1
|
Lin Q, Jin S, Yin G, Li J, Asgher U, Qiu S, Wang J. Cortical Morphological Networks Differ Between Gyri and Sulci. Neurosci Bull 2025; 41:46-60. [PMID: 39044060 PMCID: PMC11748734 DOI: 10.1007/s12264-024-01262-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/28/2024] [Indexed: 07/25/2024] Open
Abstract
This study explored how the human cortical folding pattern composed of convex gyri and concave sulci affected single-subject morphological brain networks, which are becoming an important method for studying the human brain connectome. We found that gyri-gyri networks exhibited higher morphological similarity, lower small-world parameters, and lower long-term test-retest reliability than sulci-sulci networks for cortical thickness- and gyrification index-based networks, while opposite patterns were observed for fractal dimension-based networks. Further behavioral association analysis revealed that gyri-gyri networks and connections between gyral and sulcal regions significantly explained inter-individual variance in Cognition and Motor domains for fractal dimension- and sulcal depth-based networks. Finally, the clinical application showed that only sulci-sulci networks exhibited morphological similarity reductions in major depressive disorder for cortical thickness-, fractal dimension-, and gyrification index-based networks. Taken together, these findings provide novel insights into the constraint of the cortical folding pattern to the network organization of the human brain.
Collapse
Affiliation(s)
- Qingchun Lin
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, 510631, China
| | - Suhui Jin
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, 510631, China
| | - Guole Yin
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, 510631, China
| | - Junle Li
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, 510631, China
| | - Umer Asgher
- Department of Air Transport, Faculty of Transportation Sciences, Czech Technical University in Prague (CTU), Prague, 128 00, Czech Republic
- School of Interdisciplinary Engineering and Sciences (SINES), National University of Science and Technology (NUST), Islamabad, 44000, Pakistan
| | - Shijun Qiu
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Jinhui Wang
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, 510631, China.
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Guangzhou, 510631, China.
- Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, China.
- Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
2
|
Li J, Jin S, Li Z, Zeng X, Yang Y, Luo Z, Xu X, Cui Z, Liu Y, Wang J. Morphological Brain Networks of White Matter: Mapping, Evaluation, Characterization, and Application. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400061. [PMID: 39005232 PMCID: PMC11425219 DOI: 10.1002/advs.202400061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 06/27/2024] [Indexed: 07/16/2024]
Abstract
Although white matter (WM) accounts for nearly half of adult brain, its wiring diagram is largely unknown. Here, an approach is developed to construct WM networks by estimating interregional morphological similarity based on structural magnetic resonance imaging. It is found that morphological WM networks showed nontrivial topology, presented good-to-excellent test-retest reliability, accounted for phenotypic interindividual differences in cognition, and are under genetic control. Through integration with multimodal and multiscale data, it is further showed that morphological WM networks are able to predict the patterns of hamodynamic coherence, metabolic synchronization, gene co-expression, and chemoarchitectonic covariance, and associated with structural connectivity. Moreover, the prediction followed WM functional connectomic hierarchy for the hamodynamic coherence, is related to genes enriched in the forebrain neuron development and differentiation for the gene co-expression, and is associated with serotonergic system-related receptors and transporters for the chemoarchitectonic covariance. Finally, applying this approach to multiple sclerosis and neuromyelitis optica spectrum disorders, it is found that both diseases exhibited morphological dysconnectivity, which are correlated with clinical variables of patients and are able to diagnose and differentiate the diseases. Altogether, these findings indicate that morphological WM networks provide a reliable and biologically meaningful means to explore WM architecture in health and disease.
