1
|
Miura H, Ono Y, Suzuki T, Ogihara Y, Imai Y, Watanabe A, Tokikuni Y, Sakuraba S, Sawamura D. Regional brain activity and neural network changes in cognitive-motor dual-task interference: A functional near-infrared spectroscopy study. Neuroimage 2024; 297:120714. [PMID: 38950665 DOI: 10.1016/j.neuroimage.2024.120714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/03/2024] Open
Abstract
Previous neuroimaging studies have reported dual-task interference (DTi) and deterioration of task performance in a cognitive-motor dual task (DT) compared to that in a single task (ST). Greater frontoparietal activity is a neural signature of DTi; nonetheless, the underlying mechanism of cortical network in DTi still remains unclear. This study aimed to investigate the regional brain activity and neural network changes during DTi induced by highly demanding cognitive-motor DT. Thirty-four right-handed healthy young adults performed the spiral-drawing task. They underwent a paced auditory serial addition test (PASAT) simultaneously or independently while their cortical activity was measured using functional near-infrared spectroscopy. Motor performance was determined using the balanced integration score (BIS), a balanced index of drawing speed and precision. The cognitive task of the PASAT was administered with two difficulty levels defined by 1 s (PASAT-1 s) and 2 s (PASAT-2 s) intervals, allowing for the serial addition of numbers. Cognitive performance was determined using the percentage of correct responses. These motor and cognitive performances were significantly reduced during DT, which combined a drawing and a cognitive task at either difficulty level, compared to those in the corresponding ST conditions. The DT conditions were also characterized by significantly increased activity in the right dorsolateral prefrontal cortex (DLPFC) compared to that in the ST conditions. Multivariate Granger causality (GC) analysis of cortical activity in the selected frontoparietal regions of interest further revealed selective top-down causal connectivity from the right DLPFC to the right inferior parietal cortex during DTs. Furthermore, changes in the frontoparietal GC connectivity strength between the PASAT-2 s DT and ST conditions significantly correlated negatively with changes in the percentage of correct responses. Therefore, DTi can occur even in cognitively proficient young adults, and the right DLPFC and frontoparietal network being crucial neural mechanisms underlying DTi. These findings provide new insights into DTi and its underlying neural mechanisms and have implications for the clinical utility of cognitive-motor DTs applied to clinical populations with cognitive decline, such as those with psychiatric and brain disorders.
Collapse
Affiliation(s)
- Hiroshi Miura
- Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan; Department of Rehabilitation, Higashinaebo Hospital, Sapporo, Japan
| | - Yumie Ono
- Department of Electronics and Bioinformatics, School of Science and Technology, Meiji University, Kawasaki, Japan
| | - Tatsuya Suzuki
- Department of Electronics and Bioinformatics, School of Science and Technology, Meiji University, Kawasaki, Japan; Electrical Engineering Program, Graduate School of Science and Technology, Meiji University, Kawasaki, Japan
| | - Yuji Ogihara
- Department of Rehabilitation, Higashinaebo Hospital, Sapporo, Japan
| | - Yuna Imai
- Department of Rehabilitation, Higashinaebo Hospital, Sapporo, Japan
| | - Akihiro Watanabe
- Department of Rehabilitation Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Hokkaido, 060-0812, Japan
| | - Yukina Tokikuni
- Department of Rehabilitation Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Hokkaido, 060-0812, Japan
| | - Satoshi Sakuraba
- Department of Rehabilitation Sciences, Health Sciences University of Hokkaido, Tobetsu, Ishikari, Japan
| | - Daisuke Sawamura
- Department of Rehabilitation Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Hokkaido, 060-0812, Japan.
| |
Collapse
|
2
|
Maas SA, Göcking T, Stojan R, Voelcker-Rehage C, Kutz DF. Synchronization of Neurophysiological and Biomechanical Data in a Real-Time Virtual Gait Analysis System (GRAIL): A Proof-of-Principle Study. SENSORS (BASEL, SWITZERLAND) 2024; 24:3779. [PMID: 38931563 PMCID: PMC11207734 DOI: 10.3390/s24123779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024]
Abstract
The investigation of gait and its neuronal correlates under more ecologically valid conditions as well as real-time feedback visualization is becoming increasingly important in neuro-motor rehabilitation research. The Gait Real-time Analysis Interactive Lab (GRAIL) offers advanced opportunities for gait and gait-related research by creating more naturalistic yet controlled environments through immersive virtual reality. Investigating the neuronal aspects of gait requires parallel recording of brain activity, such as through mobile electroencephalography (EEG) and/or mobile functional near-infrared spectroscopy (fNIRS), which must be synchronized with the kinetic and /or kinematic data recorded while walking. This proof-of-concept study outlines the required setup by use of the lab streaming layer (LSL) ecosystem for real-time, simultaneous data collection of two independently operating multi-channel EEG and fNIRS measurement devices and gait kinetics. In this context, a customized approach using a photodiode to synchronize the systems is described. This study demonstrates the achievable temporal accuracy of synchronous data acquisition of neurophysiological and kinematic and kinetic data collection in the GRAIL. By using event-related cerebral hemodynamic activity and visually evoked potentials during a start-to-go task and a checkerboard test, we were able to confirm that our measurement system can replicate known physiological phenomena with latencies in the millisecond range and relate neurophysiological and kinetic data to each other with sufficient accuracy.
