1
|
Caravaca-Rodriguez D, Gaytan SP, Suaning GJ, Barriga-Rivera A. Implications of Neural Plasticity in Retinal Prosthesis. Invest Ophthalmol Vis Sci 2022; 63:11. [PMID: 36251317 DOI: 10.1167/iovs.63.11.11] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Retinal degenerative diseases such as retinitis pigmentosa cause a progressive loss of photoreceptors that eventually prevents the affected person from perceiving visual sensations. The absence of a visual input produces a neural rewiring cascade that propagates along the visual system. This remodeling occurs first within the retina. Then, subsequent neuroplastic changes take place at higher visual centers in the brain, produced by either the abnormal neural encoding of the visual inputs delivered by the diseased retina or as the result of an adaptation to visual deprivation. While retinal implants can activate the surviving retinal neurons by delivering electric current, the unselective activation patterns of the different neural populations that exist in the retinal layers differ substantially from those in physiologic vision. Therefore, artificially induced neural patterns are being delivered to a brain that has already undergone important neural reconnections. Whether or not the modulation of this neural rewiring can improve the performance for retinal prostheses remains a critical question whose answer may be the enabler of improved functional artificial vision and more personalized neurorehabilitation strategies.
Collapse
Affiliation(s)
- Daniel Caravaca-Rodriguez
- Department of Applied Physics III, Technical School of Engineering, Universidad de Sevilla, Sevilla, Spain
| | - Susana P Gaytan
- Department of Physiology, Universidad de Sevilla, Sevilla, Spain
| | - Gregg J Suaning
- School of Biomedical Engineering, University of Sydney, Sydney, Australia
| | - Alejandro Barriga-Rivera
- Department of Applied Physics III, Technical School of Engineering, Universidad de Sevilla, Sevilla, Spain.,School of Biomedical Engineering, University of Sydney, Sydney, Australia
| |
Collapse
|
2
|
GABA and GABA receptors alterations in the primary visual cortex of concave lens-induced myopic model. Brain Res Bull 2017; 130:173-179. [PMID: 28163071 DOI: 10.1016/j.brainresbull.2017.01.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 01/24/2017] [Indexed: 01/21/2023]
Abstract
Until recently most researches on myopia mechanisms have mainly been focused on the eye ball and few investigations were explored on the upper visual pathway, such as the visual cortex. The roles of gamma-aminobutyric acid (GABA) in the retinal and in the upper visual pathway are inter-correlated. As the retinal glutamate decarboxylase (GAD), GABA, and the mRNA levels of GABA receptors increased during the concave lens induced myopia formation, however, whether GABA alterations also occurred in the visual cortex during the concave lens induction is still unknown. In the present study, using HPLC, Enzyme-Linked Immunosorbent Assay (ELISA) and Real-Time Quantitative-PCR (RT-PCR) methods, we observed the changing trends of GABA, glutamate decarboxylase (GAD), and GABA receptors in the visual cortex of concave lens-induced myopic guinea pigs. Similar to the changing patterns of retinal GABA, the concentrations of GAD, GABA and the mRNA levels of GABA receptors in the visual cortex also increased. These results indicate that the exploration on myopia mechanisms should possibly be investigated on the whole visual pathway and the detailed significance of cortical GABA alterations needs further investigation.
Collapse
|
3
|
Maya-Vetencourt JF, Pizzorusso T. Molecular mechanisms at the basis of plasticity in the developing visual cortex: epigenetic processes and gene programs. J Exp Neurosci 2013; 7:75-83. [PMID: 25157210 PMCID: PMC4089832 DOI: 10.4137/jen.s12958] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Neuronal circuitries in the mammalian visual system change as a function of experience. Sensory experience modifies neuronal networks connectivity via the activation of different physiological processes such as excitatory/inhibitory synaptic transmission, neurotrophins, and signaling of extracellular matrix molecules. Long-lasting phenomena of plasticity occur when intracellular signal transduction pathways promote epigenetic alterations of chromatin structure that regulate the induction of transcription factors that in turn drive the expression of downstream targets, the products of which then work via the activation of structural and functional mechanisms that modify synaptic connectivity. Here, we review recent findings in the field of visual cortical plasticity while focusing on how physiological mechanisms associated with experience promote structural changes that determine functional modifications of neural circuitries in V1. We revise the role of microRNAs as molecular transducers of environmental stimuli and the role of immediate early genes that control gene expression programs underlying plasticity in the developing visual cortex.
