1
|
Idikuda V, Roy Chowdhury S, Chang Y, Ren Q, Bao H, Goldsmith R, Chanda B. Lipid bilayers determine the allostery but not intrinsic affinity of cAMP binding to pacemaker channels. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.23.630133. [PMID: 39763952 PMCID: PMC11703277 DOI: 10.1101/2024.12.23.630133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2025]
Abstract
Cyclic adenosine monophosphate (cAMP), a second messenger, binds to hyperpolarization and cyclic nucleotide-gated (HCN) ion channels and regulates the automaticity of pacemaking activity. While cellular studies suggest that cAMP binding to HCN channels exhibits unusual cooperativity, recent findings using purified detergent-solubilized channels indicate independent binding to each subunit. This discrepancy raises the question of whether the lipid environment or endogenous cellular cofactors influence cAMP-dependent gating. To address this, we reconstituted purified human HCN channels in nanodiscs and resolved cAMP binding energetics at single-molecule resolution using nanophotonic waveguides. Our measurements reveal that, in contrast to detergent-solubilized channels, cAMP binds cooperatively to HCN channels reconstituted in a variety of lipid nanodiscs. Remarkably, the presence of lipid bilayer promotes ligand-binding allostery but not intrinsic binding affinity. To explore the molecular basis of bilayer-induced allostery, we determine the cryo-EM structure of HCN1 in soy polar lipid nanodiscs at a nominal resolution of 3.77 angstrom resolution. Although the overall architecture is conserved, the average interfacial distance between the transmembrane domain and C-terminal domain of neighboring subunits are shorter in lipid nanodiscs. These findings indicate that the lipid bilayer regulates the function of pacemaker ion channels by enhancing inter-subunit interactions and underscore the fundamental role of membranes in amplifying the gating sensitivity of ion channels by promoting long-range cooperative interactions.
Collapse
|
2
|
Benndorf K, Enke U, Tewari D, Kusch J, Liu H, Sun H, Schmauder R, Sattler C. Subunit-specific conductance of single homomeric and heteromeric HCN pacemaker channels at femtosiemens resolution. Proc Natl Acad Sci U S A 2025; 122:e2422533122. [PMID: 39879240 PMCID: PMC11804576 DOI: 10.1073/pnas.2422533122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 01/03/2025] [Indexed: 01/31/2025] Open
Abstract
In mammals, the four subunit isoforms HCN1-4 assemble to form functional homotetrameric and heterotetrameric hyperpolarization-activated cyclic nucleotide-modulated (HCN) ion channels. Despite the outstanding relevance of HCN channels for organisms, including generating electrical rhythmicity in cardiac pacemaker cells and diverse types of brain neurons, key channel properties are still elusive. In particular, the unitary conductance, γ, of HCN channels is highly controversial. We analyzed the unitary conductance at femtosiemens resolution of all four homotetrameric channels of the mouse, mHCN1-4. All conductance values are in the range of 1 pS which is exceptionally small compared to most other ion channels. Surprisingly, the conductance among the isoforms differs up to threefold (γmHCN2 = 1.54 pS > γmHCN1 = 0.84 pS > γmHCN3 = 0.54 pS ≈ γmHCN4 = 0.51 pS) though the residues in the two narrow parts of the pore, the selectivity filter and the inner gate, are conserved. Mutagenesis and all-atom molecular dynamics simulations demonstrate that the differences in the conductance are generated by different amounts of negative charges in the outer channel vestibule, which control ion accumulation. In line with these results, heterotetrameric channels exhibit intermediate unitary conductance values with respect to the homotetrameric channels. Our approach demonstrates how HCN channels can be functionally differentiated at the single-channel level, paving the way to target specific channels with selective drugs.
