1
|
de Joode NT, van den Heuvel OA, Koster M, Clarke WT, van Balkom AJLM, Schrantee A, Vriend C. Glutamate dynamics and BOLD response during OCD symptom provocation in the lateral occipital cortex: A 7 Tesla fMRI-fMRS study. J Affect Disord 2024; 367:416-425. [PMID: 39233246 DOI: 10.1016/j.jad.2024.08.216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 08/19/2024] [Accepted: 08/31/2024] [Indexed: 09/06/2024]
Abstract
Obsessive-compulsive disorder (OCD) is linked with dysfunction in frontal-striatal, fronto-limbic, and visual brain regions. Research using proton magnetic resonance spectroscopy (1H-MRS) suggests that altered neurometabolite levels, like glutamate, may contribute to this dysfunction. However, static neurometabolite levels in OCD patients have shown inconsistent results, likely due to previous studies' limited focus on neurometabolite dynamics. We employ functional MRS (fMRS) and functional magnetic resonance imaging (fMRI) to explore these dynamics and brain activation during OCD symptom provocation. We utilized a combined 7-tesla fMRI-fMRS setup to examine task-related BOLD response and glutamate changes in the lateral occipital cortex (LOC) of 30 OCD participants and 34 matched controls during an OCD-specific symptom provocation task. The study examined main effects and between-group differences in brain activation and glutamate levels during the task. A whole sample task-effects analysis on data meeting predefined quality criteria showed significant glutamate increases (n = 41 (22 OCD, 19 controls), mean change: 3.2 %, z = 3.75, p < .001) and task activation (n = 54 (26 OCD, 28 controls), p < .001) in the LOC during OCD blocks compared to neutral blocks. However, no differences in task-induced glutamate dynamics or activation between groups were found, nor a correlation between glutamate levels and task activation. We were able to measure task-induced increases in glutamate and BOLD levels, emphasizing its feasibility for OCD research. The absence of group differences highlights the need for further exploration to discern to what extent neurometabolite dynamics differ between OCD patients and controls. Once established, future studies can use pre-post intervention fMRS-fMRI to probe the effects of therapies modulating glutamate pathways in OCD.
Collapse
Affiliation(s)
- Niels T de Joode
- Amsterdam UMC, Vrije Universiteit Amsterdam, Dept. Anatomy and Neurosciences, De Boelelaan 1117, Amsterdam, Netherlands; Amsterdam Neuroscience, Compulsivity Impulsivity Attention Program, Amsterdam, Netherlands.
| | - Odile A van den Heuvel
- Amsterdam UMC, Vrije Universiteit Amsterdam, Dept. Anatomy and Neurosciences, De Boelelaan 1117, Amsterdam, Netherlands; Amsterdam UMC, Vrije Universiteit Amsterdam, Dept. Psychiatry, De Boelelaan 1117, Amsterdam, Netherlands; Amsterdam Neuroscience, Compulsivity Impulsivity Attention Program, Amsterdam, Netherlands
| | - Merel Koster
- Amsterdam UMC, Vrije Universiteit Amsterdam, Dept. Anatomy and Neurosciences, De Boelelaan 1117, Amsterdam, Netherlands; Amsterdam Neuroscience, Compulsivity Impulsivity Attention Program, Amsterdam, Netherlands
| | - William T Clarke
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Anton J L M van Balkom
- Amsterdam UMC, Vrije Universiteit Amsterdam, Dept. Psychiatry, De Boelelaan 1117, Amsterdam, Netherlands; GGZ inGeest Specialised Mental Health Care, Amsterdam, Netherlands
| | - Anouk Schrantee
- Amsterdam Neuroscience, Compulsivity Impulsivity Attention Program, Amsterdam, Netherlands; Amsterdam UMC, University of Amsterdam, Radiology and Nuclear Medicine, Meibergdreef 9, Amsterdam, Netherlands
| | - Chris Vriend
- Amsterdam UMC, Vrije Universiteit Amsterdam, Dept. Anatomy and Neurosciences, De Boelelaan 1117, Amsterdam, Netherlands; Amsterdam UMC, Vrije Universiteit Amsterdam, Dept. Psychiatry, De Boelelaan 1117, Amsterdam, Netherlands; Amsterdam Neuroscience, Compulsivity Impulsivity Attention Program, Amsterdam, Netherlands.
