsukuba, Tsukuba 305-8573, Japan
| | - Andrew Zalesky
- Melbourne Neuropsychiatry Centre and Department of Biomedical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Kazumi Kasahara
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba-City, Ibaraki 305-8568, Japan
| |
Collapse
|
2
|
Towards functional spin-echo BOLD line-scanning in humans at 7T. MAGMA (NEW YORK, N.Y.) 2023; 36:317-327. [PMID: 36625959 PMCID: PMC10140128 DOI: 10.1007/s10334-022-01059-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 01/11/2023]
Abstract
OBJECTIVE Neurons cluster into sub-millimeter spatial structures and neural activity occurs at millisecond resolutions; hence, ultimately, high spatial and high temporal resolutions are required for functional MRI. In this work, we implemented a spin-echo line-scanning (SELINE) sequence to use in high spatial and temporal resolution fMRI. MATERIALS AND METHODS A line is formed by simply rotating the spin-echo refocusing gradient to a plane perpendicular to the excited slice and by removing the phase-encoding gradient. This technique promises a combination of high spatial and temporal resolution (250 μm, 500 ms) and microvascular specificity of functional responses. We compared SELINE data to a corresponding gradient-echo version (GELINE). RESULTS We demonstrate that SELINE showed much-improved line selection (i.e. a sharper line profile) compared to GELINE, albeit at the cost of a significant drop in functional sensitivity. DISCUSSION This low functional sensitivity needs to be addressed before SELINE can be applied for neuroscientific purposes.
Collapse
|
3
|
de Oliveira ÍAF, Siero JCW, Dumoulin SO, van der Zwaag W. Improved Selectivity in 7 T Digit Mapping Using VASO-CBV. Brain Topogr 2023; 36:23-31. [PMID: 36517699 PMCID: PMC9834127 DOI: 10.1007/s10548-022-00932-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022]
Abstract
Functional magnetic resonance imaging (fMRI) at Ultra-high field (UHF, ≥ 7 T) benefits from significant gains in the BOLD contrast-to-noise ratio (CNR) and temporal signal-to-noise ratio (tSNR) compared to conventional field strengths (3 T). Although these improvements enabled researchers to study the human brain to unprecedented spatial resolution, the blood pooling effect reduces the spatial specificity of the widely-used gradient-echo BOLD acquisitions. In this context, vascular space occupancy (VASO-CBV) imaging may be advantageous since it is proposed to have a higher spatial specificity than BOLD. We hypothesized that the assumed higher specificity of VASO-CBV imaging would translate to reduced overlap in fine-scale digit representation maps compared to BOLD-based digit maps. We used sub-millimeter resolution VASO fMRI at 7 T to map VASO-CBV and BOLD responses simultaneously in the motor and somatosensory cortices during individual finger movement tasks. We assessed the cortical overlap in different ways, first by calculating similarity coefficient metrics (DICE and Jaccard) and second by calculating selectivity measures. In addition, we demonstrate a consistent topographical organization of the targeted digit representations (thumb-index-little finger) in the motor areas. We show that the VASO-CBV responses yielded less overlap between the digit clusters than BOLD, and other selectivity measures were higher for VASO-CBV too. In summary, these results were consistent across metrics and participants, confirming the higher spatial specificity of VASO-CBV compared to BOLD.
