1
|
Pacheco NL, Heaven MR, Holt LM, Crossman DK, Boggio KJ, Shaffer SA, Flint DL, Olsen ML. RNA sequencing and proteomics approaches reveal novel deficits in the cortex of Mecp2-deficient mice, a model for Rett syndrome. Mol Autism 2017; 8:56. [PMID: 29090078 PMCID: PMC5655833 DOI: 10.1186/s13229-017-0174-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 10/02/2017] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Rett syndrome (RTT) is an X-linked neurodevelopmental disorder caused by mutations in the transcriptional regulator MeCP2. Much of our understanding of MeCP2 function is derived from transcriptomic studies with the general assumption that alterations in the transcriptome correlate with proteomic changes. Advances in mass spectrometry-based proteomics have facilitated recent interest in the examination of global protein expression to better understand the biology between transcriptional and translational regulation. METHODS We therefore performed the first comprehensive transcriptome-proteome comparison in a RTT mouse model to elucidate RTT pathophysiology, identify potential therapeutic targets, and further our understanding of MeCP2 function. The whole cortex of wild-type and symptomatic RTT male littermates (n = 4 per genotype) were analyzed using RNA-sequencing and data-independent acquisition liquid chromatography tandem mass spectrometry. Ingenuity® Pathway Analysis was used to identify significantly affected pathways in the transcriptomic and proteomic data sets. RESULTS Our results indicate these two "omics" data sets supplement one another. In addition to confirming previous works regarding mRNA expression in Mecp2-deficient animals, the current study identified hundreds of novel protein targets. Several selected protein targets were validated by Western blot analysis. These data indicate RNA metabolism, proteostasis, monoamine metabolism, and cholesterol synthesis are disrupted in the RTT proteome. Hits common to both data sets indicate disrupted cellular metabolism, calcium signaling, protein stability, DNA binding, and cytoskeletal cell structure. Finally, in addition to confirming disrupted pathways and identifying novel hits in neuronal structure and synaptic transmission, our data indicate aberrant myelination, inflammation, and vascular disruption. Intriguingly, there is no evidence of reactive gliosis, but instead, gene, protein, and pathway analysis suggest astrocytic maturation and morphological deficits. CONCLUSIONS This comparative omics analysis supports previous works indicating widespread CNS dysfunction and may serve as a valuable resource for those interested in cellular dysfunction in RTT.
Collapse
Affiliation(s)
- Natasha L. Pacheco
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, 1918 University Blvd, Birmingham, AL 35294 USA
| | - Michael R. Heaven
- Vulcan Analytical, LLC, 1500 1st Ave. North, Birmingham, AL 35203 USA
| | - Leanne M. Holt
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, 1918 University Blvd, Birmingham, AL 35294 USA
- School of Neuroscience, Virginia Polytechnic and State University, Life Sciences Building Room 213, 970 Washington St. SW, Blacksburg, VA 24061 USA
| | - David K. Crossman
- UAB Heflin Center for Genomic Science, Department of Genetics, University of Alabama at Birmingham, Kaul 424A, 1720 2nd Ave. South, Birmingham, AL 35294 USA
| | - Kristin J. Boggio
- Proteomics and Mass Spectrometry Facility, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 222 Maple Ave., Fuller Building, Shrewsbury, MA 01545 USA
| | - Scott A. Shaffer
- Proteomics and Mass Spectrometry Facility, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 222 Maple Ave., Fuller Building, Shrewsbury, MA 01545 USA
| | - Daniel L. Flint
- Luxumbra Strategic Research, LLC, 1331 South Eads St, Arlington, VA 22202 USA
| | - Michelle L. Olsen
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, 1918 University Blvd, Birmingham, AL 35294 USA
- School of Neuroscience, Virginia Polytechnic and State University, Life Sciences Building Room 213, 970 Washington St. SW, Blacksburg, VA 24061 USA
| |
Collapse
|
2
|
Winters JJ, Isom LL. Developmental and Regulatory Functions of Na(+) Channel Non-pore-forming β Subunits. CURRENT TOPICS IN MEMBRANES 2016; 78:315-51. [PMID: 27586289 DOI: 10.1016/bs.ctm.2016.07.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Voltage-gated Na(+) channels (VGSCs) isolated from mammalian neurons are heterotrimeric complexes containing one pore-forming α subunit and two non-pore-forming β subunits. In excitable cells, VGSCs are responsible for the initiation of action potentials. VGSC β subunits are type I topology glycoproteins, containing an extracellular amino-terminal immunoglobulin (Ig) domain with homology to many neural cell adhesion molecules (CAMs), a single transmembrane segment, and an intracellular carboxyl-terminal domain. VGSC β subunits are encoded by a gene family that is distinct from the α subunits. While α subunits are expressed in prokaryotes, β subunit orthologs did not arise until after the emergence of vertebrates. β subunits regulate the cell surface expression, subcellular localization, and gating properties of their associated α subunits. In addition, like many other Ig-CAMs, β subunits are involved in cell migration, neurite outgrowth, and axon pathfinding and may function in these roles in the absence of associated α subunits. In sum, these multifunctional proteins are critical for both channel regulation and central nervous system development.