| |
Collapse
|
2
|
Emeliyanova P, Parkes LM, Williams SR, Lea-Carnall C. Evidence for biexponential glutamate T 2 relaxation in human visual cortex at 3T: A functional MRS study. NMR IN BIOMEDICINE 2024; 37:e5240. [PMID: 39188210 DOI: 10.1002/nbm.5240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 04/30/2024] [Accepted: 08/02/2024] [Indexed: 08/28/2024]
Abstract
Functional magnetic resonance spectroscopy (fMRS) measures dynamic changes in metabolite concentration in response to neural stimulation. The biophysical basis of these changes remains unclear. One hypothesis suggests that an increase or decrease in the glutamate signal detected by fMRS could be due to neurotransmitter movements between cellular compartments with different T2 relaxation times. Previous studies reporting glutamate (Glu) T2 values have generally sampled at echo times (TEs) within the range of 30-450 ms, which is not adequate to observe a component with short T2 (<20 ms). Here, we acquire MRS measurements for Glu, (t) total creatine (tCr) and total N-acetylaspartate (tNAA) from the visual cortex in 14 healthy participants at a range of TE values between 9.3-280 ms during short blocks (64 s) of flickering checkerboards and rest to examine both the short- and long-T2 components of the curve. We fit monoexponential and biexponential Glu, tCr and tNAA T2 relaxation curves for rest and stimulation and use Akaike information criterion to assess best model fit. We also include power calculations for detection of a 2% shift of Glu between compartments for each TE. Using pooled data over all participants at rest, we observed a short Glu T2-component with T2 = 10 ms and volume fraction of 0.35, a short tCr T2-component with T2 = 26 ms and volume fraction of 0.25 and a short tNAA T2-component around 15 ms with volume fraction of 0.34. No statistically significant change in Glu, tCr and tNAA signal during stimulation was detected at any TE. The volume fractions of short-T2 component between rest and active conditions were not statistically different. This study provides evidence for a short T2-component for Glu, tCr and tNAA but no evidence to support the hypothesis of task-related changes in glutamate distribution between short and long T2 compartments.
Collapse
Affiliation(s)
- Polina Emeliyanova
- School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom of Great Britain and Northern Ireland
- Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom of Great Britain and Northern Ireland
| | - Laura M Parkes
- School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom of Great Britain and Northern Ireland
- Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom of Great Britain and Northern Ireland
| | - Stephen R Williams
- School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom of Great Britain and Northern Ireland
| | - Caroline Lea-Carnall
- School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom of Great Britain and Northern Ireland
- Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
3
|
Fan L, Zhang Z, Ma X, Liang L, Wang Y, Yuan L, Ouyang L, Li Z, Chen X, He Y, Palaniyappan L. Glutamate levels and symptom burden in high-risk and first-episode schizophrenia: a dual-voxel study of the anterior cingulate cortex. J Psychiatry Neurosci 2024; 49:E367-E376. [PMID: 39542650 PMCID: PMC11573428 DOI: 10.1503/jpn.240094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND Reduced glutamatergic excitability of the anterior cingulate cortex (ACC) has been long suspected in schizophrenia; recent observations support low glutamatergic tone as the primary pathophysiology contributing to subtle early features of this illness, with a secondary disinhibition (higher glutamate tone) resulting in more prominent clinical symptoms later in its course. We sought to investigate whether people with genetic high risk (GHR) for schizophrenia have lower glutamate levels in the ACC than those at later stages of clinical high risk (CHR) and those with first-episode schizophrenia (FES), among whom symptoms are already prominent. METHODS We recruited people with CHR, GHR, or FES, as well as healthy controls. Using proton magnetic resonance spectroscopy, we determined glutamate levels in the perigenual ACC (pACC) and dorsal ACC (dACC) using a 3 T scanner. RESULTS We recruited 302 people across multiple stages of psychosis, including 63 with CHR, 76 with GHR, and 96 with FES, as well as 67 healthy controls. Those with GHR had lower glutamate levels in the dACC than those with CHR, while those with CHR had higher glutamate levels in the pACC than those with FES. Higher disorganization, but not any other symptom domain, was associated with lower levels of glutamate in the GHR group (dACC and pACC) and in the CHR group (pACC). LIMITATIONS The cross-sectional design precluded inferences regarding individual clinical trajectory and resolution at 3 T was insufficient to separate spectra of glutamine from glutamate. CONCLUSION Reduced glutamatergic tone among people genetically predisposed to schizophrenia supports diminished excitability as an early feature of schizophrenia, contributing to the subtle symptom of disorganization across high-risk states. Higher glutamate levels become apparent when psychotic symptoms become prominent, possibly as a disinhibitory effect and, at the full-blown stage of psychosis, the relationship between glutamate concentrations and symptoms ceases to be simply linear.
