1
|
Xavier J, Bastos CR, Marins TM, Camerini L, Behling De Mello D, Antunes B, de Ávila Quevedo L, de Matos MB, Pinheiro RT, Ghisleni G. COMT Val 158Met polymorphism protects the impact of a mother's history of childhood trauma on emotional and behavioural problems in preschool children. Eur J Neurosci 2024; 60:7263-7273. [PMID: 39631778 DOI: 10.1111/ejn.16631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 11/11/2024] [Accepted: 11/16/2024] [Indexed: 12/07/2024]
Abstract
Childhood trauma has a well-established negative impact on mental health outcomes across the lifespan. Cumulative evidence suggests an intergenerational transmission of trauma to descendants. In this way, considering the child's COMT Val158Met (rs4680: G > A) variant, the study aims to investigate the interactive effect of maternal childhood trauma on the emotional/behavioural problems of their offspring in preschoolers age (4-5 and 11 years old) from a population-based dyad of pregnant adolescent women. The behaviour problems of 310 children were assessed using the Child Behaviour Checklist (CBCL) instrument, and maternal trauma was assessed with the Child Trauma Questionnaire (CTQ) between the 20 to 22° gestational weeks. Maternal childhood trauma increases the risk for all emotional/behavioural problems in the offspring, and no direct association between the child's Val158Met genotypes with emotional/behavioural problems. Interestingly, in moderation analysis adjusted by sex, age and skin colour, children of mothers exposed to childhood trauma, carrying the Val/Met genotype, are less likely to develop externalising (p = .020) and total problems (p = .041) when compared to homozygous (Val/Val and Met/Met). Thus, our findings reinforce evidence on the intergenerational impact of maternal trauma on emotional/behavioural problems and demonstrate that this risk is influenced by the genetic background of the individual, varying according to the functional COMT genotype, which confers a protective profile for the development of externalising and total problems.
Collapse
Affiliation(s)
- Janaína Xavier
- Post-Graduated Program in Health and Behavior, Catholic University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Clarissa Ribeiro Bastos
- Post-Graduated Program in Health and Behavior, Catholic University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Thayane Moreira Marins
- Post-Graduated Program in Health and Behavior, Catholic University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Laísa Camerini
- Post-Graduated Program in Epidemiology, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Daniele Behling De Mello
- Post-Graduated Program in Health and Behavior, Catholic University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Bruna Antunes
- Post-Graduated Program in Health and Behavior, Catholic University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Luciana de Ávila Quevedo
- Post-Graduated Program in Health and Behavior, Catholic University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Mariana Bonati de Matos
- Post-Graduated Program in Health and Behavior, Catholic University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Ricardo Tavares Pinheiro
- Post-Graduated Program in Health and Behavior, Catholic University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Gabriele Ghisleni
- Post-Graduated Program in Health and Behavior, Catholic University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| |
Collapse
|
2
|
Gerra MC, Dallabona C, Manfredini M, Giordano R, Capriotti C, González-Villar A, Triñanes Y, Arendt-Nielsen L, Carrillo-de-la-Peña MT. The polymorphism Val158Met in the COMT gene: disrupted dopamine system in fibromyalgia patients? Pain 2024; 165:e184-e189. [PMID: 38916531 PMCID: PMC11562751 DOI: 10.1097/j.pain.0000000000003313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/26/2024] [Accepted: 05/18/2024] [Indexed: 06/26/2024]
Abstract
ABSTRACT The single-nucleotide polymorphism (SNP) rs4680 in the catechol-O-methyltransferase gene ( COMT ) is a missense variant (Val158Met) associated with altered activity of the COMT enzyme and suggested as a predictive feature for developing some chronic pain conditions. However, there are controversial results on its role in fibromyalgia (FM). Here, the SNP Val158Met was analyzed in 294 FM patients (without comorbidities) and 209 healthy controls (without chronic pain). The concurrent impact of Val158Met genotypes and FM comorbid disorders (depression and sleep impairment) on FM risk were tested. In addition, the genotypic distribution of FM patients in relation to pain intensity was evaluated. The G allele (Val) resulted in being more represented in the FM group (57.8%) compared with the control group (48.8%; P = 0.037). Logistic regression highlighted that having the G/G (Val/Val) homozygous genotype was associated with 2 times higher risk of having FM compared with the A/A (Met/Met) carriers ( P = 0.038), whereas depression and sleep impairment increased FM risk by 12 and 8 times, respectively ( P < 0.001). However, considering only the FM patient group, the A/A homozygous genotype was significantly associated with severe pain intensity ( P = 0.007). This study highlighted associations between the SNP Val158Met and both FM and pain intensity, suggesting a link between dopaminergic dysfunction and vulnerability to chronic pain. Further studies should explore this SNP in FM patients in conjunction with COMT enzymatic activity and other symptoms connected with the dopaminergic system such as depression or sleep impairment.
