1
|
Soltanpour S, Chang A, Madularu D, Kulkarni P, Ferris C, Joslin C. 3D Wasserstein Generative Adversarial Network with Dense U-Net-Based Discriminator for Preclinical fMRI Denoising. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2025:10.1007/s10278-025-01434-5. [PMID: 39939477 DOI: 10.1007/s10278-025-01434-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/21/2025] [Accepted: 01/28/2025] [Indexed: 02/14/2025]
Abstract
Functional magnetic resonance imaging (fMRI) is extensively used in clinical and preclinical settings to study brain function; however, fMRI data is inherently noisy due to physiological processes, hardware, and external noise. Denoising is one of the main preprocessing steps in any fMRI analysis pipeline. This process is challenging in preclinical data in comparison to clinical data due to variations in brain geometry, image resolution, and low signal-to-noise ratios. In this paper, we propose a structure-preserved algorithm based on a 3D Wasserstein generative adversarial network with a 3D dense U-net-based discriminator called 3D U-WGAN. We apply a 4D data configuration to effectively denoise temporal and spatial information in analyzing preclinical fMRI data. GAN-based denoising methods often utilize a discriminator to identify significant differences between denoised and noise-free images, focusing on global or local features. To refine the fMRI denoising model, our method employs a 3D dense U-Net discriminator to learn both global and local distinctions. To tackle potential oversmoothing, we introduce an adversarial loss and enhance perceptual similarity by measuring feature space distances. Experiments illustrate that 3D U-WGAN significantly improves image quality in resting-state and task preclinical fMRI data, enhancing signal-to-noise ratio without introducing excessive structural changes in existing methods. The proposed method outperforms state-of-the-art methods when applied to simulated and real data in a fMRI analysis pipeline.
Collapse
Affiliation(s)
- Sima Soltanpour
- School of Information Technology, Carleton University, 1125 Colonel By Dr, Ottawa, Ontario, K1S 5B6, Canada.
| | - Arnold Chang
- Center for Translational NeuroImaging (CTNI), Northeastern University, 360 Huntington Ave, Boston, MA, 02115, USA
| | - Dan Madularu
- Department of Psychology, Carleton University, 1125 Colonel By Dr, Ottawa, Ontario, K1S 5B6, Canada
- Tessellis Ltd., 350 Legget Drive, Ottawa, Ontario, K2K 0G7, Canada
| | - Praveen Kulkarni
- Center for Translational NeuroImaging (CTNI), Northeastern University, 360 Huntington Ave, Boston, MA, 02115, USA
| | - Craig Ferris
- Center for Translational NeuroImaging (CTNI), Northeastern University, 360 Huntington Ave, Boston, MA, 02115, USA
| | - Chris Joslin
- School of Information Technology, Carleton University, 1125 Colonel By Dr, Ottawa, Ontario, K1S 5B6, Canada
| |
Collapse
|
2
|
Chen H, Chen X, Lin L, Cai S, Cai C, Chen Z, Xu J, Chen L. Learned spatiotemporal correlation priors for CEST image denoising using incorporated global-spectral convolution neural network. Magn Reson Med 2023; 90:2071-2088. [PMID: 37332198 DOI: 10.1002/mrm.29763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/20/2023]
Abstract
PURPOSE To develop a deep learning-based method, dubbed Denoising CEST Network (DECENT), to fully exploit the spatiotemporal correlation prior to CEST image denoising. METHODS DECENT is composed of two parallel pathways with different convolution kernel sizes aiming to extract the global and spectral features embedded in CEST images. Each pathway consists of a modified U-Net with residual Encoder-Decoder network and 3D convolution. Fusion pathway with 1 × 1 × 1 convolution kernel is utilized to concatenate two parallel pathways, and the output of DECENT is noise-reduced CEST images. The performance of DECENT was validated in numerical simulations, egg white phantom experiments, and ischemic mouse brain and human skeletal muscle experiments in comparison with existing state-of-the-art denoising methods. RESULTS Rician noise was added to CEST images to mimic a low SNR situation for numerical simulation, egg white phantom experiment, and mouse brain experiments, while human skeletal muscle experiments were of inherently low SNR. From the denoising results evaluated by peak SNR (PSNR) and structural similarity index (SSIM), the proposed deep learning-based denoising method (DECENT) can achieve better performance compared to existing CEST denoising methods such as NLmCED, MLSVD, and BM4D, avoiding complicated parameter tuning or time-consuming iterative processes. CONCLUSIONS DECENT can well exploit the prior spatiotemporal correlation knowledge of CEST images and restore the noise-free images from their noisy observations, outperforming state-of-the-art denoising methods.
