1
|
Han MJ, Oh Y, Ann Y, Kang S, Baeg E, Hong SJ, Sohn H, Kim SG. Whole-brain effective connectivity of the sensorimotor system using 7 T fMRI with electrical microstimulation in non-human primates. Prog Neurobiol 2025; 250:102760. [PMID: 40280291 DOI: 10.1016/j.pneurobio.2025.102760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 03/11/2025] [Accepted: 04/14/2025] [Indexed: 04/29/2025]
Abstract
The sensorimotor system is a crucial interface between the brain and the environment, and it is endowed with multiple computational mechanisms that enable efficient behaviors. For example, predictive processing via an efference copy of a motor command has been proposed as one of the key computations used to compensate for the sensory consequence of movement. However, the neural pathways underlying this process remain unclear, particularly regarding whether the M1-to-S1 pathway plays a dominant role in predictive processing and how its influence compares to that of other pathways. In this study, we present a causally inferable input-output map of the sensorimotor effective connectivity that we made by combining ultrahigh-field functional MRI, electrical microstimulation of the S1/M1 cortex, and dynamic causal modeling for the whole sensorimotor network in anesthetized primates. We investigated how motor signals from M1 are transmitted to S1 at the circuit level, either via direct cortico-cortical projections or indirectly via subcortical structures such as the thalamus. Across different stimulation conditions, we observed a robust asymmetric connectivity from M1 to S1 that was also the most prominent output from M1. In the thalamus, we identified distinct activations: M1 stimulation showed connections to the anterior part of ventral thalamic nuclei, whereas S1 was linked to the more posterior regions of the ventral thalamic nuclei. These findings suggest that the cortico-cortical projection from M1 to S1, rather than the cortico-thalamic loop, plays a dominant role in transmitting movement-related information. Together, our detailed dissection of the sensorimotor circuitry underscores the importance of M1-to-S1 connectivity in sensorimotor coordination.
Collapse
Affiliation(s)
- Min-Jun Han
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea; Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Younghyun Oh
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea; Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Yejin Ann
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea; Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Republic of Korea
| | - Sangyun Kang
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea
| | - Eunha Baeg
- Department of Nano-bioengineering, Incheon National University, Incheon, Republic of Korea; Center for Brain-Machine Interface, Incheon National University, Incheon, Republic of Korea
| | - Seok Jun Hong
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea; Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea; Center for the Developing Brain, Child Mind Institute, NY, United States
| | - Hansem Sohn
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea; Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea.
| | - Seong-Gi Kim
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea; Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea.
| |
Collapse
|
2
|
Chen H, Fu S, Zhi X, Wang Y, Liu F, Li Y, Ren F, Zhang J, Ren L, Wang Y. Research Progress on Neural Processing of Hand and Forearm Tactile Sensation: A Review Based on fMRI Research. Neuropsychiatr Dis Treat 2025; 21:193-212. [PMID: 39906284 PMCID: PMC11792622 DOI: 10.2147/ndt.s488059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 01/14/2025] [Indexed: 02/06/2025] Open
Abstract
Tactile perception is one of the important ways through which humans interact with the external environment. Similar to the neural processing in visual and auditory systems, the neural processing of tactile information is a complex procedure that transforms this information into sensory signals. Neuroimaging techniques, such as functional Magnetic Resonance Imaging (fMRI), provide compelling evidence indicating that different types of tactile signals undergo independent or collective processing within multiple brain regions. This review focuses on fMRI studies employing both task-based (block design or event-related design) and resting-state paradigms. These studies use general linear models (GLM) to identify brain regions activated during touch processing, or employ functional connectivity(FC) analysis to examine interactions between brain regions, thereby exploring the neural mechanisms underlying the central nervous system's processing of various aspects of tactile sensation, including discriminative touch and affective touch. The discussion extends to exploring changes in tactile processing patterns observed in certain disease states. Recognizing the analogy between pain and touch processing patterns, we conclude by summarizing the interaction between touch and pain. Currently, fMRI-based studies have made significant progress in the field of tactile neural processing. These studies not only deepen our understanding of tactile perception but also provide new perspectives for future neuroscience studies.
Collapse
Affiliation(s)
- Hao Chen
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People’s Republic of China
| | - Shifang Fu
- Rehabilitation Department, Tianjin University of Traditional Chinese Medicine Second Affiliated Hospital, Tianjin, 300250, People’s Republic of China
| | - Xiaoyu Zhi
- Rehabilitation Department, Tianjin University of Traditional Chinese Medicine Second Affiliated Hospital, Tianjin, 300250, People’s Republic of China
| | - Yu Wang
- Rehabilitation Department, Tianjin University of Traditional Chinese Medicine Second Affiliated Hospital, Tianjin, 300250, People’s Republic of China
| | - Fanqi Liu
- Rehabilitation Department, Tianjin University of Traditional Chinese Medicine Second Affiliated Hospital, Tianjin, 300250, People’s Republic of China
| | - Yuetong Li
- Rehabilitation Department, Tianjin University of Traditional Chinese Medicine Second Affiliated Hospital, Tianjin, 300250, People’s Republic of China
| | - Fengjiao Ren
- Rehabilitation Department, Tianjin University of Traditional Chinese Medicine Second Affiliated Hospital, Tianjin, 300250, People’s Republic of China
| | - Junfeng Zhang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People’s Republic of China
- Rehabilitation Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, People’s Republic of China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, People’s Republic of China
| | - Longsheng Ren
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People’s Republic of China
| | - Yanguo Wang
- Rehabilitation Department, Tianjin University of Traditional Chinese Medicine Second Affiliated Hospital, Tianjin, 300250, People’s Republic of China
| |
Collapse
|
3
|
Morozova M, Yakovlev L, Syrov N, Lebedev M, Kaplan A. Tactile imagery affects cortical responses to vibrotactile stimulation of the fingertip. Heliyon 2024; 10:e40807. [PMID: 39698084 PMCID: PMC11652922 DOI: 10.1016/j.heliyon.2024.e40807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 11/22/2024] [Accepted: 11/27/2024] [Indexed: 12/20/2024] Open
Abstract
Mental imagery is a crucial cognitive process, yet its underlying neural mechanisms remain less understood compared to perception. Furthermore, within the realm of mental imagery, the somatosensory domain is particularly underexplored compared to other sensory modalities. This study aims to investigate the influence of tactile imagery (TI) on cortical somatosensory processing. We explored the cortical manifestations of TI by recording EEG activity in healthy human subjects. We investigated event-related somatosensory oscillatory dynamics during TI compared to actual tactile stimulation, as well as somatosensory evoked potentials (SEPs) in response to short vibrational stimuli, examining their amplitude-temporal characteristics and spatial distribution across the scalp. EEG activity exhibited significant changes during TI compared to the no-imagery baseline. TI caused event-related desynchronization (ERD) of the contralateral μ-rhythm, with a notable correlation between ERD during imagery and real stimulation across subjects. TI also modulated several SEP components in sensorimotor and frontal areas, showing increases in the contralateral P100 and P300, contra- and ipsilateral P300, frontal P200, and parietal P600 components. The results clearly indicate that TI affects cortical processing of somatosensory stimuli, impacting EEG responses in various cortical areas. The assessment of SEPs in EEG could serve as a versatile marker of tactile imagery in practical applications. We propose incorporating TI in imagery-based brain-computer interfaces (BCIs) to enhance sensorimotor restoration and sensory substitution. This approach underscores the importance of somatosensory mental imagery in cognitive neuroscience and its potential applications in neurorehabilitation and assistive technologies.