Collapse
Affiliation(s)
- Maria Carla Gerra
- Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Cristina Dallabona
- Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Matteo Manfredini
- Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Rocco Giordano
- Center for Neuroplasticity and Pain (CNAP), SMI®, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Camilla Capriotti
- Center for Neuroplasticity and Pain (CNAP), SMI®, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Alberto González-Villar
- Psychological Neuroscience Lab, Psychology Research Centre, School of Psychology, University of Minho, Braga, Portugal
| | - Yolanda Triñanes
- Department of Clinical Psychology and Psychobiology, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Lars Arendt-Nielsen
- Center for Neuroplasticity and Pain (CNAP), SMI®, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
- Department of Gastroenterology & Hepatology, Mech-Sense, Clinical Institute, Aalborg University Hospital, Aalborg, Denmark
- Steno Diabetes Center North Denmark, Clinical Institute, Aalborg University Hospital, Aalborg, Denmark
| | | |
Collapse
|
3
|
Bonetti L, Vænggård AK, Iorio C, Vuust P, Lumaca M. Decreased inter-hemispheric connectivity predicts a coherent retrieval of auditory symbolic material. Biol Psychol 2024; 193:108881. [PMID: 39332661 DOI: 10.1016/j.biopsycho.2024.108881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 09/19/2024] [Accepted: 09/24/2024] [Indexed: 09/29/2024]
Abstract
Investigating the transmission of information between individuals is essential to better understand how humans communicate. Coherent information transmission (i.e., transmission without significant modifications or loss of fidelity) helps preserving cultural traits and traditions over time, while innovation may lead to new cultural variants. Although much research has focused on the cognitive mechanisms underlying cultural transmission, little is known on the brain features which correlates with coherent transmission of information. To address this gap, we combined structural (from high-resolution diffusion imaging) and functional connectivity (from resting-state functional magnetic resonance imaging [fMRI]) with a laboratory model of cultural transmission, the signalling games, implemented outside the MRI scanner. We found that individuals who exhibited more coherence in the transmission of auditory symbolic information were characterized by lower levels of both structural and functional inter-hemispheric connectivity. Specifically, higher coherence negatively correlated with the strength of bilateral structural connections between frontal and subcortical, insular and temporal brain regions. Similarly, we observed increased inter-hemispheric functional connectivity between inferior frontal brain regions derived from structural connectivity analysis in individuals who exhibited lower transmission coherence. Our results suggest that lateralization of cognitive processes involved in semantic mappings in the brain may be related to the stability over time of auditory symbolic systems.
Collapse
Affiliation(s)
- Leonardo Bonetti
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music, Aarhus/Aalborg, Denmark; Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, United Kingdom; Department of Psychiatry, University of Oxford, Oxford, United Kingdom.
| | - Anna Kildall Vænggård
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music, Aarhus/Aalborg, Denmark
| | - Claudia Iorio
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music, Aarhus/Aalborg, Denmark; LEAD-CNRS UMR 5022, Université de Bourgogne, Dijon 21000, France
| | - Peter Vuust
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music, Aarhus/Aalborg, Denmark
| | - Massimo Lumaca
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music, Aarhus/Aalborg, Denmark.
| |
Collapse
|
4
|
Bonetti L, Brattico E, Carlomagno F, Cabral J, Stevner A, Deco G, Whybrow PC, Pearce M, Pantazis D, Vuust P, Kringelbach ML. Spatiotemporal whole-brain activity and functional connectivity of melodies recognition. Cereb Cortex 2024; 34:bhae320. [PMID: 39110413 PMCID: PMC11304985 DOI: 10.1093/cercor/bhae320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/12/2024] [Accepted: 07/26/2024] [Indexed: 08/10/2024] Open
Abstract
Music is a non-verbal human language, built on logical, hierarchical structures, that offers excellent opportunities to explore how the brain processes complex spatiotemporal auditory sequences. Using the high temporal resolution of magnetoencephalography, we investigated the unfolding brain dynamics of 70 participants during the recognition of previously memorized musical sequences compared to novel sequences matched in terms of entropy and information content. Measures of both whole-brain activity and functional connectivity revealed a widespread brain network underlying the recognition of the memorized auditory sequences, which comprised primary auditory cortex, superior temporal gyrus, insula, frontal operculum, cingulate gyrus, orbitofrontal cortex, basal ganglia, thalamus, and hippocampus. Furthermore, while the auditory cortex responded mainly to the first tones of the sequences, the activity of higher-order brain areas such as the cingulate gyrus, frontal operculum, hippocampus, and orbitofrontal cortex largely increased over time during the recognition of the memorized versus novel musical sequences. In conclusion, using a wide range of analytical techniques spanning from decoding to functional connectivity and building on previous works, our study provided new insights into the spatiotemporal whole-brain mechanisms for conscious recognition of auditory sequences.