Collapse
Affiliation(s)
- J J Winters
- University of Michigan Neuroscience Program, Ann Arbor, MI, United States
| | - L L Isom
- University of Michigan Neuroscience Program, Ann Arbor, MI, United States; University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
3
|
Abstract
Mutations in methyl-CpG-binding protein 2 (MeCP2) cause Rett syndrome and related autism spectrum disorders (Amir et al., 1999). MeCP2 is believed to be required for proper regulation of brain gene expression, but prior microarray studies in Mecp2 knock-out mice using brain tissue homogenates have revealed only subtle changes in gene expression (Tudor et al., 2002; Nuber et al., 2005; Jordan et al., 2007; Chahrour et al., 2008). Here, by profiling discrete subtypes of neurons we uncovered more dramatic effects of MeCP2 on gene expression, overcoming the "dilution problem" associated with assaying homogenates of complex tissues. The results reveal misregulation of genes involved in neuronal connectivity and communication. Importantly, genes upregulated following loss of MeCP2 are biased toward longer genes but this is not true for downregulated genes, suggesting MeCP2 may selectively repress long genes. Because genes involved in neuronal connectivity and communication, such as cell adhesion and cell-cell signaling genes, are enriched among longer genes, their misregulation following loss of MeCP2 suggests a possible etiology for altered circuit function in Rett syndrome.
Collapse
|
4
|
CORTECON: a temporal transcriptome analysis of in vitro human cerebral cortex development from human embryonic stem cells. Neuron 2014; 83:51-68. [PMID: 24991954 DOI: 10.1016/j.neuron.2014.05.013] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2014] [Indexed: 01/24/2023]
Abstract
Many neurological and psychiatric disorders affect the cerebral cortex, and a clearer understanding of the molecular processes underlying human corticogenesis will provide greater insight into such pathologies. To date, knowledge of gene expression changes accompanying corticogenesis is largely based on murine data. Here we present a searchable, comprehensive, temporal gene expression data set encompassing cerebral cortical development from human embryonic stem cells (hESCs). Using a modified differentiation protocol that yields neurons suggestive of prefrontal cortex, we identified sets of genes and long noncoding RNAs that significantly change during corticogenesis and those enriched for disease-associations. Numerous alternatively spliced genes with varying temporal patterns of expression are revealed, including TGIF1, involved in holoprosencephaly, and MARK1, involved in autism. We have created a database (http://cortecon.neuralsci.org/) that provides online, query-based access to changes in RNA expression and alternatively spliced transcripts during human cortical development.
Collapse
|
5
|
Ahmed FE. Microarray RNA transcriptional profiling: Part I. Platforms, experimental design and standardization. Expert Rev Mol Diagn 2014; 6:535-50. [PMID: 16824028 DOI: 10.1586/14737159.6.4.535] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This review summarizes, in a balanced and comprehensive manner, the various components of microarrays and their types, substrate architecture, platforms for microarray probe implementation, standardizations and confounders. The review is intended to familiarize the beginner with the principles of experimental design and the selection of an appropriate microarray platform. This parallel technology has revolutionized transcriptomic approaches to data profiling and has a major role in the identification of expressed genes, classification and diagnosis studies. The technology is still evolving and guidelines for standardization and reporting have been developed and are being improved.