Collapse
Affiliation(s)
- Lejia Fan
- From the Department of Psychiatry and Psychology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China (Fan); the Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China (Fan, Zhang, Ma, Wang, Yuan, Ouyang, He, Li, Chen); the Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montréal, Que. (Fan, Palaniyappan); the Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ont. (Liang, Palaniyappan)
| | - Zhenmei Zhang
- From the Department of Psychiatry and Psychology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China (Fan); the Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China (Fan, Zhang, Ma, Wang, Yuan, Ouyang, He, Li, Chen); the Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montréal, Que. (Fan, Palaniyappan); the Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ont. (Liang, Palaniyappan)
| | - Xiaoqian Ma
- From the Department of Psychiatry and Psychology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China (Fan); the Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China (Fan, Zhang, Ma, Wang, Yuan, Ouyang, He, Li, Chen); the Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montréal, Que. (Fan, Palaniyappan); the Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ont. (Liang, Palaniyappan)
| | - Liangbing Liang
- From the Department of Psychiatry and Psychology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China (Fan); the Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China (Fan, Zhang, Ma, Wang, Yuan, Ouyang, He, Li, Chen); the Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montréal, Que. (Fan, Palaniyappan); the Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ont. (Liang, Palaniyappan)
| | - Yujue Wang
- From the Department of Psychiatry and Psychology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China (Fan); the Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China (Fan, Zhang, Ma, Wang, Yuan, Ouyang, He, Li, Chen); the Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montréal, Que. (Fan, Palaniyappan); the Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ont. (Liang, Palaniyappan)
| | - Liu Yuan
- From the Department of Psychiatry and Psychology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China (Fan); the Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China (Fan, Zhang, Ma, Wang, Yuan, Ouyang, He, Li, Chen); the Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montréal, Que. (Fan, Palaniyappan); the Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ont. (Liang, Palaniyappan)
| | - Lijun Ouyang
- From the Department of Psychiatry and Psychology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China (Fan); the Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China (Fan, Zhang, Ma, Wang, Yuan, Ouyang, He, Li, Chen); the Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montréal, Que. (Fan, Palaniyappan); the Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ont. (Liang, Palaniyappan)
| | - Zongchang Li
- From the Department of Psychiatry and Psychology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China (Fan); the Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China (Fan, Zhang, Ma, Wang, Yuan, Ouyang, He, Li, Chen); the Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montréal, Que. (Fan, Palaniyappan); the Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ont. (Liang, Palaniyappan)
| | - Xiaogang Chen
- From the Department of Psychiatry and Psychology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China (Fan); the Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China (Fan, Zhang, Ma, Wang, Yuan, Ouyang, He, Li, Chen); the Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montréal, Que. (Fan, Palaniyappan); the Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ont. (Liang, Palaniyappan)
| | - Ying He
- From the Department of Psychiatry and Psychology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China (Fan); the Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China (Fan, Zhang, Ma, Wang, Yuan, Ouyang, He, Li, Chen); the Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montréal, Que. (Fan, Palaniyappan); the Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ont. (Liang, Palaniyappan)
| | - Lena Palaniyappan
- From the Department of Psychiatry and Psychology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China (Fan); the Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China (Fan, Zhang, Ma, Wang, Yuan, Ouyang, He, Li, Chen); the Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montréal, Que. (Fan, Palaniyappan); the Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ont. (Liang, Palaniyappan)
| |
Collapse
|
4
|
Oh H, Berrington A, Auer DP, Babourina-Brooks B, Faas H, Jung JY. A preliminary study of dynamic neurochemical changes in the dorsolateral prefrontal cortex during working memory. Eur J Neurosci 2024; 59:2075-2086. [PMID: 38409515 DOI: 10.1111/ejn.16280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 01/28/2024] [Accepted: 01/30/2024] [Indexed: 02/28/2024]