Collapse
Affiliation(s)
- Marina Morozova
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, 121205, Moscow, Russia
| | - Lev Yakovlev
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, 121205, Moscow, Russia
- Faculty of Biology, Shenzhen MSU-BIT University, 518115, Shenzhen, China
| | - Nikolay Syrov
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, 121205, Moscow, Russia
| | - Mikhail Lebedev
- Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, 119991, Moscow, Russia
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, 194223, Saint Petersburg, Russia
| | - Alexander Kaplan
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, 121205, Moscow, Russia
- Department of Human and Animal Physiology, Faculty of Biology, Lomonosov Moscow State University, 119234, Moscow, Russia
| |
Collapse
|
4
|
Song Y, Wang X, Su Q, Zhao R, Zhang J, Qin W, Yu C, Liang M. Pain-Discriminating Information Decoded From Spatiotemporal Patterns of Hemodynamic Responses Measured by fMRI in the Human Brain. Hum Brain Mapp 2024; 45:e70065. [PMID: 39485053 PMCID: PMC11528553 DOI: 10.1002/hbm.70065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 09/25/2024] [Accepted: 10/18/2024] [Indexed: 11/03/2024] Open
Abstract
Functional magnetic resonance imaging (fMRI) has been widely used in studying the neural mechanisms of pain in the human brain, primarily focusing on where in the brain pain-elicited neural activities occur (i.e., the spatial distribution of pain-related brain activities). However, the temporal dynamics of pain-elicited hemodynamic responses (HDRs) measured by fMRI may also contain information specific to pain processing but have been largely neglected. Using high temporal resolution fMRI (TR = 0.8 s) data acquired from 62 healthy participants, in the present study we aimed to test whether pain-distinguishing information could be decoded from the spatial pattern of the temporal dynamics (i.e., the spatiotemporal pattern) of HDRs elicited by painful stimuli. Specifically, the peak latency and the response duration were used to characterize the temporal dynamics of HDRs to painful laser stimuli and non-painful electric stimuli, and then were compared between the two conditions (i.e., pain and no-pain) using a voxel-wise univariate analysis and a multivariate pattern analysis. Furthermore, we also tested whether the two temporal characteristics of pain-elicited HDRs and their spatial patterns were associated with pain-related behaviors. We found that the spatial patterns of HDR peak latency and response duration could successfully discriminate pain from no-pain. Interestingly, we also observed that the Pain Vigilance and Awareness Questionnaire (PVAQ) scores were correlated with the average response duration in bilateral insula and secondary somatosensory cortex (S2) and could also be predicted from the across-voxel spatial patterns of response durations in the middle cingulate cortex and middle frontal gyrus only during painful condition but not during non-painful condition. These findings indicate that the spatiotemporal pattern of pain-elicited HDRs may contain pain-specific information and highlight the importance of studying the neural mechanisms of pain by taking advantage of the high sensitivity of fMRI to both spatial and temporal information of brain responses.
Collapse
Affiliation(s)
- Yingchao Song
- School of Medical Technology, School of Medical Imaging, Tianjin Key Laboratory of Functional Imaging, the Province and Ministry Cosponsored Collaborative Innovation Center for Medical EpigeneticsTianjin Medical UniversityTianjinChina
- College of Medical Information and Artificial IntelligenceShandong First Medical University & Shandong Academy of Medical SciencesJinanChina
| | - Xiuzhi Wang
- School of Medical Technology, School of Medical Imaging, Tianjin Key Laboratory of Functional Imaging, the Province and Ministry Cosponsored Collaborative Innovation Center for Medical EpigeneticsTianjin Medical UniversityTianjinChina
| | - Qian Su
- Department of Molecular Imaging and Nuclear MedicineTianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for ChinaTianjinChina
| | - Rui Zhao
- Department of Orthopedics SurgeryTianjin Medical University General HospitalTianjinChina
| | - Juan Zhang
- Department of Prosthodontics, Stomatological HospitalTianjin Medical UniversityTianjinChina
| | - Wen Qin
- State Key Laboratory of Experimental Hematology, Department of Radiology, Tianjin Key Lab of Functional Imaging & Tianjin Institute of RadiologyTianjin Medical University General HospitalTianjinChina
| | - Chunshui Yu
- School of Medical Technology, School of Medical Imaging, Tianjin Key Laboratory of Functional Imaging, the Province and Ministry Cosponsored Collaborative Innovation Center for Medical EpigeneticsTianjin Medical UniversityTianjinChina
- State Key Laboratory of Experimental Hematology, Department of Radiology, Tianjin Key Lab of Functional Imaging & Tianjin Institute of RadiologyTianjin Medical University General HospitalTianjinChina
| | - Meng Liang
- School of Medical Technology, School of Medical Imaging, Tianjin Key Laboratory of Functional Imaging, the Province and Ministry Cosponsored Collaborative Innovation Center for Medical EpigeneticsTianjin Medical UniversityTianjinChina
| |
Collapse
|
5
|
Dong WK. Modulation of multisensory nociceptive neurons in monkey cortical area 7b and behavioral correlates. J Neurophysiol 2024; 132:544-569. [PMID: 38985936 PMCID: PMC11427044 DOI: 10.1152/jn.00377.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 07/08/2024] [Accepted: 07/08/2024] [Indexed: 07/12/2024] Open
Abstract
Wide-range thermoreceptive neurons (WRT-EN) in monkey cortical area 7b that encoded innocuous and nocuous cutaneous thermal and threatening visuosensory stimulation with high fidelity were studied to identify their multisensory integrative response properties. Emphasis was given to characterizing the spatial and temporal effects of threatening visuosensory input on the thermal stimulus-response properties of these multisensory nociceptive neurons. Threatening visuosensory stimulation was most efficacious in modulating thermal evoked responses when presented as a downward ("looming"), spatially congruent, approaching and closely proximal target in relation to the somatosensory receptive field. Both temporal alignment and misalignment of spatially aligned threatening visual and thermal stimulation significantly increased mean discharge frequencies above those evoked by thermal stimulation alone, particularly at near noxious (43°C) and mildly noxious (45°C) temperatures. The enhanced multisensory discharge frequencies were equivalent to the discharge frequency evoked by overtly noxious thermal stimulation alone at 47°C (monkey pain tolerance threshold). A significant increase in behavioral mean escape frequency with shorter escape latency was evoked by multisensory stimulation at near noxious temperature (43°C), which was equivalent to that evoked by noxious stimulation alone (47°C). The remarkable concordance of elevating both neural discharge and escape frequency from a nonnociceptive and prepain level by near noxious thermal stimulation to a nociceptive and pain level by multisensory visual and near noxious thermal stimulation and integration is an elegantly designed defensive neural mechanism that in effect lowers both nociceptive response and pain thresholds to preemptively engage nocifensive behavior and, consequently, avert impending and actual injurious noxious thermal stimulation.NEW & NOTEWORTHY Multisensory nociceptive neurons in cortical area 7b are engaged in integration of threatening visuosensory and a wide range of innocuous and nocuous somatosensory (thermoreceptive) inputs. The enhancement of neuronal activity and escape behavior in monkey by multisensory integration is consistent and supportive of human psychophysical studies. The spatial features of visuosensory stimulation in peripersonal space in relation to somatic stimulation in personal space are critical to multisensory integration, nociception, nocifensive behavior, and pain.