Collapse
Affiliation(s)
- José Fernando Maya-Vetencourt
- Centre for Nanotechnology Innovation, Piazza San Silvestro 12, 56127 Pisa, Italy. ; Centre for Neuroscience and Cognitive Systems, Corso Bettini 31, 38068 Rovereto, Italian Institute of Technology, Italy
| | - Tommaso Pizzorusso
- CNR Neuroscience Institute, Via Moruzzi 1, 56124 Pisa, Italy. ; Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA, University of Florence, Via San Salvi 12, 50135 Florence, Italy
| |
Collapse
|
4
|
Esposito R, Cilli F, Pieramico V, Ferretti A, Macchia A, Tommasi M, Saggino A, Ciavardelli D, Manna A, Navarra R, Cieri F, Stuppia L, Tartaro A, Sensi SL. Acute effects of modafinil on brain resting state networks in young healthy subjects. PLoS One 2013; 8:e69224. [PMID: 23935959 PMCID: PMC3723829 DOI: 10.1371/journal.pone.0069224] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Accepted: 06/05/2013] [Indexed: 11/19/2022] Open
Abstract
Background There is growing debate on the use of drugs that promote cognitive enhancement. Amphetamine-like drugs have been employed as cognitive enhancers, but they show important side effects and induce addiction. In this study, we investigated the use of modafinil which appears to have less side effects compared to other amphetamine-like drugs. We analyzed effects on cognitive performances and brain resting state network activity of 26 healthy young subjects. Methodology A single dose (100 mg) of modafinil was administered in a double-blind and placebo-controlled study. Both groups were tested for neuropsychological performances with the Raven’s Advanced Progressive Matrices II set (APM) before and three hours after administration of drug or placebo. Resting state functional magnetic resonance (rs-FMRI) was also used, before and after three hours, to investigate changes in the activity of resting state brain networks. Diffusion Tensor Imaging (DTI) was employed to evaluate differences in structural connectivity between the two groups. Protocol ID: Modrest_2011; NCT01684306; http://clinicaltrials.gov/ct2/show/NCT01684306. Principal Findings Results indicate that a single dose of modafinil improves cognitive performance as assessed by APM. Rs-fMRI showed that the drug produces a statistically significant increased activation of Frontal Parietal Control (FPC; p<0.04) and Dorsal Attention (DAN; p<0.04) networks. No modifications in structural connectivity were observed. Conclusions and Significance Overall, our findings support the notion that modafinil has cognitive enhancing properties and provide functional connectivity data to support these effects. Trial Registration ClinicalTrials.gov NCT01684306 http://clinicaltrials.gov/ct2/show/NCT01684306.
Collapse
Affiliation(s)
- Roberto Esposito
- Department of Neuroscience and Imaging, University “G. d’Annunzio” Chieti-Pescara, Italy
- Molecular Neurology Unit, Center of Excellence on Aging, University “G. d’Annunzio” Chieti-Pescara, Italy
| | - Franco Cilli
- Molecular Neurology Unit, Center of Excellence on Aging, University “G. d’Annunzio” Chieti-Pescara, Italy
| | - Valentina Pieramico
- Molecular Neurology Unit, Center of Excellence on Aging, University “G. d’Annunzio” Chieti-Pescara, Italy
| | - Antonio Ferretti
- Department of Neuroscience and Imaging, University “G. d’Annunzio” Chieti-Pescara, Italy
| | - Antonella Macchia
- Department of Psychological sciences, University “G. d’Annunzio” Chieti-Pescara, Italy
| | - Marco Tommasi
- Department of Psychological sciences, University “G. d’Annunzio” Chieti-Pescara, Italy
| | - Aristide Saggino
- Department of Psychological sciences, University “G. d’Annunzio” Chieti-Pescara, Italy
| | - Domenico Ciavardelli
- Molecular Neurology Unit, Center of Excellence on Aging, University “G. d’Annunzio” Chieti-Pescara, Italy
- School of Engineering, Architecture, and Motor Science, Kore University of Enna, Enna, Italy
| | - Antonietta Manna
- Department of Neuroscience and Imaging, University “G. d’Annunzio” Chieti-Pescara, Italy
| | - Riccardo Navarra
- Department of Neuroscience and Imaging, University “G. d’Annunzio” Chieti-Pescara, Italy
| | - Filippo Cieri
- Department of Neuroscience and Imaging, University “G. d’Annunzio” Chieti-Pescara, Italy
| | - Liborio Stuppia
- Department of Psychological sciences, University “G. d’Annunzio” Chieti-Pescara, Italy
| | - Armando Tartaro