Collapse
Affiliation(s)
- Leonardo Bonetti
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music, 8000 Aarhus/Aalborg, Denmark
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, OX39BX Oxford, United Kingdom
- Department of Psychiatry, University of Oxford, OX37JX Oxford, United Kingdom
| | - Elvira Brattico
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music, 8000 Aarhus/Aalborg, Denmark
- Department of Education, Psychology, Communication, University of Bari Aldo Moro, 70121 Bari, Italy
| | - Francesco Carlomagno
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music, 8000 Aarhus/Aalborg, Denmark
| | - Joana Cabral
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music, 8000 Aarhus/Aalborg, Denmark
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, OX39BX Oxford, United Kingdom
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
| | - Angus Stevner
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music, 8000 Aarhus/Aalborg, Denmark
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, OX39BX Oxford, United Kingdom
| | - Gustavo Deco
- Computational and Theoretical Neuroscience Group, Center for Brain and Cognition, Universitat Pompeu Fabra, 08018 Barcelona, Spain
- Institució Catalana de la Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, Barcelona, Spain
| | - Peter C Whybrow
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, 90095 Los Angeles, CA, United States
| | - Marcus Pearce
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music, 8000 Aarhus/Aalborg, Denmark
| | - Dimitrios Pantazis
- McGovern Institute for Brain Research, Massachusetts Institute of Technology (MIT), 02139 Cambridge, MA, United States
| | - Peter Vuust
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music, 8000 Aarhus/Aalborg, Denmark
| | - Morten L Kringelbach
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music, 8000 Aarhus/Aalborg, Denmark
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, OX39BX Oxford, United Kingdom
- Department of Psychiatry, University of Oxford, OX37JX Oxford, United Kingdom
| |
Collapse
|
5
|
Heng JG, Zhang J, Bonetti L, Lim WPH, Vuust P, Agres K, Chen SHA. Understanding music and aging through the lens of Bayesian inference. Neurosci Biobehav Rev 2024; 163:105768. [PMID: 38908730 DOI: 10.1016/j.neubiorev.2024.105768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 06/05/2024] [Accepted: 06/10/2024] [Indexed: 06/24/2024]
Abstract
Bayesian inference has recently gained momentum in explaining music perception and aging. A fundamental mechanism underlying Bayesian inference is the notion of prediction. This framework could explain how predictions pertaining to musical (melodic, rhythmic, harmonic) structures engender action, emotion, and learning, expanding related concepts of music research, such as musical expectancies, groove, pleasure, and tension. Moreover, a Bayesian perspective of music perception may shed new insights on the beneficial effects of music in aging. Aging could be framed as an optimization process of Bayesian inference. As predictive inferences refine over time, the reliance on consolidated priors increases, while the updating of prior models through Bayesian inference attenuates. This may affect the ability of older adults to estimate uncertainties in their environment, limiting their cognitive and behavioral repertoire. With Bayesian inference as an overarching framework, this review synthesizes the literature on predictive inferences in music and aging, and details how music could be a promising tool in preventive and rehabilitative interventions for older adults through the lens of Bayesian inference.
Collapse
Affiliation(s)
- Jiamin Gladys Heng
- School of Computer Science and Engineering, Nanyang Technological University, Singapore.
| | - Jiayi Zhang
- Interdisciplinary Graduate Program, Nanyang Technological University, Singapore; School of Social Sciences, Nanyang Technological University, Singapore; Centre for Research and Development in Learning, Nanyang Technological University, Singapore
| | - Leonardo Bonetti
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music, Aarhus, Aalborg, Denmark; Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, United Kingdom; Department of Psychiatry, University of Oxford, United Kingdom; Department of Psychology, University of Bologna, Italy
| | | | - Peter Vuust
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music, Aarhus, Aalborg, Denmark
| | - Kat Agres
- Centre for Music and Health, National University of Singapore, Singapore; Yong Siew Toh Conservatory of Music, National University of Singapore, Singapore
| | - Shen-Hsing Annabel Chen
- School of Social Sciences, Nanyang Technological University, Singapore; Centre for Research and Development in Learning, Nanyang Technological University, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore; National Institute of Education, Nanyang Technological University, Singapore.
| |
Collapse
|
6
|
Herff SA, Bonetti L, Cecchetti G, Vuust P, Kringelbach ML, Rohrmeier MA. Hierarchical syntax model of music predicts theta power during music listening. Neuropsychologia 2024; 199:108905. [PMID: 38740179 DOI: 10.1016/j.neuropsychologia.2024.108905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 03/07/2024] [Accepted: 05/06/2024] [Indexed: 05/16/2024]
Abstract
Linguistic research showed that the depth of syntactic embedding is reflected in brain theta power. Here, we test whether this also extends to non-linguistic stimuli, specifically music. We used a hierarchical model of musical syntax to continuously quantify two types of expert-annotated harmonic dependencies throughout a piece of Western classical music: prolongation and preparation. Prolongations can roughly be understood as a musical analogue to linguistic coordination between constituents that share the same function (e.g., 'pizza' and 'pasta' in 'I ate pizza and pasta'). Preparation refers to the dependency between two harmonies whereby the first implies a resolution towards the second (e.g., dominant towards tonic; similar to how the adjective implies the presence of a noun in 'I like spicy … '). Source reconstructed MEG data of sixty-five participants listening to the musical piece was then analysed. We used Bayesian Mixed Effects models to predict theta envelope in the brain, using the number of open prolongation and preparation dependencies as predictors whilst controlling for audio envelope. We observed that prolongation and preparation both carry independent and distinguishable predictive value for theta band fluctuation in key linguistic areas such as the Angular, Superior Temporal, and Heschl's Gyri, or their right-lateralised homologues, with preparation showing additional predictive value for areas associated with the reward system and prediction. Musical expertise further mediated these effects in language-related brain areas. Results show that predictions of precisely formalised music-theoretical models are reflected in the brain activity of listeners which furthers our understanding of the perception and cognition of musical structure.