Collapse
Affiliation(s)
- Willie K Dong
- Department of Anesthesiology and Pain Medicine, School of Medicine, University of Washington, Seattle, Washington, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois, United States
| |
Collapse
|
6
|
Zhang J, Wang H, Guo L. Investigating the brain functional abnormalities underlying pain hypervigilance in chronic neck and shoulder pain: a resting-state fMRI study. Neuroradiology 2024; 66:1353-1361. [PMID: 38296904 DOI: 10.1007/s00234-024-03286-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 01/07/2024] [Indexed: 02/02/2024]
Abstract
PURPOSE To investigate pain hypervigilance in individuals suffering from chronic neck and shoulder pain (CNSP) and its underlying brain mechanism. METHODS The evaluation of pain vigilance was conducted through the utilization of pain vigilance and awareness questionnaires. Voxel-wise regional homogeneity (ReHo) from 60 CNSP patients and 60 healthy controls (HCs) using resting-state fMRI data. Voxel-wise two-sample T-test was conducted to reveal the ReHo variations between CNSP and HC. Correlation analyses were utilized to reveal the connection between brain abnormalities and medical measurements. Furthermore, a mediation analysis was conducted to elucidate the pathway-linking changes in brain function with medical measurements. RESULTS Our present study revealed three main findings. Firstly, patients with CSNP demonstrated a heightened vigilance of pain in comparison to healthy adults, a common occurrence among individuals with chronic pain conditions. Secondly, we observed brain abnormalities in various brain regions in CSNP patients, and these alterations were associated with the extent of pain vigilance. Lastly, the pain hypervigilance impact on the severity of pain was found to be controlled by regional neural activity in the anterior cingulate cortex (ACC) in subjects with CSNP. CONCLUSION Our findings suggested that long-term repetitive nociceptive input caused by chronic pain further aggravates the pain intensity by impairing the vigilance-related pain processing within the anterior cingulate cortex in CNSP patients.
Collapse
Affiliation(s)
- Jiyang Zhang
- Radiology Department, Tianjin Hospital, Tianjin University, Jiefang Nan Road 406, Hexi District, Tianjin, 300211, People's Republic of China
| | - Hao Wang
- Radiology Department, Tianjin Hospital, Tianjin University, Jiefang Nan Road 406, Hexi District, Tianjin, 300211, People's Republic of China
| | - Lin Guo
- Radiology Department, Tianjin Hospital, Tianjin University, Jiefang Nan Road 406, Hexi District, Tianjin, 300211, People's Republic of China.
| |
Collapse
|
7
|
Tauste Campo A, Zainos A, Vázquez Y, Adell Segarra R, Álvarez M, Deco G, Díaz H, Parra S, Romo R, Rossi-Pool R. Thalamocortical interactions shape hierarchical neural variability during stimulus perception. iScience 2024; 27:110065. [PMID: 38993679 PMCID: PMC11237863 DOI: 10.1016/j.isci.2024.110065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/03/2024] [Accepted: 05/17/2024] [Indexed: 07/13/2024] Open
Abstract
The brain is organized hierarchically to process sensory signals. But, how do functional connections within and across areas contribute to this hierarchical order? We addressed this problem in the thalamocortical network, while monkeys detected vibrotactile stimulus. During this task, we quantified neural variability and directed functional connectivity in simultaneously recorded neurons sharing the cutaneous receptive field within and across VPL and areas 3b and 1. Before stimulus onset, VPL and area 3b exhibited similar fast dynamics while area 1 showed slower timescales. During the stimulus presence, inter-trial neural variability increased along the network VPL-3b-1 while VPL established two main feedforward pathways with areas 3b and 1 to process the stimulus. This lower variability of VPL and area 3b was found to regulate feedforward thalamocortical pathways. Instead, intra-cortical interactions were only anticipated by higher intrinsic timescales in area 1. Overall, our results provide evidence of hierarchical functional roles along the thalamocortical network.
Collapse
Affiliation(s)
- Adrià Tauste Campo
- Computational Biology and Complex Systems group, Department of Physics, Universitat Politècnica de Catalunya, Avinguda Dr. Marañón, 44-50, 08028 Barcelona, Catalonia, Spain
| | - Antonio Zainos
- Instituto de Fisiología Celular–Neurociencias, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Yuriria Vázquez
- Instituto de Fisiología Celular–Neurociencias, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Raul Adell Segarra
- Computational Biology and Complex Systems group, Department of Physics, Universitat Politècnica de Catalunya, Avinguda Dr. Marañón, 44-50, 08028 Barcelona, Catalonia, Spain
| | - Manuel Álvarez
- Instituto de Fisiología Celular–Neurociencias, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Gustavo Deco
- Center for Brain and Cognition (CBC), Department of Information Technologies and Communications (DTIC), Pompeu Fabra University, Edifici Mercè Rodoreda, Carrer Trias I Fargas 25-27, 08005 Barcelona, Catalonia, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluis Companys 23, 08010 Barcelona, Catalonia, Spain
| | - Héctor Díaz
- Instituto de Fisiología Celular–Neurociencias, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Sergio Parra
- Instituto de Fisiología Celular–Neurociencias, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | | | - Román Rossi-Pool
- Instituto de Fisiología Celular–Neurociencias, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
8
|
Song Y, Shahdadian S, Armstrong E, Brock E, Conrad SE, Acord S, Johnson YR, Marks W, Papadelis C. Spatiotemporal dynamics of cortical somatosensory network in typically developing children. Cereb Cortex 2024; 34:bhae230. [PMID: 38836408 PMCID: PMC11151116 DOI: 10.1093/cercor/bhae230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 05/10/2024] [Accepted: 05/15/2024] [Indexed: 06/06/2024] Open
Abstract
Sense of touch is essential for our interactions with external objects and fine control of hand actions. Despite extensive research on human somatosensory processing, it is still elusive how involved brain regions interact as a dynamic network in processing tactile information. Few studies probed temporal dynamics of somatosensory information flow and reported inconsistent results. Here, we examined cortical somatosensory processing through magnetic source imaging and cortico-cortical coupling dynamics. We recorded magnetoencephalography signals from typically developing children during unilateral pneumatic stimulation. Neural activities underlying somatosensory evoked fields were mapped with dynamic statistical parametric mapping, assessed with spatiotemporal activation analysis, and modeled by Granger causality. Unilateral pneumatic stimulation evoked prominent and consistent activations in the contralateral primary and secondary somatosensory areas but weaker and less consistent activations in the ipsilateral primary and secondary somatosensory areas. Activations in the contralateral primary motor cortex and supramarginal gyrus were also consistently observed. Spatiotemporal activation and Granger causality analysis revealed initial serial information flow from contralateral primary to supramarginal gyrus, contralateral primary motor cortex, and contralateral secondary and later dynamic and parallel information flows between the consistently activated contralateral cortical areas. Our study reveals the spatiotemporal dynamics of cortical somatosensory processing in the normal developing brain.