Collapse
Affiliation(s)
- Klaus Benndorf
- Institut für Physiologie II, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena07740, Germany
| | - Uta Enke
- Institut für Physiologie II, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena07740, Germany
| | - Debanjan Tewari
- Institut für Physiologie II, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena07740, Germany
| | - Jana Kusch
- Institut für Physiologie II, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena07740, Germany
| | - Haoran Liu
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin13125, Germany
- Institute of Chemistry, Technical University of Berlin, Berlin10623, Germany
| | - Han Sun
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin13125, Germany
- Institute of Chemistry, Technical University of Berlin, Berlin10623, Germany
| | - Ralf Schmauder
- Institut für Physiologie II, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena07740, Germany
| | - Christian Sattler
- Institut für Physiologie II, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena07740, Germany
| |
Collapse
|
3
|
Wang J, Su M, Zhang D, Zhang L, Niu C, Li C, You S, Sang Y, Zhang Y, Du X, Zhang H. The cation channel mechanisms of subthreshold inward depolarizing currents in the mice VTA dopaminergic neurons and their roles in the chronic-stress-induced depression-like behavior. eLife 2024; 12:RP88319. [PMID: 39642080 PMCID: PMC11623934 DOI: 10.7554/elife.88319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2024] Open
Abstract
The slow-intrinsic-pacemaker dopaminergic (DA) neurons originating in the ventral tegmental area (VTA) are implicated in various mood- and emotion-related disorders, such as anxiety, fear, stress and depression. Abnormal activity of projection-specific VTA DA neurons is the key factor in the development of these disorders. Here, we describe the crucial role of the NALCN and TRPC6, non-selective cation channels in mediating the subthreshold inward depolarizing current and driving the firing of action potentials of VTA DA neurons in physiological conditions. Furthermore, we demonstrate that down-regulation of TRPC6 protein expression in the VTA DA neurons likely contributes to the reduced activity of projection-specific VTA DA neurons in chronic mild unpredictable stress (CMUS) depressive mice. In consistent with these, selective knockdown of TRPC6 channels in the VTA DA neurons conferred mice with depression-like behavior. This current study suggests down-regulation of TRPC6 expression/function is involved in reduced VTA DA neuron firing and chronic stress-induced depression-like behavior of mice.
Collapse
Affiliation(s)
- Jing Wang
- Department of Pharmacology, Hebei Medical UniversityShijiazhuangChina
- Department of Chinese Medicinal Chemistry, Hebei University of Chinese MedicineShijiazhuangChina
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical UniversityShijiazhuangChina
- The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical UniversityShijiazhuangChina
| | - Min Su
- Department of Pharmacology, Hebei Medical UniversityShijiazhuangChina
- Yiling Pharmaceutical CompanyShijiazhuangChina
| | - Dongmei Zhang
- Department of Pharmacology, Hebei Medical UniversityShijiazhuangChina
- Department of Clinical Pharmacy, Xingtai Ninth HospitalXingtaiChina
| | - Ludi Zhang
- Department of Pharmacology, Hebei Medical UniversityShijiazhuangChina
| | - Chenxu Niu
- Department of Pharmacology, Hebei Medical UniversityShijiazhuangChina
| | - Chaoyi Li
- Department of Pharmacology, Hebei Medical UniversityShijiazhuangChina
| | - Shuangzhu You
- Department of Pharmacology, Hebei Medical UniversityShijiazhuangChina
| | - Yuqi Sang
- Department of Pharmacology, Hebei Medical UniversityShijiazhuangChina
- College of Chemical Engineering, Shijiazhuang UniversityShijiazhuangChina
- Shijiazhuang Key Laboratory of Targeted Drugs Research and Efficacy EvaluationShijiazhuangChina
| | - Yongxue Zhang
- Department of Pharmacology, Hebei Medical UniversityShijiazhuangChina
- Department of Pharmacy, Handan First HospitalHandanChina
| | - Xiaona Du
- Department of Pharmacology, Hebei Medical UniversityShijiazhuangChina
| | - Hailin Zhang
- Department of Pharmacology, Hebei Medical UniversityShijiazhuangChina
