1
|
Pawlak M, Kemp J, Bray S, Chenji S, Noel M, Birnie KA, MacMaster FP, Miller JV, Kopala-Sibley DC. Macrostructural Brain Morphology as Moderator of the Relationship Between Pandemic-Related Stress and Internalizing Symptomology During COVID-19 in High-Risk Adolescents. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024; 9:1141-1177. [PMID: 39019399 DOI: 10.1016/j.bpsc.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 07/19/2024]
Abstract
BACKGROUND According to person-by-environment models, individual differences in traits may moderate the association between stressors and the development of psychopathology; however, findings in the literature have been inconsistent and little literature has examined adolescent brain structure as a moderator of the effects of stress on adolescent internalizing symptoms. The COVID-19 pandemic presented a unique opportunity to examine the associations between stress, brain structure, and psychopathology. Given links of cortical morphology with adolescent depression and anxiety, the current study investigated whether cortical morphology moderated the relationship between stress from the COVID-19 pandemic and the development of internalizing symptoms in familial high-risk adolescents. METHODS Prior to the COVID-19 pandemic, 72 adolescents (27 male) completed a measure of depressive and anxiety symptoms and underwent magnetic resonance imaging. T1-weighted images were acquired to assess cortical thickness and surface area. Approximately 6 to 8 months after COVID-19 was declared a global pandemic, adolescents reported their depressive and anxiety symptoms and pandemic-related stress. RESULTS Adjusting for pre-pandemic depressive and anxiety symptoms and stress, increased pandemic-related stress was associated with increased depressive but not anxiety symptoms. This relationship was moderated by cortical thickness and surface area in the anterior cingulate and cortical thickness in the medial orbitofrontal cortex such that increased stress was only associated with increased depressive and anxiety symptoms among adolescents with lower cortical surface area and higher cortical thickness in these regions. CONCLUSIONS Results further our understanding of neural vulnerabilities to the associations between stress and internalizing symptoms in general and during the COVID-19 pandemic in particular.
Collapse
Affiliation(s)
- McKinley Pawlak
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Alberta Children Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, Alberta, Canada.
| | - Jennifer Kemp
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, Alberta, Canada
| | - Signe Bray
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Alberta Children Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Child and Adolescent Imaging Research Program, University of Calgary, Calgary, Alberta, Canada; Department of Radiology, University of Calgary, Calgary, Alberta, Canada; Department of Pediatrics, University of Calgary, Calgary, Alberta, Canada
| | - Sneha Chenji
- Department of Psychiatry, University of Calgary, Calgary, Alberta, Canada
| | - Melanie Noel
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Alberta Children Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Department of Psychology, University of Calgary, Calgary, Alberta, Canada
| | - Kathryn A Birnie
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Alberta Children Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, Alberta, Canada; Department of Anesthesiology, Perioperative, and Pain Medicine, University of Calgary, Calgary, Alberta, Canada; Department of Community Health Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Frank P MacMaster
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada; IWK Health, Halifax, Nova Scotia, Canada
| | - Jillian Vinall Miller
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Alberta Children Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Department of Anesthesiology, Perioperative, and Pain Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Daniel C Kopala-Sibley
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Alberta Children Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, Alberta, Canada; Department of Psychiatry, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
2
|
Kang JC, Chi S, Mok YE, Kim JA, Kim SH, Lee MS. Diffusion indices alteration in major white matter tracts of children with tic disorder using TRACULA. J Neurodev Disord 2024; 16:40. [PMID: 39020320 PMCID: PMC11253426 DOI: 10.1186/s11689-024-09558-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 07/04/2024] [Indexed: 07/19/2024] Open
Abstract
BACKGROUND Tic disorder is a neuropsychiatric disorder characterized by involuntary movements or vocalizations. Previous studies utilizing diffusion-weighted imaging to explore white-matter alterations in tic disorders have reported inconsistent results regarding the affected tracts. We aimed to address this gap by employing a novel tractography technique for more detailed analysis. METHODS We analyzed MRI data from 23 children with tic disorders and 23 healthy controls using TRActs Constrained by UnderLying Anatomy (TRACULA), an advanced automated probabilistic tractography method. We examined fractional anisotropy (FA), radial diffusivity (RD), axial diffusivity, and mean diffusivity in 42 specific significant white matter tracts. RESULTS Our findings revealed notable differences in the children with tic disorders compared to the control group. Specifically, there was a significant reduction in FA in the parietal part and splenium of the corpus callosum and the left corticospinal tract. Increased RD was observed in the temporal and splenium areas of the corpus callosum, the left corticospinal tract, and the left acoustic radiation. A higher mean diffusivity was also noted in the left middle longitudinal fasciculus. A significant correlation emerged between the severity of motor symptoms, measured by the Yale Global Tic Severity Scale, and FA in the parietal part of the corpus callosum, as well as RD in the left acoustic radiation. CONCLUSION These results indicate a pattern of reduced interhemispheric connectivity in the corpus callosum, aligning with previous studies and novel findings in the diffusion indices changes in the left corticospinal tract, left acoustic radiation, and left middle longitudinal fasciculus. Tic disorders might involve structural abnormalities in key white matter tracts, offering new insights into their pathogenesis.