Collapse
Affiliation(s)
| | | | | | | | - Dieter F. Kutz
- Department of Neuromotor Behavior and Exercise, University of Münster, 48149 Münster, Germany; (S.A.M.); (T.G.); (R.S.); (C.V.-R.)
| |
Collapse
|
3
|
Park K, Putra HA, Yoshida S, Yamashita F, Kawaguchi A. Uniformly positive or negative correlation of cerebral gray matter regions with driving safety behaviors of healthy older drivers. Sci Rep 2024; 14:206. [PMID: 38167857 PMCID: PMC10762062 DOI: 10.1038/s41598-023-50895-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 12/27/2023] [Indexed: 01/05/2024] Open
Abstract
This study investigated the relationship between cerebral gray matter (GM) regions and driving safety behaviors (DSBs) of 98 older drivers without dementia (mean age, 77.72 ± 3.677 years). Their DSBs were evaluated on actual vehicles running on a closed-circuit course. The DSB was scored in six categories: DSB1, visual search behavior; DSB2, speeding; DSB3, signaling of the indicator; DSB4, vehicle stability; DSB5, positioning; and DSB6, steering. The scores were calculated by a single driving instructor; larger scores indicated safer driving performances. Regional GM volumes were measured with voxel-based morphometry by magnetic resonance imaging (MRI). Out of 56 GM regions, 18 were correlated with DSB categories except for DSB4. When a single GM region was correlated with multiple DSB categories, a positive or negative response was uniformly determined for the respective region despite clear differences in the DSB categories. This result suggests the possible existence of two contradictory mechanisms in the brain for DSB. The left postcentral gyrus may largely function in regulating DSBs because it was negatively correlated with five of six DSB categories. Thus, MRI's measurement of regional GM volumes may help deepen the understanding of the diversity and complexity inherent in brain functions for DSBs.
Collapse
Affiliation(s)
- Kaechang Park
- Traffic Medicine Laboratory, Research Organization for Regional Alliance, Kochi University of Technology, 185 Miyanokuchi Tosayamada, Kami-Shi, Kochi, 782-0003, Japan.
| | - Handityo Aulia Putra
- School of Information, Kochi University of Technology, 185 Miyanokuchi Tosayamada, Kami-Shi, Kochi, 782-0003, Japan
| | - Shinichi Yoshida
- School of Information, Kochi University of Technology, 185 Miyanokuchi Tosayamada, Kami-Shi, Kochi, 782-0003, Japan
| | - Fumio Yamashita
- Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Iwate Medical University, Idaidori, Yahaba-Cho, Shiwa-Gun, Iwate, 028-3694, Japan
| | - Atsushi Kawaguchi
- Education and Research Center for Community Medicine, Faculty of Medicine, Saga University, Saga, 849-8501, Japan
| |
Collapse
|
4
|
Cui Y, Cong F, Huang F, Zeng M, Yan R. Cortical activation of neuromuscular electrical stimulation synchronized mirror neuron rehabilitation strategies: an fNIRS study. Front Neurol 2023; 14:1232436. [PMID: 37602262 PMCID: PMC10437114 DOI: 10.3389/fneur.2023.1232436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/24/2023] [Indexed: 08/22/2023] Open
Abstract
Background The mirror neuron system (MNS) plays a key role in the neural mechanism underlying motor learning and neural plasticity. Action observation (AO), action execution (AE), and a combination of both, known as action imitation (AI), are the most commonly used rehabilitation strategies based on MNS. It is possible to enhance the cortical activation area and amplitude by combining traditional neuromuscular electrical stimulation (NMES) with other top-down and active rehabilitation strategies based on the MNS theory. Objective This study aimed to explore the cortical activation patterns induced by NMES synchronized with rehabilitation strategies based on MNS, namely NMES+AO, NMES+AE, and NMES+AI. In addition, the study aimed to assess the feasibility of these three novel rehabilitative treatments in order to provide insights and evidence for the design, implementation, and application of brain-computer interfaces. Methods A total of 70 healthy adults were recruited from July 2022 to February 2023, and 66 of them were finally included in the analysis. The cortical activation patterns during NMES+AO, NMES+AE, and NMES+AI were detected using the functional Near-Infrared Spectroscopy (fNIRS) technique. The action to be observed, executed, or imitated was right wrist and hand extension, and two square-shaped NMES electrodes were placed on the right extensor digitorum communis. A block design was adopted to evaluate the activation intensity of the left MNS brain regions. Results General linear model results showed that compared with the control condition, the number of channels significantly activated (PFDR < 0.05) in the NMES+AO, NMES+AE, and NMES+AI conditions were 3, 9, and 9, respectively. Region of interest (ROI) analysis showed that 2 ROIs were significantly activated (PFDR < 0.05) in the NMES+AO condition, including BA6 and BA44; 5 ROIs were significantly activated in the NMES+AE condition, including BA6, BA40, BA44, BA45, and BA46; and 6 ROIs were significantly activated in the NMES+AI condition, including BA6, BA7, BA40, BA44, BA45, and BA46. Conclusion The MNS was activated during neuromuscular electrical stimulation combined with an AO, AE, and AI intervention. The synchronous application of NMES and mirror neuron rehabilitation strategies is feasible in clinical rehabilitation. The fNIRS signal patterns observed in this study could be used to develop brain-computer interface and neurofeedback therapy rehabilitation devices.