Abstract
Working memory (WM) is one of the fundamental cognitive functions associated with the dorsolateral prefrontal cortex (DLPFC). However, the neurochemical mechanisms of WM, including the dynamic changes in neurometabolites such as glutamate and GABA in the DLPFC, remain unclear. Here, we investigated WM-related glutamate and GABA changes, alongside hemodynamic responses in the DLPFC, using a combination of functional magnetic resonance spectroscopy (fMRS) and functional magnetic resonance imaging (fMRI). During a WM task, we measured Glx (glutamate + glutamine) and GABA levels using GABA editing MEscher-GArwood Point REsolved Spectroscopy (MEGA-PRESS) sequence and blood-oxygen-level-dependent (BOLD) signal changes. In the DLPFC, we observed elevated Glx levels and increased BOLD signal changes during a 2-back task. Specifically, the Glx levels in the DLPFC were significantly higher during the 2-back task compared with fixation, although this difference was not significant when compared with a 0-back task. However, Glx levels during the 0-back task were higher than during fixation. Furthermore, there was a positive correlation between Glx levels in the DLPFC during the 2-back task and the corresponding BOLD signal changes. Notably, higher Glx increases were associated with increased DLPFC activation and lower WM task performance in individuals. No notable changes in DLPFC GABA levels were observed during WM processing. These findings suggest that the modulation of glutamatergic activity in the DLPFC may play a crucial role in both working memory processing and its associated performance outcomes.
Collapse
Affiliation(s)
- Hyerin Oh
- Mental Health & Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, UK
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Adam Berrington
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Dorothee P Auer
- Mental Health & Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, UK
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, UK
- NIHR Nottingham Biomedical Research Centre, Queen's Medical Centre, University of Nottingham, Nottingham, UK
| | - Ben Babourina-Brooks
- Mental Health & Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, UK
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, UK
- NIHR Nottingham Biomedical Research Centre, Queen's Medical Centre, University of Nottingham, Nottingham, UK
| | - Henryk Faas
- Mental Health & Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, UK
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Je Young Jung
- School of Psychology, University of Nottingham, Nottingham, UK
| |
Collapse
|
5
|
Melo L, Beaupain MC, Ghanavati E, Kuo MF, Nitsche MA. Neurochemical mechanisms underlying serotonergic modulation of neuroplasticity in humans. Brain Stimul 2024; 17:421-430. [PMID: 38574852 DOI: 10.1016/j.brs.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 03/31/2024] [Accepted: 04/01/2024] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND Studies in animals and humans have shown that cortical neuroplasticity can be modulated by increasing serotonin levels by administering selective serotonin reuptake inhibitors (SSRI). However, little is known about the mechanistic background, especially the contribution of intracortical inhibition and facilitation, which depend on gamma-aminobutyric acid (GABA) and glutamate. OBJECTIVE We aimed to explore the relevance of drivers of plasticity (glutamate- and GABA-dependent processes) for the effects of serotonin enhancement on tDCS-induced plasticity in healthy humans. METHODS A crossover, partially double-blinded, randomized, and sham-controlled study was conducted in 21 healthy right-handed individuals. In each of the 7 sessions, plasticity was induced via transcranial direct current stimulation (tDCS). Anodal, cathodal, and sham tDCS were applied to the left motor cortex under SSRI (20 mg/40 mg citalopram) or placebo. Short-interval cortical inhibition (SICI) and intracortical facilitation (ICF) were monitored by paired-pulse transcranial magnetic stimulation for 5-6 h after intervention. RESULTS Under placebo, anodal tDCS-induced LTP-like plasticity decreased SICI and increased ICF. In contrast, cathodal tDCS-elicited LTD-like plasticity induced the opposite effect. Under 20 mg and 40 mg citalopram, anodal tDCS did not affect SICI largely, while ICF was enhanced and prolonged. For cathodal tDCS, citalopram converted the increase of SICI and decrease of ICF into antagonistic effects, and this effect was dosage-dependent since it lasted longer under 40 mg when compared to 20 mg. CONCLUSION We speculate that the main effects of acute serotonergic enhancement on tDCS-induced plasticity, the increase and prolongation of LTP-like plasticity effects, involves mainly the glutamatergic system.
