1
|
Foustoukos G, Lüthi A. Monoaminergic signaling during mammalian NREM sleep - Recent insights and next-level questions. Curr Opin Neurobiol 2025; 92:103025. [PMID: 40267623 DOI: 10.1016/j.conb.2025.103025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/10/2025] [Accepted: 03/24/2025] [Indexed: 04/25/2025]
Abstract
Subcortical neuromodulatory activity in the mammalian brain enables flexible wake behaviors, which are essential for survival in an ever-changing external environment. With the suppression of such behaviors in sleep, this activity is, on average, much reduced. Recent discoveries, enabled by unprecedented technical advancements, challenge the long-standing view that monoaminergic systems-noradrenaline (NA), dopamine (DA), and serotonin (5-HT)-remain largely inactive during sleep. This review highlights recent technological and scientific progress in this field, summarizing evidence that monoaminergic signaling in the brain supplements sleep with essential wake-related functions. Stress and/or neuropsychiatric conditions negatively impact on monoaminergic signaling, which can lead to sleep disruptions. Furthermore, subcortical neuromodulatory systems are vulnerable to neurodegenerative pathologies, which implies them in sleep disruptions at early stages of disease. We propose that future research will be well-invested in elucidating the spatiotemporal organization, cellular mechanisms, and functional relevance of neuromodulatory dynamics across species, and in identifying the molecular and physiological processes that sustain their integrity throughout the lifespan.
Collapse
Affiliation(s)
- Georgios Foustoukos
- Department of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, 1005 Lausanne, CH, Switzerland.
| | - Anita Lüthi
- Department of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, 1005 Lausanne, CH, Switzerland.
| |
Collapse
|
2
|
Herzog R, Crosbie F, Aloulou A, Hanif U, Chennaoui M, Léger D, Andrillon T. A continuous approach to explain insomnia and subjective-objective sleep discrepancy. Commun Biol 2025; 8:423. [PMID: 40075150 PMCID: PMC11903875 DOI: 10.1038/s42003-025-07794-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 02/20/2025] [Indexed: 03/14/2025] Open
Abstract
Understanding insomnia is crucial for improving its diagnosis and treatment. However, many subjective complaints about insomnia do not align with objective measures of sleep quality, as is the case in subjective-objective sleep discrepancy (SOSD). We address this discrepancy by measuring sleep intrusions and instability in polysomnographic recordings from a large clinical database. Using machine learning, we develop personalized models to infer hypnodensities-a continuous and probabilistic measure of sleep dynamics-, and analyze them via information theory to measure intrusions and instability in a principled way. We find that insomnia with SOSD involves sleep intrusions during intra-sleep wakefulness, while insomnia without SOSD shows wake intrusions during sleep, indicating distinct etiologies. By mapping these metrics to standard sleep features, we provide a continuous and interpretable framework for measuring sleep quality. This approach integrates and values subjective insomnia complaints with physiological data for a more accurate view of sleep quality and its disorders.
Collapse
Affiliation(s)
- Rubén Herzog
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Paris, France
| | - Flynn Crosbie
- Université Paris Cité, VIFASOM (Vigilance Fatigue Sommeil et Santé publique), Paris, France
| | - Anis Aloulou
- Université Paris Cité, VIFASOM (Vigilance Fatigue Sommeil et Santé publique), Paris, France
- APHP, Hôtel-Dieu, Centre du sommeil et de la Vigilance, Paris, France
| | - Umaer Hanif
- Université Paris Cité, VIFASOM (Vigilance Fatigue Sommeil et Santé publique), Paris, France
| | - Mounir Chennaoui
- Université Paris Cité, VIFASOM (Vigilance Fatigue Sommeil et Santé publique), Paris, France
- Institut de recherche biomédicale des armées (IRBA), Brétigny-sur-Orge, Paris, France
| | - Damien Léger
- Université Paris Cité, VIFASOM (Vigilance Fatigue Sommeil et Santé publique), Paris, France
- APHP, Hôtel-Dieu, Centre du sommeil et de la Vigilance, Paris, France
| | - Thomas Andrillon
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Paris, France.