Collapse
Affiliation(s)
- June Christoph Kang
- Department of Brain and Cognitive Engineering, Korea University, Seoul, Republic of Korea.
| | - SuHyuk Chi
- Department of Psychiatry, Korea University Guro Hospital, Seoul, Republic of Korea
| | - Young Eun Mok
- Department of Psychiatry, Korea University Guro Hospital, Seoul, Republic of Korea
| | - Jeong-Ahn Kim
- Department of medical science, Soonchunhyang University, Chungnam, Republic of Korea
| | - So Hyun Kim
- School of psychology, Korea University, Seoul, Republic of Korea
| | - Moon Soo Lee
- Department of Psychiatry, Korea University Guro Hospital, Seoul, Republic of Korea
| |
Collapse
|
3
|
Guo Y, Zhou L, Li Y, Chiang GC, Liu T, Chen H, Huang W, de Leon MJ, Wang Y, Chen F. Quantitative transport mapping of multi-delay arterial spin labeling MRI detects early blood perfusion alterations in Alzheimer's disease. Alzheimers Res Ther 2024; 16:156. [PMID: 38978146 PMCID: PMC11229285 DOI: 10.1186/s13195-024-01524-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/28/2024] [Indexed: 07/10/2024]
Abstract
BACKGROUND Quantitative transport mapping (QTM) of blood velocity, based on the transport equation has been demonstrated higher accuracy and sensitivity of perfusion quantification than the traditional Kety's method-based cerebral blood flow (CBF). This study aimed to investigate the associations between QTM velocity and cognitive function in Alzheimer's disease (AD) using multiple post-labeling delay arterial spin labeling (ASL) MRI. METHODS A total of 128 subjects (21 normal controls (NC), 80 patients with mild cognitive impairment (MCI), and 27 AD) were recruited prospectively. All participants underwent MRI examination and neuropsychological evaluation. QTM velocity and traditional CBF maps were computed from multiple delay ASL. Regional quantitative perfusion measurements were performed and compared to study group differences. We tested the hypothesis that cognition declines with reduced cerebral blood perfusion with consideration of age and gender effects. RESULTS In cortical gray matter (GM) and the hippocampus, QTM velocity and CBF showed decreased values in the AD group compared to NC and MCI groups; QTM velocity, but not CBF, showed a significant difference between MCI and NC groups. QTM velocity and CBF showed values decreasing with age; QTM velocity, but not CBF, showed a significant gender difference between male and female. QTM velocity and CBF in the hippocampus were positively correlated with cognition, including global cognition, memory, executive function, and language function. CONCLUSION This study demonstrated an increased sensitivity of QTM velocity as compared with the traditional Kety's method-based CBF. Specifically, we observed only in QTM velocity, reduced perfusion velocity in GM and the hippocampus in MCI compared with NC. Both QTM velocity and CBF demonstrated a reduction in AD vs. controls. Decreased QTM velocity and CBF in the hippocampus were correlated with poor cognitive measures. These findings suggest QTM velocity as potential biomarker for early AD blood perfusion alterations and it could provide an avenue for early intervention of AD.