Collapse
Affiliation(s)
- Lorena Melo
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors (IfADo), Dortmund, Germany
| | - Marie C Beaupain
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors (IfADo), Dortmund, Germany; Department of Psychology, Ruhr-University Bochum, Germany
| | - Elham Ghanavati
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors (IfADo), Dortmund, Germany; Department of Psychology, Ruhr-University Bochum, Germany
| | - Min-Fang Kuo
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors (IfADo), Dortmund, Germany.
| | - Michael A Nitsche
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors (IfADo), Dortmund, Germany; Bielefeld University, University Hospital OWL, Protestant Hospital of Bethel Foundation, University Clinic of Psychiatry and Psychotherapy and University Clinic of Child and Adolescent Psychiatry and Psychotherapy, Germany; German Center for Mental Health (DZPG), Partner Site - Bochum/Marburg, Germany
| |
Collapse
|
6
|
Craven AR, Dwyer G, Ersland L, Kazimierczak K, Noeske R, Sandøy LB, Johnsen E, Hugdahl K. GABA, glutamatergic dynamics and BOLD contrast assessed concurrently using functional MRS during a cognitive task. NMR IN BIOMEDICINE 2024; 37:e5065. [PMID: 37897259 DOI: 10.1002/nbm.5065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 09/29/2023] [Accepted: 10/03/2023] [Indexed: 10/30/2023]
Abstract
A recurring issue in functional neuroimaging is how to link task-driven haemodynamic blood oxygen level dependent functional MRI (BOLD-fMRI) responses to underlying neurochemistry at the synaptic level. Glutamate and γ-aminobutyric acid (GABA), the major excitatory and inhibitory neurotransmitters respectively, are typically measured with MRS sequences separately from fMRI, in the absence of a task. The present study aims to resolve this disconnect, developing acquisition and processing techniques to simultaneously assess GABA, glutamate and glutamine (Glx) and BOLD in relation to a cognitive task, at 3 T. Healthy subjects (N = 81) performed a cognitive task (Eriksen flanker), which was presented visually in a task-OFF, task-ON block design, with individual event onset timing jittered with respect to the MRS readout. fMRS data were acquired from the medial anterior cingulate cortex during task performance, using an adapted MEGA-PRESS implementation incorporating unsuppressed water-reference signals at a regular interval. These allowed for continuous assessment of BOLD activation, through T2 *-related changes in water linewidth. BOLD-fMRI data were additionally acquired. A novel linear model was used to extract modelled metabolite spectra associated with discrete functional stimuli, building on well established processing and quantification tools. Behavioural outcomes from the flanker task, and activation patterns from the BOLD-fMRI sequence, were as expected from the literature. BOLD response assessed through fMRS showed a significant correlation with fMRI, specific to the fMRS-targeted region of interest; fMRS-assessed BOLD additionally correlated with lengthening of response time in the incongruent flanker condition. While no significant task-related changes were observed for GABA+, a significant increase in measured Glx levels (~8.8%) was found between task-OFF and task-ON periods. These findings verify the efficacy of our protocol and analysis pipelines for the simultaneous assessment of metabolite dynamics and BOLD. As well as establishing a robust basis for further work using these techniques, we also identify a number of clear directions for further refinement in future studies.
