1
|
Qi R, Wang W, Xu Y, Shen Z, Geng X, Li N, Li J, Yu H. Development of localized interictal epileptiform discharges following vagus nerve stimulation for lennox-gastaut syndrome: a case report. ACTA EPILEPTOLOGICA 2022. [DOI: 10.1186/s42494-022-00106-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Abstract
Background
Lennox-gastaut syndrome (LGS) is an epileptic encephalopathy often associated with behavioral and psychiatric disorders. Vagus nerve stimulation (VNS) has been approved effective for LGS treatment. Surgical resection is also an option for LGS patients with focal pathology, offering a high probability of seizure control. However, it is challenging to accurately localize the seizure focus.
Case presentation
The case presented here is a 19-year-old male with a 16-year history of epilepsy with comorbid severe cognitive and psychiatric disorders. He was diagnosed with LGS due to generalized slow spike-wave discharges and multiple seizure types. He was treated with VNS in 2017 at the age of 15. After that, the frequency of the short tonic seizures decreased from 4–5 times per day to 2–5 times per year, and the generalized tonic–clonic seizure pattern did not recur, which had a frequency of 2–4 times per month before the surgery. In 2019, the generalized abnormal interictal epileptiform discharges changed to be localized in the right frontal–temporal lobe at the age of 17 years (2019).
Conclusions
This case report suggested that the generalized epileptiform discharges evolve into localized discharges after VNS treatment, which may help reveal the primary seizure focus for resection surgery in patients with LGS.
Collapse
|
2
|
Paprocka J, Ziętkiewicz S, Kosińska J, Kaczorowska E, Płoski R. Case Report: Lennox-Gastaut Epileptic Encephalopathy Responsive to Cannabidiol Treatment Associated With a Novel de novo Mosaic SHANK1 Variant. Front Genet 2021; 12:735292. [PMID: 34912368 PMCID: PMC8667173 DOI: 10.3389/fgene.2021.735292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 10/18/2021] [Indexed: 11/18/2022] Open
Abstract
The SH3 and multiple ankyrin repeat domains (SHANKs) are a family of scaffolding proteins located in excitatory synapses required for their development and function. Molecular defects of SHANK3 are a well-known cause of several neurodevelopmental entities, in particular autism spectrum disorders and epilepsy, whereas relatively little is known about disease associations of SHANK1. Here, we propose a novel de novo mosaic p.(Gly126Arg) SHANK1 variant as the monogenic cause of disease in a patient who presented, from the age of 2 years, moderate intellectual disability, autism, and refractory epilepsy of the Lennox–Gastaut type. The epilepsy responded remarkably well to cannabidiol add-on therapy. In silico analyses including homology modeling and molecular dynamics simulations indicated the deleterious effect of SHANK1 p.(Gly126Arg) on the protein structure and the related function associated with protein–protein interactions. In particular, the variant was predicted to disrupt a hitherto unknown conserved region of SHANK1 protein with high homology to a recently recognized functionally relevant domain in SHANK3 implicated in ligand binding, including the “non-canonical” binding of Rap1.
Collapse
Affiliation(s)
- Justyna Paprocka
- Department of Pediatric Neurologsluy, Faculty of Medical Science in Katowice, Medical University of Silesia, Katowice, Poland
| | - Szymon Ziętkiewicz
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland.,Intercollegiate Faculty of Biotechnology, University of Gdansk, Gdańsk, Poland
| | - Joanna Kosińska
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland
| | - Ewa Kaczorowska
- Department of Biology and Medical Genetics, Medical University of Gdańsk, Gdańsk, Poland
| | - Rafał Płoski
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
3
|
Treating of focal epilepsy: a patent review. Pharm Pat Anal 2021; 10:165-173. [PMID: 34076528 DOI: 10.4155/ppa-2021-0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Focal epilepsy is one of the most frequent specific type of epilepsies, with 30% treatment-resistant patients. There are several directions researchers can follow to improve existing treatment of focal epilepsy: synthesis of new compounds with anticonvulsant activity, repurposing drugs approved for other indications, finding drugs targeted to specific genetic and biochemical defects that underlie focal epilepsy syndromes, development of viral vectors for specific gene therapy, creation of devices and methods for suppression of seizures by electrostimulation and development of methods to increase safety of epilepsy surgery. Improvement of efficacy and safety of current therapies is necessary, as well as developing targeted treatment of genetic epilepsy syndromes that will not only suppress seizures, but stop further epileptogenesis.