Collapse
Affiliation(s)
- Junle Li
- Institute for Brain Research and RehabilitationSouth China Normal UniversityGuangzhou510631China
| | - Suhui Jin
- Institute for Brain Research and RehabilitationSouth China Normal UniversityGuangzhou510631China
| | - Zhen Li
- Institute for Brain Research and RehabilitationSouth China Normal UniversityGuangzhou510631China
| | - Xiangli Zeng
- Institute for Brain Research and RehabilitationSouth China Normal UniversityGuangzhou510631China
| | - Yuping Yang
- Institute for Brain Research and RehabilitationSouth China Normal UniversityGuangzhou510631China
| | - Zhenzhen Luo
- Institute for Brain Research and RehabilitationSouth China Normal UniversityGuangzhou510631China
| | - Xiaoyu Xu
- State Key Laboratory of Cognitive Neuroscience and LearningBeijing Normal UniversityBeijing100875China
- Chinese Institute for Brain ResearchBeijing102206China
| | - Zaixu Cui
- Chinese Institute for Brain ResearchBeijing102206China
| | - Yaou Liu
- Department of RadiologyBeijing Tiantan HospitalBeijing100070China
| | - Jinhui Wang
- Institute for Brain Research and RehabilitationSouth China Normal UniversityGuangzhou510631China
- Key Laboratory of BrainCognition and Education SciencesMinistry of EducationGuangzhou510631China
- Center for Studies of Psychological ApplicationSouth China Normal UniversityGuangzhou510631China
- Guangdong Key Laboratory of Mental Health and Cognitive ScienceSouth China Normal UniversityGuangzhou510631China
| |
Collapse
|
3
|
Lin L, Chang Z, Zhang Y, Xue K, Xie Y, Wei L, Li X, Zhao Z, Luo Y, Dong H, Liang M, Liu H, Yu C, Qin W, Ding H. Voxel-based texture similarity networks reveal individual variability and correlate with biological ontologies. Neuroimage 2024; 297:120688. [PMID: 38878916 DOI: 10.1016/j.neuroimage.2024.120688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024] Open
Abstract
The human brain is organized as a complex, hierarchical network. However, the structural covariance patterns among brain regions and the underlying biological substrates of such covariance networks remain to be clarified. The present study proposed a novel individualized structural covariance network termed voxel-based texture similarity networks (vTSNs) based on 76 refined voxel-based textural features derived from structural magnetic resonance images. Validated in three independent longitudinal healthy cohorts (40, 23, and 60 healthy participants, respectively) with two common brain atlases, we found that the vTSN could robustly resolve inter-subject variability with high test-retest reliability. In contrast to the regional-based texture similarity networks (rTSNs) that calculate radiomic features based on region-of-interest information, vTSNs had higher inter- and intra-subject variability ratios and test-retest reliability in connectivity strength and network topological properties. Moreover, the Spearman correlation indicated a stronger association of the gene expression similarity network (GESN) with vTSNs than with rTSNs (vTSN: r = 0.600, rTSN: r = 0.433, z = 39.784, P < 0.001). Hierarchical clustering identified 3 vTSN subnets with differential association patterns with 13 coexpression modules, 16 neurotransmitters, 7 electrophysiology, 4 metabolism, and 2 large-scale structural and 4 functional organization maps. Moreover, these subnets had unique biological hierarchical organization from the subcortex-limbic system to the ventral neocortex and then to the dorsal neocortex. Based on 424 unrelated, qualified healthy subjects from the Human Connectome Project, we found that vTSNs could sensitively represent sex differences, especially for connections in the subcortex-limbic system and between the subcortex-limbic system and the ventral neocortex. Moreover, a multivariate variance component model revealed that vTSNs could explain a significant proportion of inter-subject behavioral variance in cognition (80.0 %) and motor functions (63.4 %). Finally, using 494 healthy adults (aged 19-80 years old) from the Southwest University Adult Lifespan Dataset, the Spearman correlation identified a significant association between aging and vTSN strength, especially within the subcortex-limbic system and between the subcortex-limbic system and the dorsal neocortex. In summary, our proposed vTSN is robust in uncovering individual variability and neurobiological brain processes, which can serve as biologically plausible measures for linking biological processes and human behavior.