Collapse
Affiliation(s)
- Yanlong Song
- Neuroscience Research Center, Jane and John Justin Institute for Mind Health, Cook Children’s Health Care System, 1500 Cooper St., Fort Worth, TX 76104, United States
- Department of Bioengineering, University of Texas at Arlington, 500 UTA Blvd., Arlington, TX 76010, United States
- Departments of Physical Medicine and Rehabilitation and Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, United States
| | - Sadra Shahdadian
- Neuroscience Research Center, Jane and John Justin Institute for Mind Health, Cook Children’s Health Care System, 1500 Cooper St., Fort Worth, TX 76104, United States
- Department of Bioengineering, University of Texas at Arlington, 500 UTA Blvd., Arlington, TX 76010, United States
| | - Eryn Armstrong
- Neuroscience Research Center, Jane and John Justin Institute for Mind Health, Cook Children’s Health Care System, 1500 Cooper St., Fort Worth, TX 76104, United States
| | - Emily Brock
- Neuroscience Research Center, Jane and John Justin Institute for Mind Health, Cook Children’s Health Care System, 1500 Cooper St., Fort Worth, TX 76104, United States
| | - Shannon E Conrad
- Neuroscience Research Center, Jane and John Justin Institute for Mind Health, Cook Children’s Health Care System, 1500 Cooper St., Fort Worth, TX 76104, United States
| | - Stephanie Acord
- Neuroscience Research Center, Jane and John Justin Institute for Mind Health, Cook Children’s Health Care System, 1500 Cooper St., Fort Worth, TX 76104, United States
| | - Yvette R Johnson
- NEST Developmental Follow-up Center, Neonatology, Cook Children’s Health Care System, 1521 Cooper St., Fort Worth, TX 76104, United States
- Department of Pediatrics, Burnett School of Medicine, Texas Christian University, TCU Box 297085, Fort Worth, TX 76129, United States
| | - Warren Marks
- Neuroscience Research Center, Jane and John Justin Institute for Mind Health, Cook Children’s Health Care System, 1500 Cooper St., Fort Worth, TX 76104, United States
| | - Christos Papadelis
- Neuroscience Research Center, Jane and John Justin Institute for Mind Health, Cook Children’s Health Care System, 1500 Cooper St., Fort Worth, TX 76104, United States
- Department of Bioengineering, University of Texas at Arlington, 500 UTA Blvd., Arlington, TX 76010, United States
- Department of Pediatrics, Burnett School of Medicine, Texas Christian University, TCU Box 297085, Fort Worth, TX 76129, United States
| |
Collapse
|
9
|
Chi XT, Yang W, Zhang JB, Lei YT, Tao CC, Chen HN, Zheng ZK, Xin WJ, Xu T, Gao S, Zhang XQ. A Cross-Sectional and Longitudinal Integrated Study on Brain Functional Changes in a Neuropathic Pain Rat Model. eNeuro 2024; 11:ENEURO.0272-23.2024. [PMID: 38346901 PMCID: PMC10925899 DOI: 10.1523/eneuro.0272-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/25/2023] [Accepted: 01/24/2024] [Indexed: 03/10/2024] Open
Abstract
Human and animal imaging studies demonstrated that chronic pain profoundly alters the structure and the functionality of several brain regions and even causes mental dysfunctions such as depression and anxiety disorders. In this article, we conducted a multimodal study cross-sectionally and longitudinally, to evaluate how neuropathic pain affects the brain. Using the spared nerve injury (SNI) model which promotes long-lasting mechanical allodynia, results showed that neuropathic pain deeply modified the intrinsic organization of the brain functional network 2 weeks after injury. There are significant changes in the activity of the left thalamus (Th_L) and left olfactory bulb (OB_L) brain regions after SNI, as evidenced by both the blood oxygen level-dependent (BOLD) signal and c-Fos expression. Importantly, these changes were closely related to mechanical pain behavior of rats. However, it is worth noting that after morphine administration for analgesia, only the increased activity in the TH region is reversed, while the decreased activity in the OB region becomes more prominent. Functional connectivity (FC) and c-Fos correlation analysis further showed these two regions of interest (ROIs) exhibit different FC patterns with other brain regions. Our study comprehensively revealed the adaptive changes of brain neural networks induced by nerve injury in both cross-sectional and longitudinal dimensions and emphasized the abnormal activity and FC of Th_L and OB_L in the pathological condition. It provides reliable assistance in exploring the intricate mechanisms of diseases.
Collapse
Affiliation(s)
- Xin-Tian Chi
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), School of Health Management and Institute of Mental Psychology, Guangzhou Medical University, Guangzhou 511495, China
| | - Wu Yang
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), School of Health Management and Institute of Mental Psychology, Guangzhou Medical University, Guangzhou 511495, China
| | - Jian-Bo Zhang
- Department of Pain Management, State Key Specialty in Pain Medicine, Guangzhou Medical University Second Affiliated Hospital, Guangzhou 510260, China
| | - Yu-Tao Lei
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), School of Health Management and Institute of Mental Psychology, Guangzhou Medical University, Guangzhou 511495, China
| | - Chen-Chen Tao
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), School of Health Management and Institute of Mental Psychology, Guangzhou Medical University, Guangzhou 511495, China
| | - Hong-Ni Chen
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), School of Health Management and Institute of Mental Psychology, Guangzhou Medical University, Guangzhou 511495, China
| | - Zi-Kun Zheng
- Department of Electronic Engineering, Shantou University, Shantou 515063, China
| | - Wen-Jun Xin
- Guangdong Province Key Laboratory of Brain Function and Disease, Department of Physiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Ting Xu
- Guangdong Province Key Laboratory of Brain Function and Disease, Department of Physiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Shuang Gao
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), School of Health Management and Institute of Mental Psychology, Guangzhou Medical University, Guangzhou 511495, China
| | - Xue-Qin Zhang
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), School of Health Management and Institute of Mental Psychology, Guangzhou Medical University, Guangzhou 511495, China
| |
Collapse
|
10
|
Tian Y, Tan C, Tan J, Yang L, Tang Y. Top-down modulation of DLPFC in visual search: a study based on fMRI and TMS. Cereb Cortex 2024; 34:bhad540. [PMID: 38212289 DOI: 10.1093/cercor/bhad540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/23/2023] [Accepted: 12/24/2023] [Indexed: 01/13/2024] Open
Abstract
Effective visual search is essential for daily life, and attention orientation as well as inhibition of return play a significant role in visual search. Researches have established the involvement of dorsolateral prefrontal cortex in cognitive control during selective attention. However, neural evidence regarding dorsolateral prefrontal cortex modulates inhibition of return in visual search is still insufficient. In this study, we employed event-related functional magnetic resonance imaging and dynamic causal modeling to develop modulation models for two types of visual search tasks. In the region of interest analyses, we found that the right dorsolateral prefrontal cortex and temporoparietal junction were selectively activated in the main effect of search type. Dynamic causal modeling results indicated that temporoparietal junction received sensory inputs and only dorsolateral prefrontal cortex →temporoparietal junction connection was modulated in serial search. Such neural modulation presents a significant positive correlation with behavioral reaction time. Furthermore, theta burst stimulation via transcranial magnetic stimulation was utilized to modulate the dorsolateral prefrontal cortex region, resulting in the disappearance of the inhibition of return effect during serial search after receiving continuous theta burst stimulation. Our findings provide a new line of causal evidence that the top-down modulation by dorsolateral prefrontal cortex influences the inhibition of return effect during serial search possibly through the retention of inhibitory tagging via working memory storage.