Collapse
Affiliation(s)
- Steffen A Herff
- Sydney Conservatorium of Music, University of Sydney, Sydney, Australia; The MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Sydney, Australia; Digital and Cognitive Musicology Lab, College of Humanities, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| | - Leonardo Bonetti
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music, Aarhus/Aalborg, Denmark; Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, United Kingdom; Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Gabriele Cecchetti
- The MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Sydney, Australia; Digital and Cognitive Musicology Lab, College of Humanities, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Peter Vuust
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music, Aarhus/Aalborg, Denmark
| | - Morten L Kringelbach
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music, Aarhus/Aalborg, Denmark; Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, United Kingdom; Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Martin A Rohrmeier
- Digital and Cognitive Musicology Lab, College of Humanities, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
7
|
Bonetti L, Fernández-Rubio G, Carlomagno F, Dietz M, Pantazis D, Vuust P, Kringelbach ML. Spatiotemporal brain hierarchies of auditory memory recognition and predictive coding. Nat Commun 2024; 15:4313. [PMID: 38773109 PMCID: PMC11109219 DOI: 10.1038/s41467-024-48302-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 04/25/2024] [Indexed: 05/23/2024] Open
Abstract
Our brain is constantly extracting, predicting, and recognising key spatiotemporal features of the physical world in order to survive. While neural processing of visuospatial patterns has been extensively studied, the hierarchical brain mechanisms underlying conscious recognition of auditory sequences and the associated prediction errors remain elusive. Using magnetoencephalography (MEG), we describe the brain functioning of 83 participants during recognition of previously memorised musical sequences and systematic variations. The results show feedforward connections originating from auditory cortices, and extending to the hippocampus, anterior cingulate gyrus, and medial cingulate gyrus. Simultaneously, we observe backward connections operating in the opposite direction. Throughout the sequences, the hippocampus and cingulate gyrus maintain the same hierarchical level, except for the final tone, where the cingulate gyrus assumes the top position within the hierarchy. The evoked responses of memorised sequences and variations engage the same hierarchical brain network but systematically differ in terms of temporal dynamics, strength, and polarity. Furthermore, induced-response analysis shows that alpha and beta power is stronger for the variations, while gamma power is enhanced for the memorised sequences. This study expands on the predictive coding theory by providing quantitative evidence of hierarchical brain mechanisms during conscious memory and predictive processing of auditory sequences.
Collapse
Affiliation(s)
- L Bonetti
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music, Aarhus/Aalborg, Denmark.
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, United Kingdom.
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom.
- Department of Psychology, University of Bologna, Bologna, Italy.
| | - G Fernández-Rubio
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music, Aarhus/Aalborg, Denmark
| | - F Carlomagno
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music, Aarhus/Aalborg, Denmark
- Department of Education, Psychology, Communication, University of Bari Aldo Moro, Bari, Italy
| | - M Dietz
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - D Pantazis
- McGovern Institute for Brain Research, Massachusetts Institute of Technology (MIT), Cambridge, MA, 02139, USA
| | - P Vuust
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music, Aarhus/Aalborg, Denmark
| | - M L Kringelbach
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music, Aarhus/Aalborg, Denmark
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, United Kingdom
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
8
|
Bonetti L, Bruzzone S, Paunio T, Kantojärvi K, Kliuchko M, Vuust P, Palva S, Brattico E. Moderate associations between BDNF Val66Met gene polymorphism, musical expertise, and mismatch negativity. Heliyon 2023; 9:e15600. [PMID: 37153429 PMCID: PMC10160759 DOI: 10.1016/j.heliyon.2023.e15600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 03/31/2023] [Accepted: 04/17/2023] [Indexed: 05/09/2023] Open
Abstract
Auditory predictive processing relies on a complex interaction between environmental, neurophysiological, and genetic factors. In this view, the mismatch negativity (MMN) and intensive training on a musical instrument for several years have been used for studying environment-driven neural adaptations in audition. In addition, brain-derived neurotrophic factor (BDNF) has been shown crucial for both the neurogenesis and the later adaptation of the auditory system. The functional single-nucleotide polymorphism (SNP) Val66Met (rs6265) in the BDNF gene can affect BDNF protein levels, which are involved in neurobiological and neurophysiological processes such as neurogenesis and neuronal plasticity. In this study, we hypothesised that genetic variation within the BDNF gene would be associated with different levels of neuroplasticity of the auditory cortex in 74 musically trained participants. To achieve this goal, musicians and non-musicians were recruited and divided in Val/Val and Met- (Val/Met and Met/Met) carriers and their brain activity was measured with magnetoencephalography (MEG) while they listened to a regular auditory sequence eliciting different types of prediction errors. MMN responses indexing those prediction errors were overall enhanced in Val/Val carriers who underwent intensive musical training, compared to Met-carriers and non-musicians with either genotype. Although this study calls for replications with larger samples, our results provide a first glimpse of the possible role of gene-regulated neurotrophic factors in the neural adaptations of automatic predictive processing in the auditory domain after long-term training.