- Department of Psychiatry, The First Hospital of Hebei Medical University, Mental Health Institute of Hebei Medical UniversityShijiazhuangChina
| |
Collapse
|
4
|
Handlin LJ, Macchi NL, Dumaire NLA, Salih L, Lessie EN, McCommis KS, Moutal A, Dai G. Membrane lipid nanodomains modulate HCN pacemaker channels in nociceptor DRG neurons. Nat Commun 2024; 15:9898. [PMID: 39548079 PMCID: PMC11568329 DOI: 10.1038/s41467-024-54053-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 10/29/2024] [Indexed: 11/17/2024] Open
Abstract
Cell membranes consist of heterogeneous lipid nanodomains that influence key cellular processes. Using FRET-based fluorescent assays and fluorescence lifetime imaging microscopy (FLIM), we find that the dimension of cholesterol-enriched ordered membrane domains (OMD) varies considerably, depending on specific cell types. Particularly, nociceptor dorsal root ganglion (DRG) neurons exhibit large OMDs. Disruption of OMDs potentiated action potential firing in nociceptor DRG neurons and facilitated the opening of native hyperpolarization-activated cyclic nucleotide-gated (HCN) pacemaker channels. This increased neuronal firing is partially due to an increased open probability and altered gating kinetics of HCN channels. The gating effect on HCN channels is likely due to a direct modulation of their voltage sensors by OMDs. In animal models of neuropathic pain, we observe reduced OMD size and a loss of HCN channel localization within OMDs. Additionally, cholesterol supplementation inhibited HCN channels and reduced neuronal hyperexcitability in pain models. These findings suggest that disturbances in lipid nanodomains play a critical role in regulating HCN channels within nociceptor DRG neurons, influencing pain modulation.
Collapse
Affiliation(s)
- Lucas J Handlin
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, USA
| | - Natalie L Macchi
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, USA
| | - Nicolas L A Dumaire
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, USA
| | - Lyuba Salih
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, USA
| | - Erin N Lessie
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, USA
| | - Kyle S McCommis
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, USA
| | - Aubin Moutal
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, USA
| | - Gucan Dai
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, USA.
| |
Collapse
|
5
|
Brünings X, Schmauder R, Mrowka R, Benndorf K, Sattler C. Subtype-Specific Ligand Binding and Activation Gating in Homomeric and Heteromeric P2X Receptors. Biomolecules 2024; 14:942. [PMID: 39199330 PMCID: PMC11352409 DOI: 10.3390/biom14080942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 09/01/2024] Open
Abstract
P2X receptors are ATP-activated, non-specific cation channels involved in sensory signalling, inflammation, and certain forms of pain. Investigations of agonist binding and activation are essential for comprehending the fundamental mechanisms of receptor function. This encompasses the ligand recognition by the receptor, conformational changes following binding, and subsequent cellular signalling. The ATP-induced activation of P2X receptors is further influenced by the concentration of Mg2+ that forms a complex with ATP. To explore these intricate mechanisms, two new fluorescently labelled ATP derivatives have become commercially available: 2-[DY-547P1]-AHT-ATP (fATP) and 2-[DY-547P1]-AHT-α,βMe-ATP (α,βMe-fATP). We demonstrate a subtype-specific pattern of ligand potency and efficacy on human P2X2, P2X3, and P2X2/3 receptors with distinct relations between binding and gaiting. Given the high in vivo concentrations of Mg2+, the complex formed by Mg2+ and ATP emerges as an adequate ligand for P2X receptors. Utilising fluorescent ligands, we observed a Mg2+-dependent reduction in P2X2 receptor activation, while binding remained surprisingly robust. In contrast, P2X3 receptors initially exhibited decreased activation at high Mg2+ concentrations, concomitant with increased binding, while the P2X2/3 heteromer showed a hybrid effect. Hence, our new fluorescent ATP derivatives are powerful tools for further unravelling the mechanism underlying ligand binding and activation gating in P2X receptors.