Collapse
|
4
|
Löscher W, Sills GJ, White HS. The ups and downs of alkyl-carbamates in epilepsy therapy: How does cenobamate differ? Epilepsia 2021; 62:596-614. [PMID: 33580520 DOI: 10.1111/epi.16832] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 12/13/2022]
Abstract
Since 1955, several alkyl-carbamates have been developed for the treatment of anxiety and epilepsy, including meprobamate, flupirtine, felbamate, retigabine, carisbamate, and cenobamate. They have each enjoyed varying levels of success as antiseizure drugs; however, they have all been plagued by the emergence of serious and sometimes life-threatening adverse events. In this review, we compare and contrast their predominant molecular mechanisms of action, their antiseizure profile, and where possible, their clinical efficacy. The preclinical, clinical, and mechanistic profile of the prototypical γ-aminobutyric acidergic (GABAergic) modulator phenobarbital is included for comparison. Like phenobarbital, all of the clinically approved alkyl-carbamates share an ability to enhance inhibitory neurotransmission through modulation of the GABAA receptor, although the specific mechanism of interaction differs among the different drugs discussed. In addition, several alkyl-carbamates have been shown to interact with voltage-gated ion channels. Flupirtine and retigabine share an ability to activate K+ currents mediated by KCNQ (Kv7) K+ channels, and felbamate, carisbamate, and cenobamate have been shown to block Na+ channels. In contrast to other alkyl-carbamates, cenobamate seems to be unique in its ability to preferentially attenuate the persistent rather than transient Na+ current. Results from recent randomized controlled clinical trials with cenobamate suggest that this newest antiseizure alkyl-carbamate possesses a degree of efficacy not witnessed since felbamate was approved in 1993. Given that ceno-bamate's mechanistic profile is unique among the alkyl-carbamates, it is not clear whether this impressive efficacy reflects an as yet undescribed mechanism of action or whether it possesses a unique synergy between its actions at the GABAA receptor and on persistent Na+ currents. The high efficacy of cenobamate is, however, tempered by the risk of serious rash and low tolerability at higher doses, meaning that further safety studies and clinical experience are needed to determine the true clinical value of cenobamate.
Collapse
Affiliation(s)
- Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany.,Center for Systems Neuroscience Hannover, Hannover, Germany
| | - Graeme J Sills
- School of Life Sciences, University of Glasgow, Glasgow, UK
| | - H Steve White
- Department of Pharmacy, School of Pharmacy, University of Washington, Seattle, Washington, USA
| |
Collapse
|
5
|
Strzelczyk A, Schubert-Bast S. Expanding the Treatment Landscape for Lennox-Gastaut Syndrome: Current and Future Strategies. CNS Drugs 2021; 35:61-83. [PMID: 33479851 PMCID: PMC7873005 DOI: 10.1007/s40263-020-00784-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/12/2020] [Indexed: 12/13/2022]
Abstract
Lennox-Gastaut syndrome (LGS), a childhood-onset severe developmental and epileptic encephalopathy (DEE), is an entity that encompasses a heterogenous group of aetiologies, with no single genetic cause. It is characterised by multiple seizure types, an abnormal EEG with generalised slow spike and wave discharges and cognitive impairment, associated with high morbidity and profound effects on the quality of life of patients and their families. Drug-refractory seizures are a hallmark and treatment is further complicated by its multiple morbidities, which evolve over the patient's lifetime. This review provides a comprehensive overview of the current and future options for the treatment of seizures associated with LGS. Six treatments are specifically indicated as adjunct therapies for the treatment of seizures associated with LGS in the US: lamotrigine, clobazam, rufinamide, topiramate, felbamate and most recently cannabidiol. These therapies have demonstrated reductions in drop seizures in 15%-68% of patients across trials, with responder rates (≥ 50% reduction in drop seizures) of 37%-78%. Valproate is still the preferred first-line treatment, generally in combination with lamotrigine or clobazam. Other treatments frequently used off-label include the broad spectrum anti-epileptic drugs (AED) levetiracetam, zonisamide and perampanel, while recent evidence from observational studies has indicated that a newer AED, the levetiracetam analogue brivaracetam, may be effective and well tolerated in LGS patients. Other treatments in clinical development include fenfluramine in late phase III, perampanel, soticlestat-OV953/TAK-953, carisbamate and ganaxolone. Non-pharmacologic interventions include the ketogenic diet, vagus nerve stimulation and surgical interventions; these are also expanding, with the potential for less invasive techniques for corpus callosotomy that have promise for reducing complications. However, despite these advancements, patients continue to experience a significant burden. Because LGS is not a single entity, tailoring of treatment is needed as opposed to a 'one size fits all' approach. Further research is needed into the underlying aetiologies and pathophysiology of LGS, together with advancements in treatments that encompass the spectrum of seizures associated with this complex syndrome.