Collapse
Affiliation(s)
- L. Bonetti
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & the Royal Academy of Music Aarhus/Aalborg, Denmark
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, UK
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
- Department of Psychology, University of Bologna, Italy
- Corresponding author. Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & the Royal Academy of Music Aarhus/Aalborg, Denmark, and Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, UK.
| | - S.E.P. Bruzzone
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & the Royal Academy of Music Aarhus/Aalborg, Denmark
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - T. Paunio
- Department of Psychiatry, University of Helsinki, Finland
| | - K. Kantojärvi
- Department of Psychiatry, University of Helsinki, Finland
| | - M. Kliuchko
- Hearing Systems Section, Department of Health Technology, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark
| | - P. Vuust
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & the Royal Academy of Music Aarhus/Aalborg, Denmark
| | - S. Palva
- Helsinki Institute of Life Sciences, Neuroscience Center, University of Helsinki, Finland
- Centre for Cognitive Neuroscience, School of Neuroscience and Psychology, University of Glasgow, United Kingdom
| | - E. Brattico
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & the Royal Academy of Music Aarhus/Aalborg, Denmark
- Department of Education, Psychology, Communication, University of Bari Aldo Moro, Italy
- Corresponding author. Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & the Royal Academy of Music Aarhus/Aalborg, Denmark.
| |
Collapse
|
9
|
Potential Regulation of miRNA-29 and miRNA-9 by Estrogens in Neurodegenerative Disorders: An Insightful Perspective. Brain Sci 2023; 13:brainsci13020243. [PMID: 36831786 PMCID: PMC9954655 DOI: 10.3390/brainsci13020243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 02/04/2023] Open
Abstract
Finding a link between a hormone and microRNAs (miRNAs) is of great importance since it enables the adjustment of genetic composition or cellular functions without needing gene-level interventions. The dicer-mediated cleavage of precursor miRNAs is an interface link between miRNA and its regulators; any disruption in this process can affect neurogenesis. Besides, the hormonal regulation of miRNAs can occur at the molecular and cellular levels, both directly, through binding to the promoter elements of miRNAs, and indirectly, via regulation of the signaling effects of the post-transcriptional processing proteins. Estrogenic hormones have many roles in regulating miRNAs in the brain. This review discusses miRNAs, their detailed biogenesis, activities, and both the general and estrogen-dependent regulations. Additionally, we highlight the relationship between miR-29, miR-9, and estrogens in the nervous system. Such a relationship could be a possible etiological route for developing various neurodegenerative disorders.
Collapse
|
10
|
Trempler I, Binder E, Reuter M, Plieger T, Standke I, Mecklenbrauck F, Meinert S, Forstner AJ, Nöthen MM, Rietschel M, Stürmer S, Dannlowski U, Tittgemeyer M, Lencer R, Fink GR, Schubotz RI. Effects of DRD2/ANKK1 and COMT Val158Met polymorphisms on stabilization against and adaptation to unexpected events. Cereb Cortex 2022; 32:5698-5715. [PMID: 35235645 DOI: 10.1093/cercor/bhac046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 01/25/2023] Open
Abstract
Genetic variations affecting dopaminergic neuromodulation such as the DRD2/ANKK1 and the COMT Val158Met polymorphisms contribute to goal-directed behavior that requires a balance between stabilization and updating of current states and behaviors. Dopamine is also thought to be relevant for encoding of surprise signals to sensory input and adaptive learning. A link between goal-directed behavior and learning from surprise is therefore plausible. In the present fMRI study, we investigated whether DRD2 and COMT polymorphisms are related to behavioral responses and neural signals in the caudate nucleus and dlPFC during updating or stabilizing internal models of predictable digit sequences. To-be-detected switches between sequences and to-be-ignored digit omissions within a sequence varied by information-theoretic quantities of surprise and entropy. We found that A1 noncarriers and Val-carriers showed a lower response threshold along with increased caudate and dlPFC activation to surprising switches compared with A1-carriers and Met-homozygotes, whose dlPFC activity increased with decreasing switch surprise. In contrast, there were overall smaller differences in behavioral and neural modulation by drift surprise. Our results suggest that the impact of dopamine-relevant polymorphisms in the flexibility-stability trade-off may result in part from the role of dopamine in encoding the weight afforded to events requiring updating or stabilization.