Collapse
Affiliation(s)
- Yin Tian
- School of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
- School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
- Institute for Advanced Sciences, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
- Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing 400064, China
| | - Congming Tan
- School of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Jianling Tan
- School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Li Yang
- School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
- Department of Medical Engineering, Daping Hospital, Army Medical University, ChongQing 400065, China
| | - Yi Tang
- School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| |
Collapse
|
11
|
Guo X, Li J, Su Q, Song J, Cheng C, Chu X, Zhao R. Transcriptional correlates of frequency-dependent brain functional activity associated with symptom severity in degenerative cervical myelopathy. Neuroimage 2023; 284:120451. [PMID: 37949259 DOI: 10.1016/j.neuroimage.2023.120451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Neuroimaging techniques provide insights into the brain abnormalities secondary to degenerative cervical myelopathy (DCM) and their association with neurological deficits. However, the neural correlates underlying the discrepancy between symptom severity and the degree of spinal cord compression, as well as the transcriptional correlates of these cortical abnormalities, remain unknown in DCM patients. METHODS In this cross-sectional study, which collected resting-state functional MRI (rs-fMRI) images and the Japanese Orthopedic Association (JOA) score, enrolled 104 participants (54 patients and 50 healthy controls). The frequency-dependent amplitude of low-frequency fluctuation (ALFF) was obtained for all participants. We investigated the ALFF differences between mild-symptom DCM patients and severe-symptom DCM patients while carefully matching the degree of compression between these two groups via both univariate comparison and searchlight classification for three frequency bands (e.g., Slow-4, Slow-5, and Full-band). Additionally, we identified genes associated with symptom severity in DCM patients by linking the spatial patterns of gene expression of Allen Human Brain Atlas and brain functional differences between mild symptom and severe symptom groups. RESULTS (1) We found that the frequency-specific brain activities within the sensorimotor network (SMN), visual network (VN), and default mode network (DMN) were associated with the varying degrees of functional impairment in DCM patients; (2) the frequency-specific brain activity within the SMN correlated with the functional recovery in patients with DCM; (3) a spatial correlation between the brain-wide expression of genes involved in neuronal migration and the brain functional activities associated with symptom severity was identified in DCM patients. CONCLUSION In conclusion, our study bridges gaps between genes, cell classes, biological processes, and brain functional correlates of DCM. While our findings are correlational in nature, they suggest that the neural activities of sensorimotor cortices in DCM are associated with the severity of symptoms and might be associated with neuronal migration within the brain.
Collapse
Affiliation(s)
- Xing Guo
- Department of Orthopedic, Cangzhou Central Hospital, Cangzhou, Hebei 061017, China
| | - Jie Li
- Department of Orthopedic, Cangzhou Central Hospital, Cangzhou, Hebei 061017, China; Department of Minimally Invasive Spine Surgery, Tianjin Hospital, Tianjin 300211, China
| | - Qian Su
- Department of Orthopedic, Cangzhou Central Hospital, Cangzhou, Hebei 061017, China; Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for China, Tianjin 300060, China
| | - Jiajun Song
- Department of Orthopedics Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Cai Cheng
- Department of Orthopedic, Cangzhou Central Hospital, Cangzhou, Hebei 061017, China.
| | - Xu Chu
- Department of Shoulder and Elbow of Sports Medicine, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China.
| | - Rui Zhao
- Department of Orthopedics Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China.
| |
Collapse
|
12
|
Chen Y, Yang Y, Gong Z, Kang Y, Zhang Y, Chen H, Zeng K, Men X, Wang J, Huang Y, Wang H, Zhan S, Tan W, Wang W. Altered effective connectivity from cerebellum to motor cortex in chronic low back pain: A multivariate pattern analysis and spectral dynamic causal modeling study. Brain Res Bull 2023; 204:110794. [PMID: 37871687 DOI: 10.1016/j.brainresbull.2023.110794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/01/2023] [Accepted: 10/17/2023] [Indexed: 10/25/2023]
Abstract
To explore the central processing mechanism of pain perception in chronic low back pain (cLBP) using multi-voxel pattern analysis (MVPA) based on the static and dynamic fractional amplitude of low-frequency fluctuations (fALFF) analysis, and spectral dynamic causal modeling (spDCM). Thirty-two patients with cLBP and 29 matched healthy controls (HCs) for the first cohort and 24 patients with cLBP and 22 HCs for the validation cohort underwent resting-state fMRI scan. The alterations in static and dynamic fALFF were as classification features to distinguish patients with cLBP from HCs. The brain regions gotten from the MVPA results were used for further spDCM analysis. We found that the most discriminative brain regions that contributed to the classification were the right supplementary motor area (SMA.R), left paracentral lobule (PCL.L), and bilateral cerebellar Crus II. The spDCM results displayed decreased excitatory influence from the bilateral cerebellar Crus II to PCL.L in patients with cLBP compared with HCs. Moreover, the conversion of effective connectivity from the bilateral cerebellar Crus II to SMA.R from excitatory influence to inhibitive influence, and the effective connectivity strength exhibited partially mediated effects on Chinese Short Form Oswestry Disability Index Questionnaire (C-SFODI) scores. Our findings suggest that the cerebellum and its weakened or inhibited connections to the motor cortex may be one of the underlying feedback pathways for pain perception in cLBP, and partially mediate the degree of dysfunction.
Collapse
Affiliation(s)
- Yilei Chen
- Department of Radiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuchan Yang
- Department of Radiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhigang Gong
- Department of Radiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yingjie Kang
- Department of Radiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yingying Zhang
- Department of Radiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hui Chen
- Department of Radiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ke Zeng
- Department of Tuina, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiubo Men
- Department of Tuina, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jianwei Wang
- Department of Tuina, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanwen Huang
- Department of Radiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hui Wang
- Department of Radiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Songhua Zhan
- Department of Radiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenli Tan
- Department of Radiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Wei Wang
- Department of Tuina, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
13
|
Tang X, Dong Y, Li Q, Liu Z, Yan N, Li Y, Liu B, Jiang L, Song R, Wang Y, Li G, Fang P. Using microneedle array electrodes for non-invasive electrophysiological signal acquisition and sensory feedback evoking. Front Bioeng Biotechnol 2023; 11:1238210. [PMID: 37600312 PMCID: PMC10435869 DOI: 10.3389/fbioe.2023.1238210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 07/26/2023] [Indexed: 08/22/2023] Open
Abstract
Introduction: Bidirectional transmission of information is needed to realize a closed-loop human-machine interaction (HMI), where electrophysiological signals are recorded for man-machine control and electrical stimulations are used for machine-man feedback. As a neural interface (NI) connecting man and machine, electrodes play an important role in HMI and their characteristics are critical for information transmission. Methods: In this work, we fabricated a kind of microneedle array electrodes (MAEs) by using a magnetization-induced self-assembly method, where microneedles with a length of 500-600 μm and a tip diameter of ∼20 μm were constructed on flexible substrates. Part of the needle length could penetrate through the subjects' stratum corneum and reach the epidermis, but not touch the dermis, establishing a safe and direct communication pathway between external electrical circuit and internal peripheral nervous system. Results: The MAEs showed significantly lower and more stable electrode-skin interface impedance than the metal-based flat array electrodes (FAEs) in various testing scenarios, demonstrating their promising impedance characteristics. With the stable microneedle structure, MAEs exhibited an average SNR of EMG that is more than 30% higher than FAEs, and a motion-intention classification accuracy that is 10% higher than FAEs. The successful sensation evoking demonstrated the feasibility of the MAE-based electrical stimulation for sensory feedback, where a variety of natural and intuitive feelings were generated in the subjects and thereafter objectively verified through EEG analysis. Discussion: This work confirms the application potential of MAEs working as an effective NI, in both electrophysiological recording and electrical stimulation, which may provide a technique support for the development of HMI.