Collapse
Affiliation(s)
- Ícaro A. F. de Oliveira
- grid.458380.20000 0004 0368 8664Spinoza Centre for Neuroimaging, Meibergdreef 75, 1105 BK Amsterdam, The Netherlands ,grid.12380.380000 0004 1754 9227Experimental and Applied Psychology, VU University, Amsterdam, The Netherlands ,grid.419918.c0000 0001 2171 8263Computational Cognitive Neuroscience and Neuroimaging, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Jeroen C. W. Siero
- grid.458380.20000 0004 0368 8664Spinoza Centre for Neuroimaging, Meibergdreef 75, 1105 BK Amsterdam, The Netherlands ,grid.7692.a0000000090126352Radiology, Utrecht Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Serge O. Dumoulin
- grid.458380.20000 0004 0368 8664Spinoza Centre for Neuroimaging, Meibergdreef 75, 1105 BK Amsterdam, The Netherlands ,grid.12380.380000 0004 1754 9227Experimental and Applied Psychology, VU University, Amsterdam, The Netherlands ,grid.419918.c0000 0001 2171 8263Computational Cognitive Neuroscience and Neuroimaging, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands ,grid.5477.10000000120346234Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, The Netherlands
| | - Wietske van der Zwaag
- grid.458380.20000 0004 0368 8664Spinoza Centre for Neuroimaging, Meibergdreef 75, 1105 BK Amsterdam, The Netherlands ,grid.419918.c0000 0001 2171 8263Computational Cognitive Neuroscience and Neuroimaging, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Akbari A, Bollmann S, Ali TS, Barth M. Modelling the depth-dependent VASO and BOLD responses in human primary visual cortex. Hum Brain Mapp 2022; 44:710-726. [PMID: 36189837 PMCID: PMC9842911 DOI: 10.1002/hbm.26094] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/05/2022] [Accepted: 08/07/2022] [Indexed: 01/25/2023] Open
Abstract
Functional magnetic resonance imaging (fMRI) using a blood-oxygenation-level-dependent (BOLD) contrast is a common method for studying human brain function noninvasively. Gradient-echo (GRE) BOLD is highly sensitive to the blood oxygenation change in blood vessels; however, the spatial signal specificity can be degraded due to signal leakage from activated lower layers to superficial layers in depth-dependent (also called laminar or layer-specific) fMRI. Alternatively, physiological variables such as cerebral blood volume using the VAscular-Space-Occupancy (VASO) contrast have shown higher spatial specificity compared to BOLD. To better understand the physiological mechanisms such as blood volume and oxygenation changes and to interpret the measured depth-dependent responses, models are needed which reflect vascular properties at this scale. For this purpose, we extended and modified the "cortical vascular model" previously developed to predict layer-specific BOLD signal changes in human primary visual cortex to also predict a layer-specific VASO response. To evaluate the model, we compared the predictions with experimental results of simultaneous VASO and BOLD measurements in a group of healthy participants. Fitting the model to our experimental data provided an estimate of CBV change in different vascular compartments upon neural activity. We found that stimulus-evoked CBV change mainly occurs in small arterioles, capillaries, and intracortical arteries and that the contribution from venules and ICVs is smaller. Our results confirm that VASO is less susceptible to large vessel effects compared to BOLD, as blood volume changes in intracortical arteries did not substantially affect the resulting depth-dependent VASO profiles, whereas depth-dependent BOLD profiles showed a bias towards signal contributions from intracortical veins.
Collapse
Affiliation(s)
- Atena Akbari
- Centre for Advanced ImagingUniversity of QueenslandBrisbaneAustralia
| | - Saskia Bollmann
- Centre for Advanced ImagingUniversity of QueenslandBrisbaneAustralia
| | - Tonima S. Ali
- Centre for Advanced ImagingUniversity of QueenslandBrisbaneAustralia
| | - Markus Barth
- Centre for Advanced ImagingUniversity of QueenslandBrisbaneAustralia,ARC Training Centre for Innovation in Biomedical Imaging TechnologyThe University of QueenslandBrisbaneAustralia,School of Information Technology and Electrical EngineeringThe University of QueenslandBrisbaneQueenslandAustralia
| |
Collapse
|
5
|
Oliveira ÍAF, Cai Y, Hofstetter S, Siero JCW, van der Zwaag W, Dumoulin SO. Comparing BOLD and VASO-CBV population receptive field estimates in human visual cortex. Neuroimage 2021; 248:118868. [PMID: 34974115 DOI: 10.1016/j.neuroimage.2021.118868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/20/2021] [Accepted: 12/29/2021] [Indexed: 10/19/2022] Open
Abstract
Vascular Space Occupancy (VASO) is an alternative fMRI approach based on changes in Cerebral Blood Volume (CBV). VASO-CBV fMRI can provide higher spatial specificity than the blood oxygenation level-dependent (BOLD) method because the CBV response is thought to be limited to smaller vessels. To investigate how this technique compares to BOLD fMRI for cognitive neuroscience applications, we compared population receptive field (pRF) mapping estimates between BOLD and VASO-CBV. We hypothesized that VASO-CBV would elicit distinct pRF properties compared to BOLD. Specifically, since pRF size estimates also depend on vascular sources, we hypothesized that reduced vascular blurring might yield narrower pRFs for VASO-CBV measurements. We used a VASO sequence with a double readout 3D EPI sequence at 7T to simultaneously measure VASO-CBV and BOLD responses in the visual cortex while participants viewed conventional pRF mapping stimuli. Both VASO-CBV and BOLD images show similar eccentricity and polar angle maps across all participants. Compared to BOLD-based measurements, VASO-CBV yielded lower tSNR and variance explained. The pRF size changed with eccentricity similarly for VASO-CBV and BOLD, and the pRF size estimates were similar for VASO-CBV and BOLD, even when we equate variance explained between VASO-CBV and BOLD. This result suggests that the vascular component of the pRF size is not dominating in either VASO-CBV or BOLD.