Collapse
Affiliation(s)
- Ima Trempler
- Department of Psychology, University of Muenster, Fliednerstr. 21, Muenster D48149, Germany.,Otto-Creutzfeldt-Center for Cognitive and Behavioural Neuroscience, University of Muenster, Fliednerstr. 21, Muenster D48149, Germany
| | - Ellen Binder
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, Cologne D50937, Germany
| | - Martin Reuter
- Department of Psychology, University of Bonn, Kaiser-Karl-Ring 9, Bonn D53111, Germany.,Laboratory of Neurogenetics, Center for Economics and Neuroscience, University of Bonn, Am Hofgarten 8, Bonn D53113, Germany
| | - Thomas Plieger
- Department of Psychology, University of Bonn, Kaiser-Karl-Ring 9, Bonn D53111, Germany.,Laboratory of Neurogenetics, Center for Economics and Neuroscience, University of Bonn, Am Hofgarten 8, Bonn D53113, Germany
| | - Isabel Standke
- Institute for Translational Psychiatry, University of Muenster, Albert-Schweitzer-Str. 11, Muenster D48149, Germany
| | - Falko Mecklenbrauck
- Department of Psychology, University of Muenster, Fliednerstr. 21, Muenster D48149, Germany.,Otto-Creutzfeldt-Center for Cognitive and Behavioural Neuroscience, University of Muenster, Fliednerstr. 21, Muenster D48149, Germany
| | - Susanne Meinert
- Institute for Translational Psychiatry, University of Muenster, Albert-Schweitzer-Str. 11, Muenster D48149, Germany.,Institute for Translational Neuroscience, University of Muenster, Albert-Schweitzer-Str. 11, Muenster D48149, Germany
| | - Andreas J Forstner
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Sigmund-Freud-Str. 25, Bonn D53127, Germany.,Institute of Neuroscience and Medicine (INM-1), Research Center Juelich, Wilhelm-Johnen-Str., Juelich D52428, Germany
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Sigmund-Freud-Str. 25, Bonn D53127, Germany
| | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, J5, Mannheim D68159, Germany
| | - Sophie Stürmer
- Department of Psychiatry, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, Cologne D50937, Germany
| | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Muenster, Albert-Schweitzer-Str. 11, Muenster D48149, Germany
| | - Marc Tittgemeyer
- Translational Neurocircuitry Group, Max-Planck-Institute for Metabolism Research, Gleueler Str. 50, Cologne D50931, Germany.,Cluster of Excellence in Cellular Stress Responses in Aging-associated Diseases (CECAD), Joseph-Stelzmann-Str. 26, Cologne D50931, Germany
| | - Rebekka Lencer
- Institute for Translational Psychiatry, University of Muenster, Albert-Schweitzer-Str. 11, Muenster D48149, Germany.,Department of Psychiatry and Psychotherapy, University of Luebeck, Ratzeburger Allee 160, Luebeck, D23538, Germany
| | - Gereon R Fink
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, Cologne D50937, Germany.,Institute of Neuroscience and Medicine (INM3), Research Centre Juelich, Wilhelm-Johnen-Str., Juelich D52428, Germany
| | - Ricarda I Schubotz
- Department of Psychology, University of Muenster, Fliednerstr. 21, Muenster D48149, Germany.,Otto-Creutzfeldt-Center for Cognitive and Behavioural Neuroscience, University of Muenster, Fliednerstr. 21, Muenster D48149, Germany.,Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, Cologne D50937, Germany
| |
Collapse
|
11
|
Bonetti L, Carlomagno F, Kliuchko M, Gold B, Palva S, Haumann N, Tervaniemi M, Huotilainen M, Vuust P, Brattico E. Whole-brain computation of cognitive versus acoustic errors in music: A mismatch negativity study. NEUROIMAGE: REPORTS 2022. [DOI: 10.1016/j.ynirp.2022.100145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
12
|
Fernández-Rubio G, Brattico E, Kotz SA, Kringelbach ML, Vuust P, Bonetti L. Magnetoencephalography recordings reveal the spatiotemporal dynamics of recognition memory for complex versus simple auditory sequences. Commun Biol 2022; 5:1272. [PMID: 36402843 PMCID: PMC9675809 DOI: 10.1038/s42003-022-04217-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 11/02/2022] [Indexed: 11/21/2022] Open
Abstract
Auditory recognition is a crucial cognitive process that relies on the organization of single elements over time. However, little is known about the spatiotemporal dynamics underlying the conscious recognition of auditory sequences varying in complexity. To study this, we asked 71 participants to learn and recognize simple tonal musical sequences and matched complex atonal sequences while their brain activity was recorded using magnetoencephalography (MEG). Results reveal qualitative changes in neural activity dependent on stimulus complexity: recognition of tonal sequences engages hippocampal and cingulate areas, whereas recognition of atonal sequences mainly activates the auditory processing network. Our findings reveal the involvement of a cortico-subcortical brain network for auditory recognition and support the idea that stimulus complexity qualitatively alters the neural pathways of recognition memory.
Collapse
Affiliation(s)
- Gemma Fernández-Rubio
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music, Aarhus/Aalborg, Aarhus, Denmark.