Collapse
Affiliation(s)
- Yihao Guo
- Department of Radiology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), No. 19, Xiuhua St, Xiuying Dic, Haikou, Hainan, 570311, People's Republic of China
| | - Liangdong Zhou
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 East 61 St ST, New York, NY, 10066, USA.
| | - Yi Li
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 East 61 St ST, New York, NY, 10066, USA
| | - Gloria C Chiang
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 East 61 St ST, New York, NY, 10066, USA
- Department of Radiology, Division of Neuroradiology, Weill Cornell Medicine, New York- Presbyterian Hospital, New York, NY, USA
| | - Tao Liu
- Department of Neurology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Huijuan Chen
- Department of Radiology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), No. 19, Xiuhua St, Xiuying Dic, Haikou, Hainan, 570311, People's Republic of China
| | - Weiyuan Huang
- Department of Radiology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), No. 19, Xiuhua St, Xiuying Dic, Haikou, Hainan, 570311, People's Republic of China
| | - Mony J de Leon
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 East 61 St ST, New York, NY, 10066, USA
| | - Yi Wang
- Department of Radiology, MRI Research Institute (MRIRI), Weill Cornell Medicine, New York, NY, USA
| | - Feng Chen
- Department of Radiology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), No. 19, Xiuhua St, Xiuying Dic, Haikou, Hainan, 570311, People's Republic of China.
| |
Collapse
|
4
|
Kosuge S, Masaoka Y, Kasai H, Honma M, Murakami K, Yoshii N, Watanabe K, Naito T, Kosuge M, Matsui M, Shoji D, Sakakura S, Murakami H, Izumizaki M. The right amygdala and migraine: Analyzing volume reduction and its relationship with symptom severity. PLoS One 2024; 19:e0301543. [PMID: 38557587 PMCID: PMC10984416 DOI: 10.1371/journal.pone.0301543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/17/2024] [Indexed: 04/04/2024] Open
Abstract
This study aimed to explore the relationship between gray matter volume changes and various clinical parameters in patients with migraine, focusing on symptom severity, quality of life, and states of depression and anxiety. Using a case-control design, we examined 33 patients with migraine, with or without aura, and 27 age-matched healthy subjects. We used magnetic resonance imaging to assess the volumes of 140 bilateral brain regions. Clinical evaluations included the Migraine Disability Assessment, the Migraine Specific Quality of Life Questionnaire, the Center for Epidemiologic Studies Depression scale, Spielberger's State and Trait Anxiety scales, and the Japanese version of the Montreal Cognitive Assessment. We compared the scores of these measures between migraine patients and healthy controls to examine the interplay between brain structure and clinical symptoms. Significant volumetric differences were observed in the pallidum and amygdala between migraine patients and healthy individuals. The reduction in the right amygdala volume correlated significantly with migraine severity as measured by the Migraine Disability Assessment. Path analysis revealed a model where Migraine Disability Assessment scores were influenced by Migraine Specific Quality of Life Questionnaire outcomes, which were further affected by depression, anxiety, and a low right pallidum volume. Our findings suggest that the chronicity and severity of migraine headaches specifically affect the right amygdala. Our path model suggests a complex relationship whereby migraine disability is strongly influenced by quality of life, which is, in turn, affected by psychological states, such as anxiety and depression.