Collapse
Affiliation(s)
- Xi Tang
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Advanced Technology & Shenzhen Engineering Laboratory of Neural Rehabilitation Technology, Shenzhen, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, China
| | - Yuanzhe Dong
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Advanced Technology & Shenzhen Engineering Laboratory of Neural Rehabilitation Technology, Shenzhen, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, China
| | - Qingge Li
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Advanced Technology & Shenzhen Engineering Laboratory of Neural Rehabilitation Technology, Shenzhen, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, China
| | - Zhiyuan Liu
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Advanced Technology & Shenzhen Engineering Laboratory of Neural Rehabilitation Technology, Shenzhen, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, China
| | - Nan Yan
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Advanced Technology & Shenzhen Engineering Laboratory of Neural Rehabilitation Technology, Shenzhen, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, China
| | - Yongcheng Li
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Advanced Technology & Shenzhen Engineering Laboratory of Neural Rehabilitation Technology, Shenzhen, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, China
| | - Bin Liu
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, China
| | - Lelun Jiang
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, China
| | - Rong Song
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, China
| | - Yingying Wang
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Advanced Technology & Shenzhen Engineering Laboratory of Neural Rehabilitation Technology, Shenzhen, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, China
| | - Guanglin Li
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Advanced Technology & Shenzhen Engineering Laboratory of Neural Rehabilitation Technology, Shenzhen, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, China
| | - Peng Fang
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Advanced Technology & Shenzhen Engineering Laboratory of Neural Rehabilitation Technology, Shenzhen, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
14
|
Ziegler K, Folkard R, Gonzalez AJ, Burghardt J, Antharvedi-Goda S, Martin-Cortecero J, Isaías-Camacho E, Kaushalya S, Tan LL, Kuner T, Acuna C, Kuner R, Mease RA, Groh A. Primary somatosensory cortex bidirectionally modulates sensory gain and nociceptive behavior in a layer-specific manner. Nat Commun 2023; 14:2999. [PMID: 37225702 DOI: 10.1038/s41467-023-38798-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 05/16/2023] [Indexed: 05/26/2023] Open
Abstract
The primary somatosensory cortex (S1) is a hub for body sensation of both innocuous and noxious signals, yet its role in somatosensation versus pain is debated. Despite known contributions of S1 to sensory gain modulation, its causal involvement in subjective sensory experiences remains elusive. Here, in mouse S1, we reveal the involvement of cortical output neurons in layers 5 (L5) and 6 (L6) in the perception of innocuous and noxious somatosensory signals. We find that L6 activation can drive aversive hypersensitivity and spontaneous nocifensive behavior. Linking behavior to neuronal mechanisms, we find that L6 enhances thalamic somatosensory responses, and in parallel, strongly suppresses L5 neurons. Directly suppressing L5 reproduced the pronociceptive phenotype induced by L6 activation, suggesting an anti-nociceptive function for L5 output. Indeed, L5 activation reduced sensory sensitivity and reversed inflammatory allodynia. Together, these findings reveal a layer-specific and bidirectional role for S1 in modulating subjective sensory experiences.
Collapse
Affiliation(s)
- Katharina Ziegler
- Medical Biophysics, Institute for Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Ross Folkard
- Medical Biophysics, Institute for Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Antonio J Gonzalez
- Medical Biophysics, Institute for Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Jan Burghardt
- Medical Biophysics, Institute for Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Sailaja Antharvedi-Goda
- Medical Biophysics, Institute for Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Jesus Martin-Cortecero
- Medical Biophysics, Institute for Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Emilio Isaías-Camacho
- Medical Biophysics, Institute for Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Sanjeev Kaushalya
- Department of Molecular Pharmacology, Institute for Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Linette Liqi Tan
- Department of Molecular Pharmacology, Institute for Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Thomas Kuner
- Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Claudio Acuna
- Chica and Heinz Schaller Research Group, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Rohini Kuner
- Department of Molecular Pharmacology, Institute for Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Rebecca Audrey Mease
- Medical Biophysics, Institute for Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany.
| | - Alexander Groh
- Medical Biophysics, Institute for Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
15
|
Li T, Li J, Zhao R, Zhou J, Chu X. Deficits in the thalamocortical pathway associated with hypersensitivity to pain in patients with frozen shoulder. Front Neurol 2023; 14:1180873. [PMID: 37265462 PMCID: PMC10229835 DOI: 10.3389/fneur.2023.1180873] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/19/2023] [Indexed: 06/03/2023] Open
Abstract
Background and purpose Frozen shoulder (FS) is a chronic pain condition and has been shown to be associated with pain sensitization. However, the underyling brain mechanisms remain unclear. Here, we aimed to explore brain alterations and their association with pain sensitization in patients with FS. Materials and methods A total of 54 FS patients and 52 healthy controls (HCs) were included in this study. Here, we applied both structural and functional magnetic resonance imaging (MRI) techniques to investigate brain abnormalities in FS patients. Voxel-wise comparisons were performed to reveal the differences in the gray matter volume (GMV) and amplitude of low-frequency fluctuation (ALFF) between FS patients and HCs. Furthermore, the region of interest (ROI) to whole-brain functional connectivity (FC) was calculated and compared between groups. Finally, Pearson's correlation coefficients were computed to reveal the association between clinical data and brain alterations. Results Four main findings were observed: (1) FS patients exhibited decreased thalamus GMV, which correlated with pain intensity and pain threshold; (2) relative to HCs, FS patients exhibited a higher level of ALFF within the anterior cingulate cortex (ACC) and the thalamus; (3) FS patients exhibited a significant increase in Tha-S1 FC compared to HCs; and (4) the effect of thalamus GMV on pain intensity was mediated by pain threshold in FS patients. Conclusion The dysfunctional thalamus might induce pain hypersensitivity, which further aggravates the pain in FS patients.
Collapse
Affiliation(s)
- Tengshuai Li
- Department of Orthopedic Surgery, Tianjin Hospital, Tianjin, China
| | - Jie Li
- Department of Orthopedic Surgery, Tianjin Hospital, Tianjin, China
| | - Rui Zhao
- Department of Orthopedic Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Jiaming Zhou
- Department of Orthopedic Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Xu Chu
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiaotong University, Xian, China
| |
Collapse
|
16
|
Wang D, Frey-Law LA. Multisensory sensitivity differentiates between multiple chronic pain conditions and pain-free individuals. Pain 2023; 164:e91-e102. [PMID: 35588150 PMCID: PMC11075969 DOI: 10.1097/j.pain.0000000000002696] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/16/2022] [Indexed: 02/06/2023]
Abstract
ABSTRACT Multisensory sensitivity (MSS) to nonpainful stimuli has been identified as a risk factor for the presence of coexisting chronic pain conditions. However, it remains unclear whether MSS can differentiate pain phenotypes involving different levels of central sensitivity. Both pain-free and those with chronic pain, particularly fibromyalgia (FM), migraine, or low back pain (LBP) were recruited, with pain comorbidities assessed. MSS was highest in FM, followed by migraine, then LBP, and lowest in pain-free individuals (adjusted between condition Cohen d = 0.32-1.2, P ≤ 0.0007). However, when secondly grouping patients by the total number of pain comorbidities reported, those with a single pain condition (but not FM) did not have significantly elevated MSS vs pain-free individuals (adj d= 0.17, P = 0.18). Elevated MSS scores produced increased odds of having 2 or more pain comorbidities; OR [95% CI] =2.0 [1.15, 3.42], without, and 5.6 [2.74, 11.28], with FM ( P ≤ 0.0001). Furthermore, those with low MSS levels were 55% to 87% less likely to have ≥ 2 pain comorbidities with or without FM (OR 0.45 [0.22, 0.88]-0.13 [0.05, 0.39]; P ≤ 0.0001). Our findings support that MSS can differentiate between pain phenotypes with different degrees of expected central mechanism involvement and also serve as a risk and resilience marker for total coexisting chronic pain conditions. This supports the use of MSS as a marker of heightened central nervous system processing and thus may serve as a clinically feasible assessment to better profile pain phenotypes with the goal of improving personalized treatment.