- Monash Centre for Consciousness & Contemplative Studies, Monash University, Melbourne, Australia.
| |
Collapse
|
3
|
Pérez P, Manasova D, Hermann B, Raimondo F, Rohaut B, Bekinschtein TA, Naccache L, Arzi A, Sitt JD. Content-state dimensions characterize different types of neuronal markers of consciousness. Neurosci Conscious 2024; 2024:niae027. [PMID: 39011546 PMCID: PMC11246840 DOI: 10.1093/nc/niae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 05/30/2024] [Accepted: 06/08/2024] [Indexed: 07/17/2024] Open
Abstract
Identifying the neuronal markers of consciousness is key to supporting the different scientific theories of consciousness. Neuronal markers of consciousness can be defined to reflect either the brain signatures underlying specific conscious content or those supporting different states of consciousness, two aspects traditionally studied separately. In this paper, we introduce a framework to characterize markers according to their dynamics in both the "state" and "content" dimensions. The 2D space is defined by the marker's capacity to distinguish the conscious states from non-conscious states (on the x-axis) and the content (e.g. perceived versus unperceived or different levels of cognitive processing on the y-axis). According to the sign of the x- and y-axis, markers are separated into four quadrants in terms of how they distinguish the state and content dimensions. We implement the framework using three types of electroencephalography markers: markers of connectivity, markers of complexity, and spectral summaries. The neuronal markers of state are represented by the level of consciousness in (i) healthy participants during a nap and (ii) patients with disorders of consciousness. On the other hand, the neuronal markers of content are represented by (i) the conscious content in healthy participants' perception task using a visual awareness paradigm and (ii) conscious processing of hierarchical regularities using an auditory local-global paradigm. In both cases, we see separate clusters of markers with correlated and anticorrelated dynamics, shedding light on the complex relationship between the state and content of consciousness and emphasizing the importance of considering them simultaneously. This work presents an innovative framework for studying consciousness by examining neuronal markers in a 2D space, providing a valuable resource for future research, with potential applications using diverse experimental paradigms, neural recording techniques, and modeling investigations.
Collapse
Affiliation(s)
- Pauline Pérez
- Institut du Cerveau - Paris Brain Institute, Inserm, CNRS, Sorbonne Université, Paris 75013, France
- Hospice Civils de Lyon—HCL, Département anesthésie-réanimation, Hôpital Edouard Herriot
- Neuro ICU, DMU Neurosciences, AP-HP, Hôpital de la Pitié Salpêtrière, Paris 75013, France
| | - Dragana Manasova
- Institut du Cerveau - Paris Brain Institute, Inserm, CNRS, Sorbonne Université, Paris 75013, France
- Université Paris Cité, Paris 75006, France
| | - Bertrand Hermann
- Institut du Cerveau - Paris Brain Institute, Inserm, CNRS, Sorbonne Université, Paris 75013, France
- Université Paris Cité, Paris 75006, France
- Medical Intensive Care Unit, HEGP Hôpital, Assistance Publique—Hôpitaux de Paris-Centre (APHP-Centre), Paris 75015, France
| | - Federico Raimondo
- Institut du Cerveau - Paris Brain Institute, Inserm, CNRS, Sorbonne Université, Paris 75013, France
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich 52428, Germany
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Dusseldorf 40225, Germany
| | - Benjamin Rohaut
- Institut du Cerveau - Paris Brain Institute, Inserm, CNRS, Sorbonne Université, Paris 75013, France
- Neuro ICU, DMU Neurosciences, AP-HP, Hôpital de la Pitié Salpêtrière, Paris 75013, France
| | - Tristán A Bekinschtein
- Consciousness and Cognition Lab, Department of Psychology, University of Cambridge, Cambridge CB2 3EB, United Kingdom
| | - Lionel Naccache
- Institut du Cerveau - Paris Brain Institute, Inserm, CNRS, Sorbonne Université, Paris 75013, France
- AP-HP, Hôpital Pitié-Salpêtrière, Service de Neurophysiologie Clinique, Paris 75013, France
| | - Anat Arzi
- Institut du Cerveau - Paris Brain Institute, Inserm, CNRS, Sorbonne Université, Paris 75013, France
- Consciousness and Cognition Lab, Department of Psychology, University of Cambridge, Cambridge CB2 3EB, United Kingdom
- Department of Medical Neurobiology, Institute for Medical Research Israel Canada and Department of Cognitive and Brain Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Jacobo D Sitt
- Institut du Cerveau - Paris Brain Institute, Inserm, CNRS, Sorbonne Université, Paris 75013, France
| |
Collapse
|
4
|
Wang L, Liu H, Qin L, Li L. Cytokine Storm: The Novel Mechanism for Sleep Deprivation-induced Multiple Organ Dysfunction Syndrome. Neurosci Bull 2024; 40:1031-1033. [PMID: 38702450 PMCID: PMC11250721 DOI: 10.1007/s12264-024-01210-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 02/23/2024] [Indexed: 05/06/2024] Open
Affiliation(s)
- Liwen Wang
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang, 421001, China
| | - Huimei Liu
- Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Li Qin
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang, 421001, China
| | - Lanfang Li
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang, 421001, China.