Collapse
Affiliation(s)
- Xenia Brünings
- Institute of Physiology II, Jena University Hospital, Friedrich Schiller University Jena, 07743 Jena, Germany; (X.B.); (R.S.)
| | - Ralf Schmauder
- Institute of Physiology II, Jena University Hospital, Friedrich Schiller University Jena, 07743 Jena, Germany; (X.B.); (R.S.)
| | - Ralf Mrowka
- Experimentelle Nephrologie, KIM III, Universitätsklinikum Jena, Nonnenplan 4, 07743 Jena, Germany;
- ThIMEDOP—Thüringer Innovationszentrum für Medizintechnik-Lösungen, Nonnenplan 4, Universitätsklinikum Jena, 07743 Jena, Germany
| | - Klaus Benndorf
- Institute of Physiology II, Jena University Hospital, Friedrich Schiller University Jena, 07743 Jena, Germany; (X.B.); (R.S.)
| | - Christian Sattler
- Institute of Physiology II, Jena University Hospital, Friedrich Schiller University Jena, 07743 Jena, Germany; (X.B.); (R.S.)
| |
Collapse
|
6
|
Guo B, Liu T, Choi S, Mao H, Wang W, Xi K, Jones C, Hartley ND, Feng D, Chen Q, Liu Y, Wimmer RD, Xie Y, Zhao N, Ou J, Arias-Garcia MA, Malhotra D, Liu Y, Lee S, Pasqualoni S, Kast RJ, Fleishman M, Halassa MM, Wu S, Fu Z. Restoring thalamocortical circuit dysfunction by correcting HCN channelopathy in Shank3 mutant mice. Cell Rep Med 2024; 5:101534. [PMID: 38670100 PMCID: PMC11149412 DOI: 10.1016/j.xcrm.2024.101534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 12/11/2023] [Accepted: 04/04/2024] [Indexed: 04/28/2024]
Abstract
Thalamocortical (TC) circuits are essential for sensory information processing. Clinical and preclinical studies of autism spectrum disorders (ASDs) have highlighted abnormal thalamic development and TC circuit dysfunction. However, mechanistic understanding of how TC dysfunction contributes to behavioral abnormalities in ASDs is limited. Here, our study on a Shank3 mouse model of ASD reveals TC neuron hyperexcitability with excessive burst firing and a temporal mismatch relationship with slow cortical rhythms during sleep. These TC electrophysiological alterations and the consequent sensory hypersensitivity and sleep fragmentation in Shank3 mutant mice are causally linked to HCN2 channelopathy. Restoring HCN2 function early in postnatal development via a viral approach or lamotrigine (LTG) ameliorates sensory and sleep problems. A retrospective case series also supports beneficial effects of LTG treatment on sensory behavior in ASD patients. Our study identifies a clinically relevant circuit mechanism and proposes a targeted molecular intervention for ASD-related behavioral impairments.
Collapse
Affiliation(s)
- Baolin Guo
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Tiaotiao Liu
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin 300070, China
| | - Soonwook Choi
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA
| | - Honghui Mao
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Wenting Wang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Kaiwen Xi
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Carter Jones
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Nolan D Hartley
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA
| | - Dayun Feng
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Qian Chen
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA
| | - Yingying Liu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Ralf D Wimmer
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA
| | - Yuqiao Xie
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Ningxia Zhao
- Xi'an TCM Hospital of Encephalopathy, Shaanxi University of Chinese Medicine, Xi'an 710032, China
| | - Jianjun Ou
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, National Clinical Research Center for Mental Disorders, Changsha 410011, China
| | - Mario A Arias-Garcia
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Diya Malhotra
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Yang Liu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Sihak Lee
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Sammuel Pasqualoni
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ryan J Kast
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA
| | - Morgan Fleishman
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Michael M Halassa
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA
| | - Shengxi Wu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China.
| | - Zhanyan Fu
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA.