Collapse
Affiliation(s)
- Dan Wang
- Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | | |
Collapse
|
17
|
An Enactive-Ecological Model to Guide Patient-Centered Osteopathic Care. Healthcare (Basel) 2022; 10:healthcare10061092. [PMID: 35742142 PMCID: PMC9223169 DOI: 10.3390/healthcare10061092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/31/2022] [Accepted: 06/10/2022] [Indexed: 12/16/2022] Open
Abstract
Osteopaths commonly face complexity and clinical uncertainty in their daily professional practice as primary contact practitioners. In order to effectively deal with complex clinical presentations, osteopaths need to possess well-developed clinical reasoning to understand the individual patient’s lived experience of pain and other symptoms and how their problem impacts their personhood and ability to engage with their world. We have recently proposed (En)active inference as an integrative framework for osteopathic care. The enactivist and active inference frameworks underpin our integrative hypothesis. Here, we present a clinically based interpretation of our integrative hypothesis by considering the ecological niche in which osteopathic care occurs. Active inference enables patients and practitioners to disambiguate each other’s mental states. The patients’ mental states are unobservable and must be inferred based on perceptual cues such as posture, body language, gaze direction and response to touch and hands-on care. A robust therapeutic alliance centred on cooperative communication and shared narratives and the appropriate and effective use of touch and hands-on care enable patients to contextualize their lived experiences. Touch and hands-on care enhance the therapeutic alliance, mental state alignment, and biobehavioural synchrony between patient and practitioner. Therefore, the osteopath–patient dyad provides mental state alignment and opportunities for ecological niche construction. Arguably, this can produce therapeutic experiences which reduce the prominence given to high-level prediction errors—and consequently, the top-down attentional focus on bottom-up sensory prediction errors, thus minimizing free energy. This commentary paper primarily aims to enable osteopaths to critically consider the value of this proposed framework in appreciating the complexities of delivering person-centred care.
Collapse
|
18
|
Gupta A, Edwards Iii HM, Rodriguez AR, McKindles RJ, Stirling LA. Alternative cue and response modalities maintain the Simon effect but impact task performance. APPLIED ERGONOMICS 2022; 100:103648. [PMID: 35007901 DOI: 10.1016/j.apergo.2021.103648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 11/12/2021] [Accepted: 11/14/2021] [Indexed: 06/14/2023]
Abstract
Inhibitory control, the ability to inhibit impulsive responses and irrelevant stimuli, enables high level functioning and activities of daily living. The Simon task probes inhibition using interfering stimuli, i.e., cues spatially presented on the opposite side of the indicated response; incongruent response times (RT) are slower than congruent RTs. Operational applicability of the Simon task beyond finger/hand manipulations and visual/auditory cues is unclear, but important to consider as new technologies provide tactile cues and require motor responses from the lower extremity (e.g., exoskeletons). In this study, twenty participants completed the Simon task under four conditions, each combination of two cue (visual/tactile) and response (upper/lower-extremity) modalities. RT were significantly longer for incongruent than congruent cues across cue-response pairs. However, alternative cue-response pairs yielded slower RT and decreased accuracy for tactile cues and lower-extremity responses. Results support operational usage of the Simon task to probe inhibition using tactile cues and lower-extremity responses relevant for new technologies like exoskeletons and immersive environments.
Collapse
Affiliation(s)
- Aditi Gupta
- Health Sciences & Technology, Institute for Medical Engineering & Science, Massachusetts Institute of Technology, USA
| | | | | | | | - Leia A Stirling
- Industrial and Operations Engineering, Robotics Institute, University of Michigan, USA.
| |
Collapse
|
19
|
Esteves JE, Cerritelli F, Kim J, Friston KJ. Osteopathic Care as (En)active Inference: A Theoretical Framework for Developing an Integrative Hypothesis in Osteopathy. Front Psychol 2022; 13:812926. [PMID: 35250743 PMCID: PMC8894811 DOI: 10.3389/fpsyg.2022.812926] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/11/2022] [Indexed: 12/11/2022] Open
Abstract
Osteopathy is a person-centred healthcare discipline that emphasizes the body's structure-function interrelationship-and its self-regulatory mechanisms-to inform a whole-person approach to health and wellbeing. This paper aims to provide a theoretical framework for developing an integrative hypothesis in osteopathy, which is based on the enactivist and active inference accounts. We propose that osteopathic care can be reconceptualised under (En)active inference as a unifying framework. Active inference suggests that action-perception cycles operate to minimize uncertainty and optimize an individual's internal model of the lived world and, crucially, the consequences of their behaviour. We argue that (En)active inference offers an integrative framework for osteopathy, which can evince the mechanisms underlying dyadic and triadic (e.g., in paediatric care) exchanges and osteopathic care outcomes. We propose that this theoretical framework can underpin osteopathic care across the lifespan, from preterm infants to the elderly and those with persistent pain and other physical symptoms. In situations of chronicity, as an ecological niche, the patient-practitioner dyad provides the osteopath and the patient with a set of affordances, i.e., possibilities for action provided by the environment, that through shared intentionally, can promote adaptations and restoration of productive agency. Through a dyadic therapeutic relationship, as they engage with their ecological niche's affordances-a structured set of affordances shared by agents-osteopath and patient actively construct a shared sense-making narrative and realise a shared generative model of their relation to the niche. In general, touch plays a critical role in developing a robust therapeutic alliance, mental state alignment, and biobehavioural synchrony between patient and practitioner. However, its role is particularly crucial in the fields of neonatology and paediatrics, where it becomes central in regulating allostasis and restoring homeostasis. We argue that from an active inference standpoint, the dyadic shared ecological niche underwrites a robust therapeutic alliance, which is crucial to the effectiveness of osteopathic care. Considerations and implications of this model-to clinical practice and research, both within- and outside osteopathy-are critically discussed.