- Department of Neuroscience and Imaging, University “G. d’Annunzio” Chieti-Pescara, Italy
| | - Stefano L. Sensi
- Department of Neuroscience and Imaging, University “G. d’Annunzio” Chieti-Pescara, Italy
- Molecular Neurology Unit, Center of Excellence on Aging, University “G. d’Annunzio” Chieti-Pescara, Italy
- Departments of Neurology and Pharmacology, University of California-Irvine, Irvine, California, United States of America
- Institute for Mind Impairments and Neurological Disorders, University of California-Irvine, Irvine, California, United States of America
- * E-mail:
| |
Collapse
|
5
|
Shifts in developmental timing, and not increased levels of experience-dependent neuronal activity, promote barrel expansion in the primary somatosensory cortex of rats enucleated at birth. PLoS One 2013; 8:e54940. [PMID: 23372796 PMCID: PMC3556040 DOI: 10.1371/journal.pone.0054940] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 12/17/2012] [Indexed: 11/19/2022] Open
Abstract
Birth-enucleated rodents display enlarged representations of whiskers (i.e., barrels of the posteromedial subfield) in the primary somatosensory cortex. Although the historical view maintains that barrel expansion is due to incremental increases in neuronal activity along the trigeminal pathway during postnatal development, recent evidence obtained in experimental models of intramodal plasticity challenges this view. Here, we re-evaluate the role of experience-dependent neuronal activity on barrel expansion in birth-enucleated rats by combining various anatomical methods and sensory deprivation paradigms. We show that barrels in birth-enucleated rats were already enlarged by the end of the first week of life and had levels of metabolic activity comparable to those in control rats at different ages. Dewhiskering after the postnatal period of barrel formation did not prevent barrel expansion in adult, birth-enucleated rats. Further, dark rearing and enucleation after barrel formation did not lead to expanded barrels in adult brains. Because incremental increases of somatosensory experience did not promote barrel expansion in birth-enucleated rats, we explored whether shifts of the developmental timing could better explain barrel expansion during the first week of life. Accordingly, birth-enucleated rats show earlier formation of barrels, accelerated growth of somatosensory thalamocortical afferents, and an earlier H4 deacetylation. Interestingly, when H4 deacetylation was prevented with a histone deacetylases inhibitor (valproic acid), barrel specification timing returned to normal and barrel expansion did not occur. Thus, we provide evidence supporting that shifts in developmental timing modulated through epigenetic mechanisms, and not increased levels of experience dependent neuronal activity, promote barrel expansion in the primary somatosensory cortex of rats enucleated at birth.
Collapse
|
6
|
Cortical GABAergic interneurons in cross-modal plasticity following early blindness. Neural Plast 2012; 2012:590725. [PMID: 22720175 PMCID: PMC3377178 DOI: 10.1155/2012/590725] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 04/04/2012] [Indexed: 11/30/2022] Open
Abstract
Early loss of a given sensory input in mammals causes anatomical and functional modifications in the brain via a process called cross-modal plasticity. In the past four decades, several animal models have illuminated our understanding of the biological substrates involved in cross-modal plasticity. Progressively, studies are now starting to emphasise on cell-specific mechanisms that may be responsible for this intermodal sensory plasticity. Inhibitory interneurons expressing γ-aminobutyric acid (GABA) play an important role in maintaining the appropriate dynamic range of cortical excitation, in critical periods of developmental plasticity, in receptive field refinement, and in treatment of sensory information reaching the cerebral cortex. The diverse interneuron population is very sensitive to sensory experience during development. GABAergic neurons are therefore well suited to act as a gate for mediating cross-modal plasticity. This paper attempts to highlight the links between early sensory deprivation, cortical GABAergic interneuron alterations, and cross-modal plasticity, discuss its implications, and further provide insights for future research in the field.