Collapse
Affiliation(s)
- Shota Kosuge
- Department of Physiology, Showa University School of Medicine, Tokyo, Japan
- Department of Neurology, Showa University School of Medicine, Tokyo, Japan
| | - Yuri Masaoka
- Department of Physiology, Showa University School of Medicine, Tokyo, Japan
| | - Hideyo Kasai
- Department of Neurology, Showa University School of Medicine, Tokyo, Japan
| | - Motoyasu Honma
- Department of Physiology, Showa University School of Medicine, Tokyo, Japan
| | - Kouzou Murakami
- Department of Radiology, Showa University School of Medicine, Tokyo, Japan
| | - Nobuyuki Yoshii
- Department of Radiology, Showa University School of Medicine, Tokyo, Japan
| | - Keiko Watanabe
- Department of Physiology, Showa University School of Medicine, Tokyo, Japan
- Department of Neurology, Showa University School of Medicine, Tokyo, Japan
| | - Takaaki Naito
- Department of Radiology, Showa University School of Medicine, Tokyo, Japan
| | - Miku Kosuge
- Department of Physiology, Showa University School of Medicine, Tokyo, Japan
- Department of Respiratory Medicine, Showa University Fujigaoka Hospital, Yokohama, Japan
| | - Misa Matsui
- Department of Physiology, Showa University School of Medicine, Tokyo, Japan
| | - Daiki Shoji
- Department of Physiology, Showa University School of Medicine, Tokyo, Japan
- Department of Neurology, Showa University School of Medicine, Tokyo, Japan
| | - Syunsuke Sakakura
- Department of Physiology, Showa University School of Medicine, Tokyo, Japan
| | - Hidetomo Murakami
- Department of Neurology, Showa University School of Medicine, Tokyo, Japan
| | - Masahiko Izumizaki
- Department of Physiology, Showa University School of Medicine, Tokyo, Japan
| |
Collapse
|
5
|
Guo Y, Zhou L, Li Y, Chiang GC, Liu T, Chen H, Huang W, de Leon MJ, Wang Y, Chen F. Quantitative transport mapping of multi-delay arterial spin labeling MRI detects early blood perfusion alteration in Alzheimer's disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.03.18.24304481. [PMID: 38562724 PMCID: PMC10984056 DOI: 10.1101/2024.03.18.24304481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Background Quantitative transport mapping (QTM) of blood velocity, based on the transport equation has been demonstrated higher accuracy and sensitivity of perfusion quantification than the traditional Kety's method-based blood flow (Kety flow). This study aimed to investigate the associations between QTM velocity and cognitive function in Alzheimer's disease (AD) using multiple post-labeling delay arterial spin labeling (ASL) MRI. Methods A total of 128 subjects (21 normal controls (NC), 80 patients with mild cognitive impairment (MCI), and 27 AD) were recruited prospectively. All participants underwent MRI examination and neuropsychological evaluation. QTM velocity and traditional Kety flow maps were computed from multiple delay ASL. Regional quantitative perfusion measurements were performed and compared to study group differences. We tested the hypothesis that cognition declines with reduced cerebral blood flow with consideration of age and gender effects. Results In cortical gray matter (GM) and the hippocampus, QTM velocity and Kety flow showed decreased values in AD group compared to NC and MCI groups; QTM velocity, but not Kety flow, showed a significant difference between MCI and NC groups. QTM velocity and Kety flow showed values decreasing with age; QTM velocity, but not Kety flow, showed a significant gender difference between male and female. QTM velocity and Kety flow in the hippocampus were positively correlated with cognition, including global cognition, memory, executive function, and language function. Conclusion This study demonstrated an increased sensitivity of QTM velocity as compared with the traditional Kety flow. Specifically, we observed only in QTM velocity, reduced perfusion velocity in GM and the hippocampus in MCI compared with NC. Both QTM velocity and Kety flow demonstrated reduction in AD vs controls. Decreased QTM velocity and Kety flow in the hippocampus were correlated with cognitive measures. These findings suggest QTM velocity as an improved biomarker for early AD blood flow alterations.
Collapse
Affiliation(s)
- Yihao Guo
- Department of Radiology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Liangdong Zhou
- Department of Radiology, Brain Health Imaging Institute (BHII), Weill Cornell Medicine, New York, New York, United States
| | - Yi Li
- Department of Radiology, Brain Health Imaging Institute (BHII), Weill Cornell Medicine, New York, New York, United States
| | - Gloria C. Chiang
- Department of Radiology, Brain Health Imaging Institute (BHII), Weill Cornell Medicine, New York, New York, United States
- Department of Radiology, Division of Neuroradiology, Weill Cornell Medicine, New York-Presbyterian Hospital, New York, New York, USA
| | - Tao Liu
- Department of Neurology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Huijuan Chen
- Department of Radiology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Weiyuan Huang
- Department of Radiology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Mony J. de Leon
- Department of Radiology, Brain Health Imaging Institute (BHII), Weill Cornell Medicine, New York, New York, United States
| | - Yi Wang
- Department of Radiology, MRI Research Institute (MRIRI), Weill Cornell Medicine, New York, New York, United States
| | - Feng Chen
- Department of Radiology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| |
Collapse
|