Collapse
Affiliation(s)
- Ícaro A F Oliveira
- Spinoza Centre for Neuroimaging, Meibergdreef 75, Amsterdam 1105 BK, the Netherland; Experimental and Applied Psychology, VU University, Amsterdam, the Netherland.
| | - Yuxuan Cai
- Spinoza Centre for Neuroimaging, Meibergdreef 75, Amsterdam 1105 BK, the Netherland; Experimental and Applied Psychology, VU University, Amsterdam, the Netherland
| | - Shir Hofstetter
- Spinoza Centre for Neuroimaging, Meibergdreef 75, Amsterdam 1105 BK, the Netherland
| | - Jeroen C W Siero
- Spinoza Centre for Neuroimaging, Meibergdreef 75, Amsterdam 1105 BK, the Netherland; Radiology, Utrecht Center for Image Sciences, University Medical Center Utrecht, Utrecht, the Netherland
| | | | - Serge O Dumoulin
- Spinoza Centre for Neuroimaging, Meibergdreef 75, Amsterdam 1105 BK, the Netherland; Experimental and Applied Psychology, VU University, Amsterdam, the Netherland; Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, the Netherland
| |
Collapse
|
6
|
Raimondo L, Oliveira ĹAF, Heij J, Priovoulos N, Kundu P, Leoni RF, van der Zwaag W. Advances in resting state fMRI acquisitions for functional connectomics. Neuroimage 2021; 243:118503. [PMID: 34479041 DOI: 10.1016/j.neuroimage.2021.118503] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 08/16/2021] [Accepted: 08/22/2021] [Indexed: 01/21/2023] Open
Abstract
Resting state functional magnetic resonance imaging (rs-fMRI) is based on spontaneous fluctuations in the blood oxygen level dependent (BOLD) signal, which occur simultaneously in different brain regions, without the subject performing an explicit task. The low-frequency oscillations of the rs-fMRI signal demonstrate an intrinsic spatiotemporal organization in the brain (brain networks) that may relate to the underlying neural activity. In this review article, we briefly describe the current acquisition techniques for rs-fMRI data, from the most common approaches for resting state acquisition strategies, to more recent investigations with dedicated hardware and ultra-high fields. Specific sequences that allow very fast acquisitions, or multiple echoes, are discussed next. We then consider how acquisition methods weighted towards specific parts of the BOLD signal, like the Cerebral Blood Flow (CBF) or Volume (CBV), can provide more spatially specific network information. These approaches are being developed alongside the commonly used BOLD-weighted acquisitions. Finally, specific applications of rs-fMRI to challenging regions such as the laminae in the neocortex, and the networks within the large areas of subcortical white matter regions are discussed. We finish the review with recommendations for acquisition strategies for a range of typical applications of resting state fMRI.
Collapse
Affiliation(s)
- Luisa Raimondo
- Spinoza Centre for Neuroimaging, Amsterdam, the Netherlands; Experimental and Applied Psychology, VU University, Amsterdam, the Netherlands
| | - Ĺcaro A F Oliveira
- Spinoza Centre for Neuroimaging, Amsterdam, the Netherlands; Experimental and Applied Psychology, VU University, Amsterdam, the Netherlands
| | - Jurjen Heij
- Spinoza Centre for Neuroimaging, Amsterdam, the Netherlands; Experimental and Applied Psychology, VU University, Amsterdam, the Netherlands
| | | | - Prantik Kundu
- Hyperfine Research Inc, Guilford, CT, United States; Icahn School of Medicine at Mt. Sinai, New York, United States
| | - Renata Ferranti Leoni
- InBrain, Department of Physics, FFCLRP, University of São Paulo, Ribeirão Preto, Brazil
| | | |
Collapse
|