Collapse
Affiliation(s)
- Farid E Ahmed
- Leo W Jenkins Cancer Center, Department of Radiation Oncology, LSB 014, The Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA.
| |
Collapse
|
6
|
Cruz FC, Koya E, Guez-Barber DH, Bossert JM, Lupica CR, Shaham Y, Hope BT. New technologies for examining the role of neuronal ensembles in drug addiction and fear. Nat Rev Neurosci 2013; 14:743-54. [PMID: 24088811 DOI: 10.1038/nrn3597] [Citation(s) in RCA: 192] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Correlational data suggest that learned associations are encoded within neuronal ensembles. However, it has been difficult to prove that neuronal ensembles mediate learned behaviours because traditional pharmacological and lesion methods, and even newer cell type-specific methods, affect both activated and non-activated neurons. In addition, previous studies on synaptic and molecular alterations induced by learning did not distinguish between behaviourally activated and non-activated neurons. Here, we describe three new approaches--Daun02 inactivation, FACS sorting of activated neurons and Fos-GFP transgenic rats--that have been used to selectively target and study activated neuronal ensembles in models of conditioned drug effects and relapse. We also describe two new tools--Fos-tTA transgenic mice and inactivation of CREB-overexpressing neurons--that have been used to study the role of neuronal ensembles in conditioned fear.
Collapse
Affiliation(s)
- Fabio C Cruz
- Intramural Research Program, National Institute on Drug Abuse-National Institutes of Health, 251 Bayview Boulevard, Baltimore, Maryland 21224, USA
| | | | | | | | | | | | | |
Collapse
|
7
|
Trehalose-enhanced isolation of neuronal sub-types from adult mouse brain. Biotechniques 2012; 52:381-5. [PMID: 22668417 DOI: 10.2144/0000113878] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 05/15/2012] [Indexed: 12/31/2022] Open
Abstract
Efficient isolation of specific, intact, living neurons from the adult brain is problematic due to the complex nature of the extracellular matrix consolidating the neuronal network. Here, we present significant improvements to the protocol for isolation of pure populations of neurons from mature postnatal mouse brain using fluorescence activated cell sorting (FACS). The 10-fold increase in cell yield enables cell-specific transcriptome analysis by protocols such as nanoCAGE and RNA seq.
Collapse
|
8
|
cAMP response element-binding protein is a primary hub of activity-driven neuronal gene expression. J Neurosci 2012; 31:18237-50. [PMID: 22171029 DOI: 10.1523/jneurosci.4554-11.2011] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Long-lasting forms of neuronal plasticity require de novo gene expression, but relatively little is known about the events that occur genome-wide in response to activity in a neuronal network. Here, we unveil the gene expression programs initiated in mouse hippocampal neurons in response to different stimuli and explore the contribution of four prominent plasticity-related transcription factors (CREB, SRF, EGR1, and FOS) to these programs. Our study provides a comprehensive view of the intricate genetic networks and interactions elicited by neuronal stimulation identifying hundreds of novel downstream targets, including novel stimulus-associated miRNAs and candidate genes that may be differentially regulated at the exon/promoter level. Our analyses indicate that these four transcription factors impinge on similar biological processes through primarily non-overlapping gene-expression programs. Meta-analysis of the datasets generated in our study and comparison with publicly available transcriptomics data revealed the individual and collective contribution of these transcription factors to different activity-driven genetic programs. In addition, both gain- and loss-of-function experiments support a pivotal role for CREB in membrane-to-nucleus signal transduction in neurons. Our data provide a novel resource for researchers wanting to explore the genetic pathways associated with activity-regulated neuronal functions.
Collapse
|
9
|
Valor LM, Barco A. Hippocampal gene profiling: toward a systems biology of the hippocampus. Hippocampus 2010; 22:929-41. [PMID: 21080408 DOI: 10.1002/hipo.20888] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2010] [Indexed: 01/17/2023]
Abstract
Transcriptomics and proteomics approaches give a unique perspective for understanding brain and hippocampal functions but also pose unique challenges because of the singular complexity of the nervous system. The proliferation of genome-wide expression studies during the last decade has provided important insight into the molecular underpinnings of brain anatomy, neural plasticity, and neurological diseases. Microarray technology has dominated transcriptomics research, but this situation is rapidly changing with the recent technological advances in high-throughput sequencing. The full potential of transcriptomics in the neurosciences will be achieved as a result of its integration with other "-omics" disciplines as well as the development of novel analytical bioinformatics and systems biology tools for meta-analysis. Here, we review some of the most relevant advances in the gene profiling of the hippocampus, its relationship with proteomics approaches, and the promising perspectives for the future.