| |
Collapse
|
7
|
Pliushcheuskaya P, Kesh S, Kaufmann E, Wucherpfennig S, Schwede F, Künze G, Nache V. Similar Binding Modes of cGMP Analogues Limit Selectivity in Modulating Retinal CNG Channels via the Cyclic Nucleotide-Binding Domain. ACS Chem Neurosci 2024; 15:1652-1668. [PMID: 38579109 PMCID: PMC11027099 DOI: 10.1021/acschemneuro.3c00665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/28/2024] [Accepted: 03/19/2024] [Indexed: 04/07/2024] Open
Abstract
In treating retinitis pigmentosa, a genetic disorder causing progressive vision loss, selective inhibition of rod cyclic nucleotide-gated (CNG) channels holds promise. Blocking the increased Ca2+-influx in rod photoreceptors through CNG channels can potentially delay disease progression and improve the quality of life for patients. To find inhibitors for rod CNG channels, we investigated the impact of 16 cGMP analogues on both rod and cone CNG channels using the patch-clamp technique. Although modifications at the C8 position of the guanine ring did not change the ligand efficacy, modifications at the N1 and N2 positions rendered cGMP largely ineffective in activating retinal CNG channels. Notably, PET-cGMP displayed selective potential, favoring rod over cone, whereas Rp-cGMPS showed greater efficiency in activating cone over rod CNG channels. Ligand docking and molecular dynamics simulations on cyclic nucleotide-binding domains showed comparable binding energies and binding modes for cGMP and its analogues in both rod and cone CNG channels (CNGA1 vs CNGA3 subunits). Computational experiments on CNGB1a vs CNGB3 subunits showed similar binding modes albeit with fewer amino acid interactions with cGMP due to an inactivated conformation of their C-helix. In addition, no clear correlation could be observed between the computational scores and the CNG channel efficacy values, suggesting additional factors beyond binding strength determining ligand selectivity and potency. This study highlights the importance of looking beyond the cyclic nucleotide-binding domain and toward the gating mechanism when searching for selective modulators. Future efforts in developing selective modulators for CNG channels should prioritize targeting alternative channel domains.
Collapse
Affiliation(s)
- Palina Pliushcheuskaya
- Institute
for Drug Discovery, Medical Faculty, University
of Leipzig, Leipzig 04103, Germany
| | - Sandeep Kesh
- Institute
of Physiology II, University Hospital Jena, Friedrich Schiller University
Jena, Jena 07743, Germany
| | - Emma Kaufmann
- Institute
of Physiology II, University Hospital Jena, Friedrich Schiller University
Jena, Jena 07743, Germany
| | - Sophie Wucherpfennig
- Institute
of Physiology II, University Hospital Jena, Friedrich Schiller University
Jena, Jena 07743, Germany
| | - Frank Schwede
- BIOLOG
Life Science Institute GmbH & Co KG, Bremen 28199, Germany
| | - Georg Künze
- Institute
for Drug Discovery, Medical Faculty, University
of Leipzig, Leipzig 04103, Germany
- Interdisciplinary
Center for Bioinformatics, University of
Leipzig, Leipzig 04107, Germany
- Center
for Scalable Data Analytics and Artificial Intelligence, University of Leipzig, Leipzig 04105, Germany
| | - Vasilica Nache
- Institute
of Physiology II, University Hospital Jena, Friedrich Schiller University
Jena, Jena 07743, Germany
| |
Collapse
|
8
|
Kuschke S, Thon S, Sattler C, Schwabe T, Benndorf K, Schmauder R. cAMP binding to closed pacemaker ion channels is cooperative. Proc Natl Acad Sci U S A 2024; 121:e2315132121. [PMID: 38377199 PMCID: PMC10907242 DOI: 10.1073/pnas.2315132121] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 01/04/2024] [Indexed: 02/22/2024] Open
Abstract
The cooperative action of the subunits in oligomeric receptors enables fine-tuning of receptor activation, as demonstrated for the regulation of voltage-activated HCN pacemaker ion channels by relating cAMP binding to channel activation in ensemble signals. HCN channels generate electric rhythmicity in specialized brain neurons and cardiomyocytes. There is conflicting evidence on whether binding cooperativity does exist independent of channel activation or not, as recently reported for detergent-solubilized receptors positioned in zero-mode waveguides. Here, we show positive cooperativity in ligand binding to closed HCN2 channels in native cell membranes by following the binding of individual fluorescence-labeled cAMP molecules. Kinetic modeling reveals that the affinity of the still empty binding sites rises with increased degree of occupation and that the transition of the channel to a flip state is promoted accordingly. We conclude that ligand binding to the subunits in closed HCN2 channels not pre-activated by voltage is already cooperative. Hence, cooperativity is not causally linked to channel activation by voltage. Our analysis also shows that single-molecule binding measurements at equilibrium can quantify cooperativity in ligand binding to receptors in native membranes.