Collapse
Affiliation(s)
- Alexander R Craven
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
- Department of Clinical Engineering, Haukeland University Hospital, Bergen, Norway
- NORMENT Center of Excellence, Haukeland University Hospital, Bergen, Norway
| | - Gerard Dwyer
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
- NORMENT Center of Excellence, Haukeland University Hospital, Bergen, Norway
| | - Lars Ersland
- Department of Clinical Engineering, Haukeland University Hospital, Bergen, Norway
- NORMENT Center of Excellence, Haukeland University Hospital, Bergen, Norway
| | | | | | - Lydia Brunvoll Sandøy
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
- Department of Physics and Technology, University of Bergen, Bergen, Norway
| | - Erik Johnsen
- NORMENT Center of Excellence, Haukeland University Hospital, Bergen, Norway
- Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Kenneth Hugdahl
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
- Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
- Department of Radiology, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
7
|
Eisenstein T, Furman-Haran E, Tal A. Early excitatory-inhibitory cortical modifications following skill learning are associated with motor memory consolidation and plasticity overnight. Nat Commun 2024; 15:906. [PMID: 38291029 PMCID: PMC10828487 DOI: 10.1038/s41467-024-44979-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 01/08/2024] [Indexed: 02/01/2024] Open
Abstract
Consolidation of motor memories is vital to offline enhancement of new motor skills and involves short and longer-term offline processes following learning. While emerging evidence link glutamate and GABA dynamics in the primary motor cortex (M1) to online motor skill practice, its relationship with offline consolidation processes in humans is unclear. Using two-day repeated measures of behavioral and multimodal neuroimaging data before and following motor sequence learning, we show that short-term glutamatergic and GABAergic responses in M1 within minutes after learning were associated with longer-term learning-induced functional, structural, and behavioral modifications overnight. Furthermore, Glutamatergic and GABAergic modifications were differentially associated with different facets of motor memory consolidation. Our results point to unique and distinct roles of Glutamate and GABA in motor memory consolidation processes in the human brain across timescales and mechanistic levels, tying short-term changes on the neurochemical level to overnight changes in macroscale structure, function, and behavior.
Collapse
Affiliation(s)
- Tamir Eisenstein
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel.
| | - Edna Furman-Haran
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Assaf Tal
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
8
|
O'Donnell P, Buhl DL, Johannesen J, Lijffijt M. Neural Circuitry-Related Biomarkers for Drug Development in Psychiatry: An Industry Perspective. ADVANCES IN NEUROBIOLOGY 2024; 40:45-65. [PMID: 39562440 DOI: 10.1007/978-3-031-69491-2_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Drug development in psychiatry has been hampered by the lack of reliable ways to determine the neurobiological effects of the assets tested, difficulties in identifying patient subsets more amenable to benefit from a given asset, and issues with executing trials in a manner that would convincingly provide answers. An emerging idea in many companies is to validate tools to address changes in neural circuits by pharmacological tools as a key piece in quantifying the effects of our drugs. Here, we review past, present, and emerging approaches to capture the outcome of the modulation of brain circuits. The field is now ripe for implementing these approaches in drug development.
Collapse
Affiliation(s)
| | - Derek L Buhl
- Precision Medicine, Abbvie, Inc, Cambridge, MA, USA
| | | | | |
Collapse
|
9
|
Boucherie DE, Reneman L, Ruhé HG, Schrantee A. Neurometabolite changes in response to antidepressant medication: A systematic review of 1H-MRS findings. Neuroimage Clin 2023; 40:103517. [PMID: 37812859 PMCID: PMC10563053 DOI: 10.1016/j.nicl.2023.103517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/22/2023] [Accepted: 09/23/2023] [Indexed: 10/11/2023]
Abstract
Selective serotonin reuptake inhibitors (SSRIs), serotonin and noradrenaline reuptake inhibitors (SNRIs), and (es)ketamine are used to treat major depressive disorder (MDD). These different types of medication may involve common neural pathways related to glutamatergic and GABAergic neurotransmitter systems, both of which have been implicated in MDD pathology. We conducted a systematic review of pharmacological proton Magnetic Resonance Spectroscopy (1H-MRS) studies in healthy volunteers and individuals with MDD to explore the potential impact of these medications on glutamatergic and GABAergic systems. We searched PubMed, Web of Science and Embase and included randomized controlled trials or cohort studies, which assessed the effects of SSRIs, SNRIs, or (es)ketamine on glutamate, glutamine, Glx or GABA using single-voxel 1H-MRS or Magnetic Resonance Spectroscopic Imaging (MRSI). Additionally, studies were included when they used a field strength > 1.5 T, and when a comparison of metabolite levels between antidepressant treatment and placebo or baseline with post-medication metabolite levels was done. We excluded animal studies, duplicate publications, or articles with 1H-MRS data already described in another included article. Twenty-nine studies were included in this review. Fifteen studies investigated the effect of administration or treatment with SSRIs or SNRIs, and fourteen studies investigated the effect of (es)ketamine on glutamatergic and GABAergic metabolite levels. Studies on SSRIs and SNRIs were highly variable, generally underpowered, and yielded no consistent findings across brain regions or specific populations. Although studies on (es)ketamine were also highly variable, some demonstrated an increase in glutamate levels in the anterior cingulate cortex in a time-dependent manner after administration. Our findings highlight the need for standardized study and acquisition protocols. Additionally, measuring metabolites dynamically over time or combining 1H-MRS with whole brain functional imaging techniques could provide valuable insights into the effects of these medications on glutamate and GABAergic neurometabolism.