Collapse
Affiliation(s)
- Liyuan Lin
- Department of Radiology, Tianjin Key Lab of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Zhongyu Chang
- Department of Radiology, Tianjin Key Lab of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yu Zhang
- Department of Radiology, Tianjin Key Lab of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Kaizhong Xue
- Department of Radiology, Tianjin Key Lab of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
| | - Yingying Xie
- Department of Radiology, Tianjin Key Lab of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Luli Wei
- Department of Radiology, Tianjin Key Lab of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Xin Li
- Department of Radiology, Tianjin Key Lab of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Zhen Zhao
- Department of Radiology, Tianjin Key Lab of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yun Luo
- Department of Radiology, Tianjin Key Lab of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Haoyang Dong
- Department of Radiology, Tianjin Key Lab of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Meng Liang
- School of Medical Imaging, Tianjin Medical University, Tianjin 300070, China
| | - Huaigui Liu
- Department of Radiology, Tianjin Key Lab of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Chunshui Yu
- Department of Radiology, Tianjin Key Lab of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China; State Key Laboratory of Experimental Hematology, Beijing, China.
| | - Wen Qin
- Department of Radiology, Tianjin Key Lab of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China.
| | - Hao Ding
- Department of Radiology, Tianjin Key Lab of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China; School of Medical Imaging, Tianjin Medical University, Tianjin 300070, China.
| |
Collapse
|
4
|
Ma X, Li J, Yang Y, Qiu X, Sheng J, Han N, Wu C, Xu G, Jiang G, Tian J, Weng X, Wang J. Enhanced cerebral blood flow similarity of the somatomotor network in chronic insomnia: Transcriptomic decoding, gut microbial signatures and phenotypic roles. Neuroimage 2024; 297:120762. [PMID: 39089603 DOI: 10.1016/j.neuroimage.2024.120762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024] Open
Abstract
Chronic insomnia (CI) is a complex disease involving multiple factors including genetics, gut microbiota, and brain structure and function. However, there lacks a unified framework to elucidate how these factors interact in CI. By combining data of clinical assessment, sleep behavior recording, cognitive test, multimodal MRI (structural, functional, and perfusion), gene, and gut microbiota, this study demonstrated that enhanced cerebral blood flow (CBF) similarities of the somatomotor network (SMN) acted as a key mediator to link multiple factors in CI. Specifically, we first demonstrated that only CBF but not morphological or functional networks exhibited alterations in patients with CI, characterized by increases within the SMN and between the SMN and higher-order associative networks. Moreover, these findings were highly reproducible and the CBF similarity method was test-retest reliable. Further, we showed that transcriptional profiles explained 60.4 % variance of the pattern of the increased CBF similarities with the most correlated genes enriched in regulation of cellular and protein localization and material transport, and gut microbiota explained 69.7 % inter-individual variance in the increased CBF similarities with the most contributions from Negativicutes and Lactobacillales. Finally, we found that the increased CBF similarities were correlated with clinical variables, accounted for sleep behaviors and cognitive deficits, and contributed the most to the patient-control classification (accuracy = 84.4 %). Altogether, our findings have important implications for understanding the neuropathology of CI and may inform ways of developing new therapeutic strategies for the disease.
Collapse
Affiliation(s)
- Xiaofen Ma
- Department of Nuclear Medicine, Jinan University Affiliated Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Junle Li
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Yuping Yang
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Xiaofan Qiu
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Jintao Sheng
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Ningke Han
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Changwen Wu
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Guang Xu
- Department of Neurology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Guihua Jiang
- Department of Nuclear Medicine, Jinan University Affiliated Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Junzhang Tian
- Department of Nuclear Medicine, Jinan University Affiliated Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Xuchu Weng
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China; Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, China; Center for Studies of Psychological Application, South China Normal University, Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Jinhui Wang
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China; Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, China; Center for Studies of Psychological Application, South China Normal University, Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China.