Collapse
|
7
|
Lazarus MS, Huang ZJ. Distinct maturation profiles of perisomatic and dendritic targeting GABAergic interneurons in the mouse primary visual cortex during the critical period of ocular dominance plasticity. J Neurophysiol 2011; 106:775-87. [PMID: 21613595 DOI: 10.1152/jn.00729.2010] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In the rodent primary visual cortex, maturation of GABA inhibitory circuitry is regulated by visual input and contributes to the onset and progression of ocular dominance (OD) plasticity. Cortical inhibitory circuitry consists of diverse groups of GABAergic interneurons, which display distinct physiological properties and connectivity patterns. Whether different classes of interneurons mature with similar or distinct trajectories and how their maturation profiles relate to experience dependent development are not well understood. We used green fluorescent protein reporter lines to study the maturation of two broad classes of cortical interneurons: parvalbumin-expressing (PV) cells, which are fast spiking and innervate the soma and proximal dendrites, and somatostatin-expressing (SOM) cells, which are regular spiking and target more distal dendrites. Both cell types demonstrate extensive physiological maturation, but with distinct trajectories, from eye opening to the peak of OD plasticity. Typical fast-spiking characteristics of PV cells became enhanced, and synaptic signaling from PV to pyramidal neurons became faster. SOM cells demonstrated a large increase in input resistance and a depolarization of resting membrane potential, resulting in increased excitability. While the substantial maturation of PV cells is consistent with the importance of this source of inhibition in triggering OD plasticity, the significant increase in SOM cell excitability suggests that dendrite-targeted inhibition may also play a role in OD plasticity. More generally, these results underscore the necessity of cell type-based analysis and demonstrate that distinct classes of cortical interneurons have markedly different developmental profiles, which may contribute to the progressive emergence of distinct functional properties of cortical circuits.
Collapse
Affiliation(s)
- Matthew S Lazarus
- Cold Spring Harbor Laboratory, One Bungtown Rd., Cold Spring Harbor, NY 11724, USA
| | | |
Collapse
|
8
|
Desgent S, Boire D, Ptito M. Altered expression of parvalbumin and calbindin in interneurons within the primary visual cortex of neonatal enucleated hamsters. Neuroscience 2010; 171:1326-40. [PMID: 20937364 DOI: 10.1016/j.neuroscience.2010.10.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 09/29/2010] [Accepted: 10/04/2010] [Indexed: 01/08/2023]
Abstract
In the present study, we tested the hypothesis that the expression of calcium binding proteins (CaBPs), parvalbumin (PV), calretinin (CR) and calbindin (CB), is dependent upon sensory experience as emphasized in visual deprivation and deafferentation studies. The expression of CaBPs was studied in interneurons within the primary and extrastriate visual cortices (V1, V2M, V2L) and auditory cortex (AC) of adult hamsters enucleated at birth. The effects of enucleation were mainly confined to area V1 where there was a significant volume reduction (26%) and changes in the laminar distribution of PV and CB immunoreactive (IR) cells. The density of PV-IR cell bodies was significantly increased in layer IV and reduced in layer V. Moreover, the density of CB-IR neurons was inferior in layer V of V1 in enucleated hamsters (EH) compared to controls. These results suggest that some features of the laminar distribution of specific CaBPs, in primary sensory cortices, are dependent upon or modulated by sensory input.
Collapse
Affiliation(s)
- S Desgent
- École d'Optométrie, Université de Montréal, Québec, Canada, H3C 3J7
| | | | | |
Collapse
|
9
|
|
10
|
Sugiyama S, Prochiantz A, Hensch TK. From brain formation to plasticity: insights on Otx2 homeoprotein. Dev Growth Differ 2009; 51:369-77. [PMID: 19298552 DOI: 10.1111/j.1440-169x.2009.01093.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The shaping of neuronal circuits is essential during postnatal brain development. A window of neuronal remodeling by sensory experience typically occurs during a unique time in early life. The many types of behavior and perception, like human language, birdsong, hearing and vision are refined by experience during these distinct 'critical periods'. The onset of critical periods for vision is delayed in animals that remain in complete darkness from birth. It is then predicted that a 'messenger' within the visual pathway signals the amount of sensory experience that has occurred. Our recent results indicate that Otx2 homeoprotein, an essential morphogen for embryonic head formation, is reused later in life as this 'messenger' for critical period plasticity. The homeoprotein is stimulated by visual experience to propagate into the visual cortex, where it is internalized by GABAergic interneurons, especially Parvalbumin-positive cells (PV-cells). Otx2 promotes the maturation of PV-cells, consequently activating critical period onset in the visual cortex. Here, we discuss recent data that are beginning to illuminate the physiological function of non-cell autonomous homeoproteins, as well as the restriction of their transfer to PV-cells in vivo.
Collapse
Affiliation(s)
- Sayaka Sugiyama
- Department of Neurology, FM Kirby Neurobiology Center, Children's Hospital Boston, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.
| | | | | |
Collapse
|