Collapse
Affiliation(s)
- Jorge E. Esteves
- Clinical-Based Human Research Department, Foundation COME Collaboration, Pescara, Italy
- Malta ICOM Educational, Gżira, Malta
- Research Department, University College of Osteopathy, London, United Kingdom
| | - Francesco Cerritelli
- Clinical-Based Human Research Department, Foundation COME Collaboration, Pescara, Italy
| | - Joohan Kim
- Department of Communication, Yonsei University, Seoul, South Korea
| | - Karl J. Friston
- Wellcome Centre for Human Neuroimaging, Institute of Neurology, London, United Kingdom
| |
Collapse
|
20
|
van den Berg B, Manoochehri M, Schouten AC, van der Helm FCT, Buitenweg JR. Nociceptive Intra-epidermal Electric Stimulation Evokes Steady-State Responses in the Secondary Somatosensory Cortex. Brain Topogr 2022; 35:169-181. [PMID: 35050427 PMCID: PMC8860817 DOI: 10.1007/s10548-022-00888-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 01/05/2022] [Indexed: 11/16/2022]
Abstract
Recent studies have established the presence of nociceptive steady-state evoked potentials (SSEPs), generated in response to thermal or intra-epidermal electric stimuli. This study explores cortical sources and generation mechanisms of nociceptive SSEPs in response to intra-epidermal electric stimuli. Our method was to stimulate healthy volunteers (n = 22, all men) with 100 intra-epidermal pulse sequences. Each sequence had a duration of 8.5 s, and consisted of pulses with a pulse rate between 20 and 200 Hz, which was frequency modulated with a multisine waveform of 3, 7 and 13 Hz (n = 10, 1 excluded) or 3 and 7 Hz (n = 12, 1 excluded). As a result, evoked potentials in response to stimulation onset and contralateral SSEPs at 3 and 7 Hz were observed. The SSEPs at 3 and 7 Hz had an average time delay of 137 ms and 143 ms respectively. The evoked potential in response to stimulation onset had a contralateral minimum (N1) at 115 ms and a central maximum (P2) at 300 ms. Sources for the multisine SSEP at 3 and 7 Hz were found through beamforming near the primary and secondary somatosensory cortex. Sources for the N1 were found near the primary and secondary somatosensory cortex. Sources for the N2-P2 were found near the supplementary motor area. Harmonic and intermodulation frequencies in the SSEP power spectrum remained below a detectable level and no evidence for nonlinearity of nociceptive processing, i.e. processing of peripheral firing rate into cortical evoked potentials, was found.
Collapse
Affiliation(s)
- Boudewijn van den Berg
- Biomedical Signals and Systems, Technical Medical Centre, University of Twente, PO Box 217, 7500 AE, Enschede, The Netherlands.
| | - Mana Manoochehri
- Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, The Netherlands
| | - Alfred C Schouten
- Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, The Netherlands.,Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, USA.,Biomechanical Engineering, Technical Medical Centre, University of Twente, Enschede, The Netherlands
| | - Frans C T van der Helm
- Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, The Netherlands.,Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, USA
| | - Jan R Buitenweg
- Biomedical Signals and Systems, Technical Medical Centre, University of Twente, PO Box 217, 7500 AE, Enschede, The Netherlands
| |
Collapse
|
21
|
Wang Y, Oh H, Barlow SM. Dynamic causal modeling of sensorimotor networks elicited by saltatory pneumotactile velocity in the glabrous hand. J Neuroimaging 2022; 32:752-764. [PMID: 35044016 DOI: 10.1111/jon.12968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/12/2021] [Accepted: 01/04/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE The effective connectivity of neuronal networks during passive saltatory pneumotactile velocity stimulation to the glabrous hand with different velocities is still unknown. The present study investigated the effectivity connectivity elicited by saltatory pneumotactile velocity arrays placed on the glabrous hand at three velocities (5, 25, and 65 cm/second). METHODS Dynamic causal modeling (DCM) was used on functional MRI data sampled from 20 neurotypical adults. Five brain regions, including the left primary somatosensory (SI) and motor (M1) cortices, bilateral secondary somatosensory (SII) cortices, and right cerebellar lobule VI, were used to build model space. RESULTS Three velocities (5, 25, and 65 cm/second) of saltatory pneumotactile stimuli were processed in both serial and parallel modes within the sensorimotor networks. The medium velocity of 25 cm/second modulated forward interhemispheric connection from the contralateral SII to the ipsilateral SII. Pneumotactile stimulation at the medium velocity of 25 cm/second also influenced contralateral M1 through contralateral SI. Finally, the right cerebellar lobule VI was involved in the sensorimotor networks. CONCLUSIONS Our DCM results suggest the coexistence of both serial and parallel processing for saltatory pneumotactile velocity stimulation. Significant contralateral M1 modulation promotes the prospect that the passive saltatory pneumotactile velocity arrays can be used to design sensorimotor rehabilitation protocols to activate M1. The effective connectivity from the right cerebellar lobule VI to other cortical regions demonstrates the cerebellum's role in the sensorimotor networks through feedforward and feedback neuronal pathways.
Collapse
Affiliation(s)
- Yingying Wang
- Neuroimaging for Language, Literacy and Learning Laboratory, Department of Special Education and Communication Disorders, University of Nebraska-Lincoln, Lincoln, Nebraska, USA.,Center for Brain, Biology and Behavior, University of Nebraska-Lincoln, Lincoln, Nebraska, USA.,Nebraska Center for Research on Children, Youth, Families and Schools, University of Nebraska-Lincoln, Lincoln, Nebraska, USA.,Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Hyuntaek Oh
- Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, USA.,Communication Neuroscience Laboratory, Department of Special Education and Communication Disorders, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Steven M Barlow
- Center for Brain, Biology and Behavior, University of Nebraska-Lincoln, Lincoln, Nebraska, USA.,Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, USA.,Communication Neuroscience Laboratory, Department of Special Education and Communication Disorders, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| |
Collapse
|
22
|
Li L, Di X, Zhang H, Huang G, Zhang L, Liang Z, Zhang Z. Characterization of whole-brain task-modulated functional connectivity in response to nociceptive pain: A multisensory comparison study. Hum Brain Mapp 2021; 43:1061-1075. [PMID: 34761468 PMCID: PMC8764484 DOI: 10.1002/hbm.25707] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 10/12/2021] [Accepted: 10/21/2021] [Indexed: 11/12/2022] Open
Abstract
Previous functional magnetic resonance imaging (fMRI) studies have shown that brain responses to nociceptive pain, non-nociceptive somatosensory, visual, and auditory stimuli are extremely similar. Actually, perception of external sensory stimulation requires complex interactions among distributed cortical and subcortical brain regions. However, the interactions among these regions elicited by nociceptive pain remain unclear, which limits our understanding of mechanisms of pain from a brain network perspective. Task fMRI data were collected with a random sequence of intermixed stimuli of four sensory modalities in 80 healthy subjects. Whole-brain psychophysiological interaction analysis was performed to identify task-modulated functional connectivity (FC) patterns for each modality. Task-modulated FC strength and graph-theoretical-based network properties were compared among the four modalities. Lastly, we performed across-sensory-modality prediction analysis based on the whole-brain task-modulated FC patterns to confirm the specific relationship between brain patterns and sensory modalities. For each sensory modality, task-modulated FC patterns were distributed over widespread brain regions beyond those typically activated or deactivated during the stimulation. As compared with the other three sensory modalities, nociceptive stimulation exhibited significantly different patterns (more widespread and stronger FC within the cingulo-opercular network, between cingulo-opercular and sensorimotor networks, between cingulo-opercular and emotional networks, and between default mode and emotional networks) and global property (smaller modularity). Further, a cross-sensory-modality prediction analysis found that task-modulated FC patterns could predict sensory modality at the subject level successfully. Collectively, these results demonstrated that the whole-brain task-modulated FC is preferentially modulated by pain, thus providing new insights into the neural mechanisms of pain processing.
Collapse
Affiliation(s)
- Linling Li
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China.,Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen, China
| | - Xin Di
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey, USA
| | - Huijuan Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Gan Huang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China.,Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen, China
| | - Li Zhang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China.,Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen, China
| | - Zhen Liang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China.,Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen, China
| | - Zhiguo Zhang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China.,Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen, China.,Peng Cheng Laboratory, Shenzhen, China
| |
Collapse
|