| |
Collapse
|
5
|
Wang Y, Li J, Jin S, Wang J, Lv Y, Zou Q, Wang J. Mapping morphological cortical networks with joint probability distributions from multiple morphological features. Neuroimage 2024; 296:120673. [PMID: 38851550 DOI: 10.1016/j.neuroimage.2024.120673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/10/2024] Open
Abstract
Morphological features sourced from structural magnetic resonance imaging can be used to infer human brain connectivity. Although integrating different morphological features may theoretically be beneficial for obtaining more precise morphological connectivity networks (MCNs), the empirical evidence to support this supposition is scarce. Moreover, the incorporation of different morphological features remains an open question. In this study, we proposed a method to construct cortical MCNs based on multiple morphological features. Specifically, we adopted a multi-dimensional kernel density estimation algorithm to fit regional joint probability distributions (PDs) from different combinations of four morphological features, and estimated inter-regional similarity in the joint PDs via Jensen-Shannon divergence. We evaluated the method by comparing the resultant MCNs with those built based on different single morphological features in terms of topological organization, test-retest reliability, biological plausibility, and behavioral and cognitive relevance. We found that, compared to MCNs built based on different single morphological features, MCNs derived from multiple morphological features displayed less segregated, but more integrated network architecture and different hubs, had higher test-retest reliability, encompassed larger proportions of inter-hemispheric edges and edges between brain regions within the same cytoarchitectonic class, and explained more inter-individual variance in behavior and cognition. These findings were largely reproducible when different brain atlases were used for cortical parcellation. Further analysis of macaque MCNs revealed weak, but significant correlations with axonal connectivity from tract-tracing, independent of the number of morphological features. Altogether, this paper proposes a new method for integrating different morphological features, which will be beneficial for constructing MCNs.
Collapse
Affiliation(s)
- Yuqi Wang
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Junle Li
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Suhui Jin
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Jing Wang
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Yating Lv
- Institute of Psychological Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Qihong Zou
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Jinhui Wang
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China; Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, China; Center for Studies of Psychological Application, South China Normal University, Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China.
| |
Collapse
|
6
|
Du Y, Niu J, Xing Y, Li B, Calhoun VD. Neuroimage Analysis Methods and Artificial Intelligence Techniques for Reliable Biomarkers and Accurate Diagnosis of Schizophrenia: Achievements Made by Chinese Scholars Around the Past Decade. Schizophr Bull 2024:sbae110. [PMID: 38982882 DOI: 10.1093/schbul/sbae110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
BACKGROUND AND HYPOTHESIS Schizophrenia (SZ) is characterized by significant cognitive and behavioral disruptions. Neuroimaging techniques, particularly magnetic resonance imaging (MRI), have been widely utilized to investigate biomarkers of SZ, distinguish SZ from healthy conditions or other mental disorders, and explore biotypes within SZ or across SZ and other mental disorders, which aim to promote the accurate diagnosis of SZ. In China, research on SZ using MRI has grown considerably in recent years. STUDY DESIGN The article reviews advanced neuroimaging and artificial intelligence (AI) methods using single-modal or multimodal MRI to reveal the mechanism of SZ and promote accurate diagnosis of SZ, with a particular emphasis on the achievements made by Chinese scholars around the past decade. STUDY RESULTS Our article focuses on the methods for capturing subtle brain functional and structural properties from the high-dimensional MRI data, the multimodal fusion and feature selection methods for obtaining important and sparse neuroimaging features, the supervised statistical analysis and classification for distinguishing disorders, and the unsupervised clustering and semi-supervised learning methods for identifying neuroimage-based biotypes. Crucially, our article highlights the characteristics of each method and underscores the interconnections among various approaches regarding biomarker extraction and neuroimage-based diagnosis, which is beneficial not only for comprehending SZ but also for exploring other mental disorders. CONCLUSIONS We offer a valuable review of advanced neuroimage analysis and AI methods primarily focused on SZ research by Chinese scholars, aiming to promote the diagnosis, treatment, and prevention of SZ, as well as other mental disorders, both within China and internationally.