Collapse
Affiliation(s)
- Huan Chen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, School of Electronic Science and Engineering, National Model Microelectronics College, Xiamen University, Xiamen, China
| | - Xinran Chen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, School of Electronic Science and Engineering, National Model Microelectronics College, Xiamen University, Xiamen, China
| | - Liangjie Lin
- MSC Clinical & Technical Solutions, Philips Healthcare, Beijing, China
| | - Shuhui Cai
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, School of Electronic Science and Engineering, National Model Microelectronics College, Xiamen University, Xiamen, China
| | - Congbo Cai
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, School of Electronic Science and Engineering, National Model Microelectronics College, Xiamen University, Xiamen, China
| | - Zhong Chen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, School of Electronic Science and Engineering, National Model Microelectronics College, Xiamen University, Xiamen, China
| | - Jiadi Xu
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Lin Chen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, School of Electronic Science and Engineering, National Model Microelectronics College, Xiamen University, Xiamen, China
| |
Collapse
|
3
|
Chen Z, Pawar K, Ekanayake M, Pain C, Zhong S, Egan GF. Deep Learning for Image Enhancement and Correction in Magnetic Resonance Imaging-State-of-the-Art and Challenges. J Digit Imaging 2023; 36:204-230. [PMID: 36323914 PMCID: PMC9984670 DOI: 10.1007/s10278-022-00721-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/09/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
Magnetic resonance imaging (MRI) provides excellent soft-tissue contrast for clinical diagnoses and research which underpin many recent breakthroughs in medicine and biology. The post-processing of reconstructed MR images is often automated for incorporation into MRI scanners by the manufacturers and increasingly plays a critical role in the final image quality for clinical reporting and interpretation. For image enhancement and correction, the post-processing steps include noise reduction, image artefact correction, and image resolution improvements. With the recent success of deep learning in many research fields, there is great potential to apply deep learning for MR image enhancement, and recent publications have demonstrated promising results. Motivated by the rapidly growing literature in this area, in this review paper, we provide a comprehensive overview of deep learning-based methods for post-processing MR images to enhance image quality and correct image artefacts. We aim to provide researchers in MRI or other research fields, including computer vision and image processing, a literature survey of deep learning approaches for MR image enhancement. We discuss the current limitations of the application of artificial intelligence in MRI and highlight possible directions for future developments. In the era of deep learning, we highlight the importance of a critical appraisal of the explanatory information provided and the generalizability of deep learning algorithms in medical imaging.
Collapse
Affiliation(s)
- Zhaolin Chen
- Monash Biomedical Imaging, Monash University, Melbourne, VIC, 3168, Australia.
- Department of Data Science and AI, Monash University, Melbourne, VIC, Australia.
| | - Kamlesh Pawar
- Monash Biomedical Imaging, Monash University, Melbourne, VIC, 3168, Australia
| | - Mevan Ekanayake
- Monash Biomedical Imaging, Monash University, Melbourne, VIC, 3168, Australia
- Department of Electrical and Computer Systems Engineering, Monash University, Melbourne, VIC, Australia
| | - Cameron Pain
- Monash Biomedical Imaging, Monash University, Melbourne, VIC, 3168, Australia
- Department of Electrical and Computer Systems Engineering, Monash University, Melbourne, VIC, Australia
| | - Shenjun Zhong
- Monash Biomedical Imaging, Monash University, Melbourne, VIC, 3168, Australia
- National Imaging Facility, Brisbane, QLD, Australia
| | - Gary F Egan
- Monash Biomedical Imaging, Monash University, Melbourne, VIC, 3168, Australia
- Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, Australia
| |
Collapse
|