Collapse
Affiliation(s)
- Luis M Valor
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, Campus de Sant Joan, Apt. 18, Sant Joan d'Alacant, 03550, Alicante, Spain
| | | |
Collapse
|
10
|
Girgenti MJ, Newton SS. Customizing microarrays for neuroscience drug discovery. Expert Opin Drug Discov 2007; 2:1139-49. [DOI: 10.1517/17460441.2.8.1139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Matthew J Girgenti
- Yale University School of Medicine, Division of Molecular Psychiatry, Departments of Psychiatry and Pharmacology, 34 Park Street, New Haven, CT, 06508, USA ;
| | - Samuel S Newton
- Yale University School of Medicine, Division of Molecular Psychiatry, Departments of Psychiatry and Pharmacology, 34 Park Street, New Haven, CT, 06508, USA ;
| |
Collapse
|
11
|
Nakano I, Dougherty JD, Kim K, Klement I, Geschwind DH, Kornblum HI. Phosphoserine phosphatase is expressed in the neural stem cell niche and regulates neural stem and progenitor cell proliferation. Stem Cells 2007; 25:1975-84. [PMID: 17495110 DOI: 10.1634/stemcells.2007-0046] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Phosphoserine phosphatase (PSP) metabolizes the conversion of l-phosphoserine to l-serine, classically known as an amino acid necessary for protein and nucleotide synthesis and more recently suggested to be involved in cell-to-cell signaling. Previously, we identified PSP as being enriched in proliferating neural progenitors and highly expressed by embryonic and hematopoietic stem cells, suggesting a general role in stem cells. Here we demonstrate that PSP is highly expressed in periventricular neural progenitors in the embryonic brain. In the adult brain, PSP expression was observed in slowly dividing or quiescent glial fibrillary acidic protein (GFAP)-positive cells and CD24-positive ependymal cells in the forebrain germinal zone adjacent to the lateral ventricle and within GFAP-positive cells of the hippocampal subgranular zone, consistent with expression in adult neural stem cells. In vitro, PSP overexpression promoted proliferation, whereas small interfering RNA-induced knockdown inhibited proliferation of neural stem cells derived from embryonic cortex and adult striatal subventricular zone. The effects of PSP knockdown were partially rescued by exogenous l-serine. These data support a role for PSP in neural stem cell proliferation and suggest that in the adult periventricular germinal zones, PSP may regulate signaling between neural stem cells and other cells within the stem cell niche. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
Affiliation(s)
- Ichiro Nakano
- Department of Neurological Surgery, UCLA, Los Angeles, CA 90095-1769, USA
| | | | | | | | | | | |
Collapse
|
12
|
Lin DM, Loveall B, Ewer J, Deitcher DL, Sucher NJ. Characterization of mRNA expression in single neurons. Methods Mol Biol 2007; 399:133-152. [PMID: 18309930 DOI: 10.1007/978-1-59745-504-6_10] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
How neurons differ from each other is largely determined by their specific repertoire of mRNAs. The genes expressed by a given neuron reflect its developmental history, its interaction with other cells, and its synaptic activity. Since the introduction of reverse transcription polymerase chain reaction (RT-PCR), it has been possible to identify specific mRNAs present in small samples of total RNA. But isolating RNA from only those cells of interest, and not others, represents a significant challenge. Several approaches can be used to isolate RNA from selected neurons. Following whole-cell patch-clamp recording, mRNA can be harvested from living cells by aspirating the cytoplasm into the patch-clamp pipette. Transcripts expressed in the recorded neuron can then be amplified by RT-PCR. Another way of isolating identified neurons is to use cell-specific promoters to drive the expression of a marker gene such as green fluorescent protein (GFP). RNA can then be isolated from GFP-positive cells. In a tissue context, laser microdissection can also be used to excise the cells of interest directly into an RNA isolation solution. The above methods of RNA isolation can also be combined with RNA amplification and microarray technology to identify specific transcripts that are unique to the cell type being studied. Here we provide detailed protocols for harvesting RNA from single cells, methods for RNA purification, and PCR amplification.