| |
Collapse
|
5
|
Andrillon T, Taillard J, Strauss M. Sleepiness and the transition from wakefulness to sleep. Neurophysiol Clin 2024; 54:102954. [PMID: 38460284 DOI: 10.1016/j.neucli.2024.102954] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/02/2024] [Accepted: 02/03/2024] [Indexed: 03/11/2024] Open
Abstract
The transition from wakefulness to sleep is a progressive process that is reflected in the gradual loss of responsiveness, an alteration of cognitive functions, and a drastic shift in brain dynamics. These changes do not occur all at once. The sleep onset period (SOP) refers here to this period of transition between wakefulness and sleep. For example, although transitions of brain activity at sleep onset can occur within seconds in a given brain region, these changes occur at different time points across the brain, resulting in a SOP that can last several minutes. Likewise, the transition to sleep impacts cognitive and behavioral levels in a graded and staged fashion. It is often accompanied and preceded by a sensation of drowsiness and the subjective feeling of a need for sleep, also associated with specific physiological and behavioral signatures. To better characterize fluctuations in vigilance and the SOP, a multidimensional approach is thus warranted. Such a multidimensional approach could mitigate important limitations in the current classification of sleep, leading ultimately to better diagnoses and treatments of individuals with sleep and/or vigilance disorders. These insights could also be translated in real-life settings to either facilitate sleep onset in individuals with sleep difficulties or, on the contrary, prevent or control inappropriate sleep onsets.
Collapse
Affiliation(s)
- Thomas Andrillon
- Paris Brain Institute, Sorbonne Université, Inserm-CNRS, Paris 75013, France; Monash Centre for Consciousness & Contemplative Studies, Monash University, Melbourne, VIC 3800, Australia
| | - Jacques Taillard
- Univ. Bordeaux, CNRS, SANPSY, UMR 6033, F-33000 Bordeaux, France
| | - Mélanie Strauss
- Université libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (H.U.B), CUB Hôpital Érasme, Services de Neurologie, Psychiatrie et Laboratoire du sommeil, Route de Lennik 808 1070 Bruxelles, Belgium; Neuropsychology and Functional Neuroimaging Research Group (UR2NF), Center for Research in Cognition and Neurosciences (CRCN), Université Libre de Bruxelles, B-1050 Brussels, Belgium.
| |
Collapse
|
6
|
Arciniegas DB, Gurin LJ, Zhang B. Structural and Functional Neuroanatomy of Core Consciousness: A Primer for Disorders of Consciousness Clinicians. Phys Med Rehabil Clin N Am 2024; 35:35-50. [PMID: 37993192 DOI: 10.1016/j.pmr.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Understanding the structural and functional neuroanatomy of core consciousness (ie, wakefulness and awareness) is an asset to clinicians caring for persons with disorders of consciousness. This article provides a primer on the structural and functional neuroanatomy of wakefulness and awareness. The neuroanatomical structures supporting these elements of core consciousness functions are reviewed first, after which brief description of the clinically evaluable relationships between disruption of these structures and disorders of consciousness (ie, brain-behavior relationships) are outlined. Consideration of neuroanatomy at the mesoscale (ie, the mesocircuit hypothesis) as well as in relation to several large-scale neural networks is offered.
Collapse
Affiliation(s)
- David B Arciniegas
- Marcus Institute for Brain Health, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Neurology, University of Colorado School of Medicine, Aurora, CO 80045, USA; Department of Psychiatry, University of Colorado School of Medicine, Aurora, CO 80045, USA; Department of Psychiatry and Behavioral Sciences, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA.
| | - Lindsey J Gurin
- Department of Neurology, NYU Grossman School of Medicine, New York, NY 10017, USA; Department of Psychiatry, NYU Grossman School of Medicine, New York, NY 10016, USA; Department of Physical Medicine & Rehabilitation, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Bei Zhang
- Division of Physical Medicine and Rehabilitation, Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|