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands.
| | - Elvira Brattico
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music, Aarhus/Aalborg, Aarhus, Denmark
- Department of Education, Psychology, Communication, University of Bari Aldo Moro, Bari, Italy
| | - Sonja A Kotz
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Morten L Kringelbach
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music, Aarhus/Aalborg, Aarhus, Denmark
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, United Kingdom
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Peter Vuust
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music, Aarhus/Aalborg, Aarhus, Denmark
| | - Leonardo Bonetti
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music, Aarhus/Aalborg, Aarhus, Denmark
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, United Kingdom
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
13
|
Bonetti L, Brattico E, Bruzzone SEP, Donati G, Deco G, Pantazis D, Vuust P, Kringelbach ML. Brain recognition of previously learned versus novel temporal sequences: a differential simultaneous processing. Cereb Cortex 2022; 33:5524-5537. [PMID: 36346308 PMCID: PMC10152090 DOI: 10.1093/cercor/bhac439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/12/2022] [Accepted: 12/13/2022] [Indexed: 11/09/2022] Open
Abstract
Abstract
Memory for sequences is a central topic in neuroscience, and decades of studies have investigated the neural mechanisms underlying the coding of a wide array of sequences extended over time. Yet, little is known on the brain mechanisms underlying the recognition of previously memorized versus novel temporal sequences. Moreover, the differential brain processing of single items in an auditory temporal sequence compared to the whole superordinate sequence is not fully understood. In this magnetoencephalography (MEG) study, the items of the temporal sequence were independently linked to local and rapid (2–8 Hz) brain processing, while the whole sequence was associated with concurrent global and slower (0.1–1 Hz) processing involving a widespread network of sequentially active brain regions. Notably, the recognition of previously memorized temporal sequences was associated to stronger activity in the slow brain processing, while the novel sequences required a greater involvement of the faster brain processing. Overall, the results expand on well-known information flow from lower- to higher order brain regions. In fact, they reveal the differential involvement of slow and faster whole brain processing to recognize previously learned versus novel temporal information.
Collapse
Affiliation(s)
- L Bonetti
- Center for Music in the Brain (MIB), Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg , Universitetsbyen 3, 8000, Aarhus C , Denmark
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford , Stoke place 7, OX39BX, Oxford , UK
- University of Oxford Department of Psychiatry, , Oxford, UK
- University of Bologna Department of Psychology, , Italy
| | - E Brattico
- Center for Music in the Brain (MIB), Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg , Universitetsbyen 3, 8000, Aarhus C , Denmark
- University of Bari Aldo Moro Department of Education, Psychology, Communication, , Italy
| | - S E P Bruzzone
- Center for Music in the Brain (MIB) , Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Universitetsbyen 3, 8000, Aarhus C , Denmark
- Copenhagen University Hospital Rigshospitalet Neurobiology Research Unit (NRU), , Inge Lehmanns Vej 6, 2100, Copenhagen , Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen , Blegdamsvej 3B, 2200, Copenhagen , Denmark
| | - G Donati
- University of Bologna Department of Psychology, , Italy
| | - G Deco
- Center for Brain and Cognition, Universitat Pompeu Fabra Computational and Theoretical Neuroscience Group, , Edifici Merce Rodereda, C/ de Ramon Trias Fargas, 25, 08018 Barcelona , Spain
| | - D Pantazis
- McGovern Institute for Brain Research, Massachusetts Institute of Technology (MIT) , 77 Massachusetts Ave, Cambridge, MA 02139 , USA
| | - P Vuust
- Center for Music in the Brain (MIB), Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg , Universitetsbyen 3, 8000, Aarhus C , Denmark
| | - M L Kringelbach
- Center for Music in the Brain (MIB), Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg , Universitetsbyen 3, 8000, Aarhus C , Denmark
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford , Stoke place 7, OX39BX, Oxford , UK
- University of Oxford Department of Psychiatry, , Oxford, UK
| |
Collapse
|
14
|
Simola J, Siebenhühner F, Myrov V, Kantojärvi K, Paunio T, Palva JM, Brattico E, Palva S. Genetic polymorphisms in COMT and BDNF influence synchronization dynamics of human neuronal oscillations. iScience 2022; 25:104985. [PMID: 36093050 PMCID: PMC9460523 DOI: 10.1016/j.isci.2022.104985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/15/2022] [Accepted: 08/16/2022] [Indexed: 11/01/2022] Open
Abstract
Neuronal oscillations, their inter-areal synchronization, and scale-free dynamics constitute fundamental mechanisms for cognition by regulating communication in neuronal networks. These oscillatory dynamics have large inter-individual variability that is partly heritable. We hypothesized that this variability could be partially explained by genetic polymorphisms in neuromodulatory genes. We recorded resting-state magnetoencephalography (MEG) from 82 healthy participants and investigated whether oscillation dynamics were influenced by genetic polymorphisms in catechol-O-methyltransferase (COMT) Val158Met and brain-derived neurotrophic factor (BDNF) Val66Met. Both COMT and BDNF polymorphisms influenced local oscillation amplitudes and their long-range temporal correlations (LRTCs), while only BDNF polymorphism affected the strength of large-scale synchronization. Our findings demonstrate that COMT and BDNF genetic polymorphisms contribute to inter-individual variability in neuronal oscillation dynamics. Comparison of these results to computational modeling of near-critical synchronization dynamics further suggested that COMT and BDNF polymorphisms influenced local oscillations by modulating the excitation-inhibition balance according to the brain criticality framework.