Collapse
Affiliation(s)
- David M Lin
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, USA
| | | | | | | | | |
Collapse
|
13
|
Kudo LC, Karsten SL, Chen J, Levitt P, Geschwind DH. Genetic analysis of anterior posterior expression gradients in the developing mammalian forebrain. Cereb Cortex 2006; 17:2108-22. [PMID: 17150988 DOI: 10.1093/cercor/bhl118] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Intrinsic regulatory factors play critical roles in early cortical patterning, including the development of the anteroposterior (A-P) axis. To identify genes that are differentially expressed along the A-P axis of the developing cerebral cortex, we analyzed gene expression in presumptive frontal, parietal, and occipital cerebral walls of E12.5 mouse using complementary DNA microarrays. We identified 106 genes, including expressed sequence tags (ESTs), expressed in an A-P gradient in the embryonic brain and screened 88 by in situ hybridization for confirmation. Central nervous system (CNS) expression patterns of many of these genes were previously unknown. Others, such as Sfrp1, CoupTF1, and FABP7, were expressed in a manner consistent with previous studies, providing independent confirmation. Two related transcription factors, previously not implicated in CNS development, Fhl1 and Fhl2, were observed to be enriched in posterior and anterior telencephalon, respectively. We studied patterning gradients in Fhl1 knockout mice but observed no changes in gene expression related to A-P regionalization in the Fhl1 knockout mice. These data provide an important set of new candidates for studies of cortical patterning and maturation.
Collapse
Affiliation(s)
- Lili C Kudo
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | | | | | | | | |
Collapse
|
14
|
Abstract
The cellular complexity of the brain is a major issue in the planning, execution and interpretation of microarray studies. Recent technical advances allow for high-throughput study of specific cell populations and circuits. Here we review representative examples of currently available methods that allow high resolution and specificity in brain microarray studies, while maintaining the goal of comprehensive, high-throughput analysis.
Collapse
Affiliation(s)
- Giovanni Coppola
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | | |
Collapse
|
15
|
Oldham MC, Geschwind DH. Comparative genomics: Grasping human transcriptome evolution: what does it all mean? Heredity (Edinb) 2006; 96:339-40. [PMID: 16552432 DOI: 10.1038/sj.hdy.6800807] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
16
|
Karssen AM, Li JZ, Her S, Patel PD, Meng F, Evans SJ, Vawter MP, Tomita H, Choudary PV, Bunney WE, Jones EG, Watson SJ, Akil H, Myers RM, Schatzberg AF, Lyons DM. Application of microarray technology in primate behavioral neuroscience research. Methods 2006; 38:227-34. [PMID: 16469505 DOI: 10.1016/j.ymeth.2005.09.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2005] [Indexed: 01/04/2023] Open
Abstract
Gene expression profiling of brain tissue samples applied to DNA microarrays promises to provide novel insights into the neurobiological bases of primate behavior. The strength of the microarray technology lies in the ability to simultaneously measure the expression levels of all genes in defined brain regions that are known to mediate behavior. The application of microarrays presents, however, various limitations and challenges for primate neuroscience research. Low RNA abundance, modest changes in gene expression, heterogeneous distribution of mRNA among cell subpopulations, and individual differences in behavior all mandate great care in the collection, processing, and analysis of brain tissue. A unique problem for nonhuman primate research is the limited availability of species-specific arrays. Arrays designed for humans are often used, but expression level differences are inevitably confounded by gene sequence differences in all cross-species array applications. Tools to deal with this problem are currently being developed. Here we review these methodological issues, and provide examples from our experiences using human arrays to examine brain tissue samples from squirrel monkeys. Until species-specific microarrays become more widely available, great caution must be taken in the assessment and interpretation of microarray data from nonhuman primates. Nevertheless, the application of human microarrays in nonhuman primate neuroscience research recovers useful information from thousands of genes, and represents an important new strategy for understanding the molecular complexity of behavior and mental health.