Collapse
Affiliation(s)
- Daphne E Boucherie
- Amsterdam UMC, Location AMC, Department of Radiology and Nuclear Medicine, Meibergdreef 9, 1109 AZ Amsterdam, the Netherlands.
| | - Liesbeth Reneman
- Department of Psychiatry, Radboudumc, Radboud University, Reinier Postlaan 4, 6525 GC Nijmegen, the Netherlands
| | - Henricus G Ruhé
- Amsterdam UMC, Location AMC, Department of Radiology and Nuclear Medicine, Meibergdreef 9, 1109 AZ Amsterdam, the Netherlands; Department of Psychiatry, Radboudumc, Radboud University, Reinier Postlaan 4, 6525 GC Nijmegen, the Netherlands; Donders Institute for Brain Cognition and Behaviour, Radboud University, Kapittelweg 29, 6525 EN Nijmegen, the Netherlands
| | - Anouk Schrantee
- Amsterdam UMC, Location AMC, Department of Radiology and Nuclear Medicine, Meibergdreef 9, 1109 AZ Amsterdam, the Netherlands
| |
Collapse
|
10
|
Koolschijn RS, Clarke WT, Ip IB, Emir UE, Barron HC. Event-related functional magnetic resonance spectroscopy. Neuroimage 2023; 276:120194. [PMID: 37244321 PMCID: PMC7614684 DOI: 10.1016/j.neuroimage.2023.120194] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/24/2023] [Indexed: 05/29/2023] Open
Abstract
Proton-Magnetic Resonance Spectroscopy (MRS) is a non-invasive brain imaging technique used to measure the concentration of different neurochemicals. "Single-voxel" MRS data is typically acquired across several minutes, before individual transients are averaged through time to give a measurement of neurochemical concentrations. However, this approach is not sensitive to more rapid temporal dynamics of neurochemicals, including those that reflect functional changes in neural computation relevant to perception, cognition, motor control and ultimately behaviour. In this review we discuss recent advances in functional MRS (fMRS) that now allow us to obtain event-related measures of neurochemicals. Event-related fMRS involves presenting different experimental conditions as a series of trials that are intermixed. Critically, this approach allows spectra to be acquired at a time resolution in the order of seconds. Here we provide a comprehensive user guide for event-related task designs, choice of MRS sequence, analysis pipelines, and appropriate interpretation of event-related fMRS data. We raise various technical considerations by examining protocols used to quantify dynamic changes in GABA, the primary inhibitory neurotransmitter in the brain. Overall, we propose that although more data is needed, event-related fMRS can be used to measure dynamic changes in neurochemicals at a temporal resolution relevant to computations that support human cognition and behaviour.
Collapse
Affiliation(s)
- Renée S Koolschijn
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, FMRIB, John Radcliffe Hospital, Oxford, United Kingdom; Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, The Netherlands.
| | - William T Clarke
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, FMRIB, John Radcliffe Hospital, Oxford, United Kingdom; Medical Research Council Brain Network Dynamics Unit, University of Oxford, Oxford, United Kingdom
| | - I Betina Ip
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, FMRIB, John Radcliffe Hospital, Oxford, United Kingdom
| | - Uzay E Emir
- School of Health Sciences, Purdue University, West Lafayette, United States
| | - Helen C Barron
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, FMRIB, John Radcliffe Hospital, Oxford, United Kingdom; Medical Research Council Brain Network Dynamics Unit, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|