1
|
Jo SI, Kim S, Lim JM, Rhee SG, Jeong BG, Cha SS, Chang JB, Kang D. Control of the signaling role of PtdIns(4)P at the plasma membrane through H 2O 2-dependent inactivation of synaptojanin 2 during endocytosis. Redox Biol 2024; 71:103097. [PMID: 38442648 PMCID: PMC10924134 DOI: 10.1016/j.redox.2024.103097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/16/2024] [Accepted: 02/18/2024] [Indexed: 03/07/2024] Open
Abstract
Phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] is implicated in various processes, including hormone-induced signal transduction, endocytosis, and exocytosis in the plasma membrane. However, how H2O2 accumulation regulates the levels of PtdIns(4,5)P2 in the plasma membrane in cells stimulated with epidermal growth factors (EGFs) is not known. We show that a plasma membrane PtdIns(4,5)P2-degrading enzyme, synaptojanin (Synj) phosphatase, is inactivated through oxidation by H2O2. Intriguingly, H2O2 inhibits the 4-phosphatase activity of Synj but not the 5-phosphatase activity. In EGF-activated cells, the oxidation of Synj dual phosphatase is required for the transient increase in the plasma membrane levels of phosphatidylinositol 4-phosphate [PtdIns(4)P], which can control EGF receptor-mediated endocytosis. These results indicate that intracellular H2O2 molecules act as signaling mediators to fine-tune endocytosis by controlling the stability of plasma membrane PtdIns(4)P, an intermediate product of Synj phosphoinositide dual phosphatase.
Collapse
Affiliation(s)
- Su In Jo
- Department of Life Science, Ewha Womans University, Seoul, Republic of Korea
| | - Suree Kim
- Fluorescence Core Imaging Center and Bioimaging Data Curation Center, Ewha Womans University, Seoul, Republic of Korea
| | - Jung Mi Lim
- Biochemistry and Biophysics Center, NHLBI, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sue Goo Rhee
- Biochemistry and Biophysics Center, NHLBI, National Institutes of Health, Bethesda, MD, 20892, USA
| | | | - Sun-Shin Cha
- R&D Division, TODD PHARM CO. LTD., Seoul, Republic of Korea; Department of Chemistry & Nanoscience, Ewha Womans University, Seoul, Republic of Korea
| | - Jae-Byum Chang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Dongmin Kang
- Department of Life Science, Ewha Womans University, Seoul, Republic of Korea; Fluorescence Core Imaging Center and Bioimaging Data Curation Center, Ewha Womans University, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Song DY, Yuan L, Cui N, Feng C, Meng L, Wang XH, Xiang M, Liu D, Wang C, Zhang Z, Li JY, Li W. α-Synuclein induces deficiency in clathrin-mediated endocytosis through inhibiting synaptojanin1 expression. J Neurochem 2023; 167:461-484. [PMID: 37788328 DOI: 10.1111/jnc.15974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/13/2023] [Accepted: 09/13/2023] [Indexed: 10/05/2023]
Abstract
Parkinson's disease (PD) is an age-related chronic neurological disorder, mainly characterized by the pathological feature of α-synuclein (α-syn) aggregation, with the exact disease pathogenesis unclear. During the onset and progression of PD, synaptic dysfunction, including dysregulation of axonal transport, impaired exocytosis, and endocytosis are identified as crucial events of PD pathogenesis. It has been reported that over-expression of α-syn impairs clathrin-mediated endocytosis (CME) in the synapses. However, the underlying mechanisms still needs to be explored. In this study, we investigated the molecular events underlying the synaptic dysfunction caused by over-expression of wild-type human α-syn and its mutant form, involving series of proteins participating in CME. We found that excessive human α-syn causes impaired fission and uncoating of clathrin-coated vesicles during synaptic vesicle recycling, leading to reduced clustering of synaptic vesicles near the active zone and increased size of plasma membrane and number of endocytic intermediates. Furthermore, over-expressed human α-syn induced changes of CME-associated proteins, among which synaptojanin1 (SYNJ1) showed significant reduction in various brain regions. Over-expression of SYNJ1 in primary hippocampal neurons from α-syn transgenic mice recovered the synaptic vesicle density, clustering and endocytosis. Using fluorescence-conjugated transferrin, we demonstrated that SYNJ1 re-boosted the CME activity by restoring the phosphatidylinositol-4,5-bisphosphate homeostasis. Our data suggested that over-expression of α-syn disrupts synaptic function through interfering with vesicle recycling, which could be alleviated by re-availing of SYNJ1. Our study unrevealed a molecular mechanism of the synaptic dysfunction in PD pathogenesis and provided a potential therapeutic target for treating PD.
Collapse
Affiliation(s)
- Dong-Yan Song
- Institute of Neuroscience, College of Life and Health Sciences, Northeastern University, Shenyang, China
- Laboratory of Research in Parkinson's Disease and Related Disorders, Health Sciences Institute, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, China Medical University, Shenyang, China
| | - Lin Yuan
- Laboratory of Research in Parkinson's Disease and Related Disorders, Health Sciences Institute, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, China Medical University, Shenyang, China
| | - Na Cui
- Laboratory of Research in Parkinson's Disease and Related Disorders, Health Sciences Institute, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, China Medical University, Shenyang, China
| | - Cong Feng
- Laboratory of Research in Parkinson's Disease and Related Disorders, Health Sciences Institute, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, China Medical University, Shenyang, China
| | - Lanxia Meng
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xin-He Wang
- Institute of Neuroscience, College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Man Xiang
- Laboratory of Research in Parkinson's Disease and Related Disorders, Health Sciences Institute, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, China Medical University, Shenyang, China
| | - Di Liu
- Institute of Neuroscience, College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Chun Wang
- Laboratory of Research in Parkinson's Disease and Related Disorders, Health Sciences Institute, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, China Medical University, Shenyang, China
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jia-Yi Li
- Laboratory of Research in Parkinson's Disease and Related Disorders, Health Sciences Institute, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, China Medical University, Shenyang, China
- Neural Plasticity and Repair Unit, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Wen Li
- Laboratory of Research in Parkinson's Disease and Related Disorders, Health Sciences Institute, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, China Medical University, Shenyang, China
- Neural Plasticity and Repair Unit, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| |
Collapse
|