Collapse
Affiliation(s)
- Adriaan M Karssen
- Department of Psychiatry and Behavioral Sciences, Stanford University, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Lobo MK, Karsten SL, Gray M, Geschwind DH, Yang XW. FACS-array profiling of striatal projection neuron subtypes in juvenile and adult mouse brains. Nat Neurosci 2006; 9:443-52. [PMID: 16491081 DOI: 10.1038/nn1654] [Citation(s) in RCA: 356] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2005] [Accepted: 01/25/2006] [Indexed: 11/09/2022]
Abstract
A major challenge in systems neuroscience is to perform precise molecular genetic analyses of a single neuronal population in the context of the complex mammalian brain. Existing technologies for profiling cell type-specific gene expression are largely limited to immature or morphologically identifiable neurons. In this study, we developed a simple method using fluorescent activated cell sorting (FACS) to purify genetically labeled neurons from juvenile and adult mouse brains for gene expression profiling. We identify and verify a new set of differentially expressed genes in the striatonigral and striatopallidal neurons, two functionally and clinically important projection neuron subtypes in the basal ganglia. We further demonstrate that Ebf1 is a lineage-specific transcription factor essential to the differentiation of striatonigral neurons. Our study provides a general approach for profiling cell type-specific gene expression in the mature mammalian brain and identifies a set of genes critical to the function and dysfunction of the striatal projection neuron circuit.
Collapse
Affiliation(s)
- Mary Kay Lobo
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, University of California at Los Angeles, 90095, USA
| | | | | | | | | |
Collapse
|
18
|
Sugino K, Hempel CM, Miller MN, Hattox AM, Shapiro P, Wu C, Huang ZJ, Nelson SB. Molecular taxonomy of major neuronal classes in the adult mouse forebrain. Nat Neurosci 2005; 9:99-107. [PMID: 16369481 DOI: 10.1038/nn1618] [Citation(s) in RCA: 420] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2005] [Accepted: 11/22/2005] [Indexed: 12/18/2022]
Abstract
Identifying the neuronal cell types that comprise the mammalian forebrain is a central unsolved problem in neuroscience. Global gene expression profiles offer a potentially unbiased way to assess functional relationships between neurons. Here, we carried out microarray analysis of 12 populations of neurons in the adult mouse forebrain. Five of these populations were chosen from cingulate cortex and included several subtypes of GABAergic interneurons and pyramidal neurons. The remaining seven were derived from the somatosensory cortex, hippocampus, amygdala and thalamus. Using these expression profiles, we were able to construct a taxonomic tree that reflected the expected major relationships between these populations, such as the distinction between cortical interneurons and projection neurons. The taxonomic tree indicated highly heterogeneous gene expression even within a single region. This dataset should be useful for the classification of unknown neuronal subtypes, the investigation of specifically expressed genes and the genetic manipulation of specific neuronal circuit elements.
Collapse
Affiliation(s)
- Ken Sugino
- Department of Biology and National Center for Behavioral Genomics, Brandeis University, MS 008, 415 South Street, Waltham, Massachusetts 02454-9110, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Grant SGN, Marshall MC, Page KL, Cumiskey MA, Armstrong JD. Synapse proteomics of multiprotein complexes: en route from genes to nervous system diseases. Hum Mol Genet 2005; 14 Spec No. 2:R225-34. [PMID: 16150739 DOI: 10.1093/hmg/ddi330] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Proteomic experiments have produced a draft profile of the overall molecular composition of the mammalian neuronal synapse. It appears that synapses have over 1000 protein components and the mapping of their interactions, organization and functions will lead to a global view of the role of synapses in physiology and disease. A major functional subcomponent of the synaptic machinery is a multiprotein complex of glutamate receptors and adhesion proteins with associated adaptor and signalling enzymes totally 185 proteins known as the N-methyl-d-aspartate receptor complex/MAGUK associated signalling complex (NRC/MASC). Here, we review the proteomic studies and functions of NRC/MASC and specifically report on the role of its component genes in human diseases. Using a systematic literature search protocol, we identified reports of mutations or polymorphisms in 47 genes associated with 183 disorders, of which 54 were nervous system disorders. A similar number of genes are important in mouse synaptic plasticity and behaviour, where the NRC/MASC acts as a signalling complex with multiple functions provided by its individual protein components and their interactions. The individual gene mutations suggest not only an important role for the NRC/MASC in human diseases but that these diseases may be functionally connected by their common link to the NRC/MASC. The NRC/MASC is a rich source of genetic variation and provides a platform for understanding relationships of disease phenotype amenable to systematic studies such as the Genes to Cognition research consortium (www.genes2cognition.org) that links human and mouse genetics with proteomic studies.
Collapse
Affiliation(s)
- Seth G N Grant
- Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| | | | | | | | | |
Collapse
|