Collapse
Affiliation(s)
- Adam Strzelczyk
- Epilepsy Center Frankfurt Rhine-Main, Center of Neurology and Neurosurgery, Goethe-University Frankfurt, Schleusenweg 2-16 (Haus 95), 60528, Frankfurt am Main, Germany.
- LOEWE Center for Personalized and Translational Epilepsy Research (CePTER), Goethe-University Frankfurt, Frankfurt am Main, Germany.
| | - Susanne Schubert-Bast
- Epilepsy Center Frankfurt Rhine-Main, Center of Neurology and Neurosurgery, Goethe-University Frankfurt, Schleusenweg 2-16 (Haus 95), 60528, Frankfurt am Main, Germany
- LOEWE Center for Personalized and Translational Epilepsy Research (CePTER), Goethe-University Frankfurt, Frankfurt am Main, Germany
- Department of Neuropediatrics, Goethe-University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
6
|
Löscher W, Klein P. The Pharmacology and Clinical Efficacy of Antiseizure Medications: From Bromide Salts to Cenobamate and Beyond. CNS Drugs 2021; 35:935-963. [PMID: 34145528 PMCID: PMC8408078 DOI: 10.1007/s40263-021-00827-8] [Citation(s) in RCA: 132] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/04/2021] [Indexed: 12/16/2022]
Abstract
Epilepsy is one of the most common and disabling chronic neurological disorders. Antiseizure medications (ASMs), previously referred to as anticonvulsant or antiepileptic drugs, are the mainstay of symptomatic epilepsy treatment. Epilepsy is a multifaceted complex disease and so is its treatment. Currently, about 30 ASMs are available for epilepsy therapy. Furthermore, several ASMs are approved therapies in nonepileptic conditions, including neuropathic pain, migraine, bipolar disorder, and generalized anxiety disorder. Because of this wide spectrum of therapeutic activity, ASMs are among the most often prescribed centrally active agents. Most ASMs act by modulation of voltage-gated ion channels; by enhancement of gamma aminobutyric acid-mediated inhibition; through interactions with elements of the synaptic release machinery; by blockade of ionotropic glutamate receptors; or by combinations of these mechanisms. Because of differences in their mechanisms of action, most ASMs do not suppress all types of seizures, so appropriate treatment choices are important. The goal of epilepsy therapy is the complete elimination of seizures; however, this is not achievable in about one-third of patients. Both in vivo and in vitro models of seizures and epilepsy are used to discover ASMs that are more effective in patients with continued drug-resistant seizures. Furthermore, therapies that are specific to epilepsy etiology are being developed. Currently, ~ 30 new compounds with diverse antiseizure mechanisms are in the preclinical or clinical drug development pipeline. Moreover, therapies with potential antiepileptogenic or disease-modifying effects are in preclinical and clinical development. Overall, the world of epilepsy therapy development is changing and evolving in many exciting and important ways. However, while new epilepsy therapies are developed, knowledge of the pharmacokinetics, antiseizure efficacy and spectrum, and adverse effect profiles of currently used ASMs is an essential component of treating epilepsy successfully and maintaining a high quality of life for every patient, particularly those receiving polypharmacy for drug-resistant seizures.
Collapse
Affiliation(s)
- Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Bünteweg 17, 30559, Hannover, Germany. .,Center for Systems Neuroscience, Hannover, Germany.
| | - Pavel Klein
- grid.429576.bMid-Atlantic Epilepsy and Sleep Center, Bethesda, MD USA
| |
Collapse
|