Collapse
Affiliation(s)
- Yao Cui
- Department of Physical Therapy, Beijing Bo’ai Hospital, China Rehabilitation Research Center, Beijing, China
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
| | - Fang Cong
- Department of Physical Therapy, Beijing Bo’ai Hospital, China Rehabilitation Research Center, Beijing, China
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
| | - Fubiao Huang
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
- Department of Occupational Therapy, Beijing Bo’ai Hospital, China Rehabilitation Research Center, Beijing, China
| | - Ming Zeng
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Jiaxing University, The Second Hospital of Jiaxing City, Jiaxing, Zhejiang, China
| | - Ruxiu Yan
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
- Department of Occupational Therapy, Beijing Bo’ai Hospital, China Rehabilitation Research Center, Beijing, China
| |
Collapse
|
5
|
Lapanan K, Kantha P, Nantachai G, Hemrungrojn S, Maes M. The prefrontal cortex hemodynamic responses to dual-task paradigms in older adults: A systematic review and meta-analysis. Heliyon 2023; 9:e17812. [PMID: 37519646 PMCID: PMC10372207 DOI: 10.1016/j.heliyon.2023.e17812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 05/16/2023] [Accepted: 06/28/2023] [Indexed: 08/01/2023] Open
Abstract
Background Functional near-infrared spectroscopy (fNIRS) is a method to measure cerebral hemodynamics. Determining the changes in prefrontal cortex (PFC) hemodynamics during dual-task paradigms is essential in explaining alterations in physical activities, especially in older adults. Aims To systematically review and meta-analyze the effects of dual-task paradigms on PFC hemodynamics in older adults. Methods The search was conducted in PubMed, Scopus, and Web of Science from inception until March 2023 to identify studies on the effects of dual-task paradigms on PFC hemodynamics. The meta-analysis included variables of cerebral hemodynamics, such as oxygenated hemoglobin (HbO2) and deoxygenated hemoglobin (HbR). The heterogeneity of the included studies was determined using the I2 statistic. Additionally, subgroup analysis was conducted to compare the effects of different types of cognitive tasks. Results A total of 37 studies were included in the systematic review, 25 studies comprising 2224 older adults were included in the meta-analysis. Our findings showed that inhibitory control and working memory tasks significantly increased HbO2 in the PFC by 0.53 (p < 0.01, 95% CI = 0.37 to 0.70) and 0.13 (p < 0.01, 95% CI = 0.08 to 0.18) μmol/L, respectively. Overall, HbO2 was significantly increased during dual-task paradigms by 0.36 μmol/L (P < 0.01, 95% CI = 0.27 to 0.45). Moreover, dual-task paradigms also decreased HbR in the PFC by 0.04 (P < 0.01, 95% CI = -0.07 to -0.01). Specifically, HbR decreased by 0.08 during inhibitory control tasks (p < 0.01, 95% CI = -0.13 to -0.02), but did not change during working memory tasks. Conclusion Cognitive tasks related to inhibitory control required greater cognitive demands, indicating higher pfc activation during dual-task paradigms in older adults. for clinical implications, the increase in pfc oxygenated hemoglobin and decrease in pfc deoxygenated hemoglobin may help explain why older adults are more likely to fall during daily activities.
Collapse
Affiliation(s)
- Kulvara Lapanan
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Cognitive Fitness and Biopsychiatry Technology Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Phunsuk Kantha
- School and Graduate Institute of Physical Therapy, College of Medicine, National Taiwan University, Taipei, Taiwan
- Faculty of Physical Therapy, Mahidol University, Nakhon Pathom, Thailand
| | - Gallayaporn Nantachai
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Somdet Phra Sangharaj Nyanasamvara Geriatric Hospital, Department of Medical Services, Ministry of Public Health, Chon Buri Province, Thailand
| | - Solaphat Hemrungrojn
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Cognitive Fitness and Biopsychiatry Technology Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Cognitive Fitness and Biopsychiatry Technology Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Cognitive Impairment and Dementia Research Unit, Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
- Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria
- Mental Health Center, University of Electronic Science and Technology of China, Chengdu 611731, China
| |
Collapse
|