Collapse
Affiliation(s)
- Jaana Simola
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Haartmaninkatu 3, 00014 Helsinki, Finland
- Helsinki Collegium for Advanced Studies (HCAS), University of Helsinki, Finland
- BioMag Laboratory, HUS Medical Imaging Centre, 00029 HUS, Finland
| | - Felix Siebenhühner
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Haartmaninkatu 3, 00014 Helsinki, Finland
| | - Vladislav Myrov
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Haartmaninkatu 3, 00014 Helsinki, Finland
- Department of Neuroscience and Biomedical Engineering (NBE), Aalto University, 02150 Espoo, Finland
| | - Katri Kantojärvi
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, 00271 Helsinki, Finland
- Department of Psychiatry and SleepWell Research Program, Faculty of Medicine, University of Helsinki and Helsinki University Central Hospital, Helsinki, 00014 Helsinki, Finland
| | - Tiina Paunio
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, 00271 Helsinki, Finland
- Department of Psychiatry and SleepWell Research Program, Faculty of Medicine, University of Helsinki and Helsinki University Central Hospital, Helsinki, 00014 Helsinki, Finland
| | - J. Matias Palva
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Haartmaninkatu 3, 00014 Helsinki, Finland
- Department of Neuroscience and Biomedical Engineering (NBE), Aalto University, 02150 Espoo, Finland
- Centre for Cognitive Neuroimaging (CCNi), Institute of Neuroscience and Psychology, University of Glasgow, Glasgow G12 8QB, UK
| | - Elvira Brattico
- Center for Music in the Brain (MIB), Department of Clinical Medicine, Aarhus University &The Royal Academy of Music Aarhus/Aalborg, 8000 Aarhus C, Denmark
- Department of Education, Psychology, Communication, University of Bari Aldo Moro, 70121 Bari, Italy
| | - Satu Palva
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Haartmaninkatu 3, 00014 Helsinki, Finland
- Centre for Cognitive Neuroimaging (CCNi), Institute of Neuroscience and Psychology, University of Glasgow, Glasgow G12 8QB, UK
| |
Collapse
|
15
|
Fricke-Galindo I, Pérez-Aldana BE, Macías-Kauffer LR, González-Arredondo S, Dávila-Ortiz de Montellano D, Aviña-Cervantes CL, López-López M, Rodríguez-Agudelo Y, Monroy-Jaramillo N. Impact of COMT, PRODH and DISC1 Genetic Variants on Cognitive Performance of Patients with Schizophrenia. Arch Med Res 2022; 53:388-398. [DOI: 10.1016/j.arcmed.2022.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 03/01/2022] [Accepted: 03/16/2022] [Indexed: 11/02/2022]
|
16
|
Li W, Zhang Q, Cai Y, Chen T, Cheng H. The COMT Genetic Factor Regulates Chemotherapy-Related Prospective Memory Impairment in Survivors With HER2-/+ Breast Cancer. Front Oncol 2022; 12:816923. [PMID: 35211407 PMCID: PMC8861381 DOI: 10.3389/fonc.2022.816923] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/12/2022] [Indexed: 12/19/2022] Open
Abstract
Background Previous findings indicated that polymorphism in gene catechol-O-methyltransferase (COMT) had been linked to chemotherapy-related cognitive impairment (CRCI). Nevertheless, the motivation of COMT polymorphisms in regulating cognitive impairment in breast cancer survivors with disparate status of human epidermal growth factor receptor 2 (HER2) was still vague. Objective The current research aimed to evaluate the regulation of the risk by COMT genotype on CRCI in breast cancer survivors with disparate status of HER2. Methods Breast cancer survivors (103 with HER2− and 118 with HER2+) underwent neuropsychological tests before and after chemotherapy, containing event- and time-based prospective memory (EBPM and TBPM). Three single-nucleotide polymorphisms (SNPs) were estimated by providing peripheral blood, containing COMT (rs165599, rs737865, and rs4680). Results The EBPM and TBPM performances was lower as compared with these before chemotherapy (z = −7.712, z = −2.403, respectively, p < 0.01). Furthermore, the EBPM and TBPM performances of HER2− group survivors were lower than those of HER2+ group survivors after chemotherapy (z = −7.181, p < 0.01; z = −2.205 p < 0.05, respectively). The survivors with COMT (rs165599) A/A genotype carriers had a meaningfully poorer chance of memory descend [dominant model: adjusted, OR = 2.21, CI (95%) = 1.156–4.225, p = 0.016] and showed better on TBPM test, relative to G/G genotype. Patients with the COMT (rs737865) A/G and G/G genotype showed protective function than the patients with the A/A and performed better on MMSE and TBPM tests. Conclusion The types of HER2 may be correlated to chemotherapy-related prospective memory impairments in breast cancer survivors. Furthermore, the COMT (rs165599, rs737865) polymorphisms were correlated to the risk of TBPM decline scores and possibly be a potential genetic identifying for increasing risk of CRCI in breast cancer patients with disparate status of HER2.
Collapse
Affiliation(s)
- Wen Li
- Cancer Treatment Center, the Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qianqian Zhang
- Cancer Treatment Center, the Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yinlian Cai
- Cancer Treatment Center, the Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Tingting Chen
- Cancer Treatment Center, the Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Huaidong Cheng
- Cancer Treatment Center, the Second Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|