Collapse
Affiliation(s)
- Yuhui Du
- School of Computer and Information Technology, Shanxi University, Taiyuan, 030006, China
| | - Ju Niu
- School of Computer and Information Technology, Shanxi University, Taiyuan, 030006, China
| | - Ying Xing
- School of Computer and Information Technology, Shanxi University, Taiyuan, 030006, China
| | - Bang Li
- School of Computer and Information Technology, Shanxi University, Taiyuan, 030006, China
| | - Vince D Calhoun
- The Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, 30303, GA, USA
| |
Collapse
|
7
|
Xiao Y, Gao L, Hu Y. Disrupted single-subject gray matter networks are associated with cognitive decline and cortical atrophy in Alzheimer's disease. Front Neurosci 2024; 18:1366761. [PMID: 39165340 PMCID: PMC11334729 DOI: 10.3389/fnins.2024.1366761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 04/18/2024] [Indexed: 08/22/2024] Open
Abstract
Background Research has shown disrupted structural network measures related to cognitive decline and future cortical atrophy during the progression of Alzheimer's disease (AD). However, evidence regarding the individual variability of gray matter network measures and the associations with concurrent cognitive decline and cortical atrophy related to AD is still sparse. Objective To investigate whether alterations in single-subject gray matter networks are related to concurrent cognitive decline and cortical gray matter atrophy during AD progression. Methods We analyzed structural MRI data from 185 cognitively normal (CN), 150 mild cognitive impairment (MCI), and 153 AD participants, and calculated the global network metrics of gray matter networks for each participant. We examined the alterations of single-subject gray matter networks in patients with MCI and AD, and investigated the associations of network metrics with concurrent cognitive decline and cortical gray matter atrophy. Results The small-world properties including gamma, lambda, and sigma had lower values in the MCI and AD groups than the CN group. AD patients had reduced degree, clustering coefficient, and path length than the CN and MCI groups. We observed significant associations of cognitive ability with degree in the CN group, with gamma and sigma in the MCI group, and with degree, connectivity density, clustering coefficient, and path length in the AD group. There were significant correlation patterns between sigma values and cortical gray matter volume in the CN, MCI, and AD groups. Conclusion These findings suggest the individual variability of gray matter network metrics may be valuable to track concurrent cognitive decline and cortical atrophy during AD progression. This may contribute to a better understanding of cognitive decline and brain morphological alterations related to AD.
Collapse
Affiliation(s)
- Yaqiong Xiao
- Center for Language and Brain, Shenzhen Institute of Neuroscience, Shenzhen, China
| | - Lei Gao
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yubin Hu
- Center for Language and Brain, Shenzhen Institute of Neuroscience, Shenzhen, China
| | | |
Collapse
|
8
|
Wang J, He Y. Toward individualized connectomes of brain morphology. Trends Neurosci 2024; 47:106-119. [PMID: 38142204 DOI: 10.1016/j.tins.2023.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/16/2023] [Accepted: 11/30/2023] [Indexed: 12/25/2023]
Abstract
The morphological brain connectome (MBC) delineates the coordinated patterns of local morphological features (such as cortical thickness) across brain regions. While classically constructed using population-based approaches, there is a growing trend toward individualized modeling. Currently, the methods for individualized MBCs are varied, posing challenges for method selection and cross-study comparisons. Here, we summarize how individualized MBCs are modeled through low-order methods (correlation-, divergence-, distance-, and deviation-based methods) describing relations in brain morphology, as well as high-order methods capturing similarities in these low-order relations. We discuss the merits and limitations of different methods, examining them in the context of robustness, reproducibility, and reliability. We highlight the importance of elucidating the cellular and molecular mechanisms underlying the individualized connectome, and establishing normative benchmarks to assess individual variation in development, aging, and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Jinhui Wang
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China; Center for Studies of Psychological Application, South China Normal University, Guangzhou 510631, China.
| | - Yong He
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China; National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|