Collapse
Affiliation(s)
- Stefan Kuschke
- Institute of Physiology II, Jena University Hospital, Friedrich Schiller University, Jena07743, Germany
| | - Susanne Thon
- Institute of Physiology II, Jena University Hospital, Friedrich Schiller University, Jena07743, Germany
| | - Christian Sattler
- Institute of Physiology II, Jena University Hospital, Friedrich Schiller University, Jena07743, Germany
| | - Tina Schwabe
- Institute of Physiology II, Jena University Hospital, Friedrich Schiller University, Jena07743, Germany
| | - Klaus Benndorf
- Institute of Physiology II, Jena University Hospital, Friedrich Schiller University, Jena07743, Germany
| | - Ralf Schmauder
- Institute of Physiology II, Jena University Hospital, Friedrich Schiller University, Jena07743, Germany
| |
Collapse
|
9
|
Porro A, Saponaro A, Castelli R, Introini B, Hafez Alkotob A, Ranjbari G, Enke U, Kusch J, Benndorf K, Santoro B, DiFrancesco D, Thiel G, Moroni A. A high affinity switch for cAMP in the HCN pacemaker channels. Nat Commun 2024; 15:843. [PMID: 38287019 PMCID: PMC10825183 DOI: 10.1038/s41467-024-45136-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 01/16/2024] [Indexed: 01/31/2024] Open
Abstract
Binding of cAMP to Hyperpolarization activated cyclic nucleotide gated (HCN) channels facilitates pore opening. It is unclear why the isolated cyclic nucleotide binding domain (CNBD) displays in vitro lower affinity for cAMP than the full-length channel in patch experiments. Here we show that HCN are endowed with an affinity switch for cAMP. Alpha helices D and E, downstream of the cyclic nucleotide binding domain (CNBD), bind to and stabilize the holo CNBD in a high affinity state. These helices increase by 30-fold cAMP efficacy and affinity measured in patch clamp and ITC, respectively. We further show that helices D and E regulate affinity by interacting with helix C of the CNBD, similarly to the regulatory protein TRIP8b. Our results uncover an intramolecular mechanism whereby changes in binding affinity, rather than changes in cAMP concentration, can modulate HCN channels, adding another layer to the complex regulation of their activity.
Collapse
Affiliation(s)
| | - Andrea Saponaro
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milano, Italy
| | | | - Bianca Introini
- Department of Biosciences, University of Milan, Milano, Italy
| | | | - Golnaz Ranjbari
- Department of Biosciences, University of Milan, Milano, Italy
| | - Uta Enke
- Institut für Physiologie II, Universitätsklinikum Jena, Jena, Germany
| | - Jana Kusch
- Institut für Physiologie II, Universitätsklinikum Jena, Jena, Germany
| | - Klaus Benndorf
- Institut für Physiologie II, Universitätsklinikum Jena, Jena, Germany
| | - Bina Santoro
- Department of Neuroscience, Zuckerman Institute, Columbia University, New York, NY, USA
| | | | - Gerhard Thiel
- Department of Biology, TU-Darmstadt, Darmstadt, Germany
| | - Anna Moroni
- Department of Biosciences, University of Milan, Milano, Italy.
- Institute of Biophysics Milan, Consiglio Nazionale delle Ricerche, Milano, Italy.
| |
Collapse
|
10
|
Benndorf K, Schulz E. Identifiability of equilibrium constants for receptors with two to five binding sites. J Gen Physiol 2023; 155:e202313423. [PMID: 37882789 PMCID: PMC10602793 DOI: 10.1085/jgp.202313423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/22/2023] [Accepted: 10/07/2023] [Indexed: 10/27/2023] Open
Abstract
Ligand-gated ion channels (LGICs) are regularly oligomers containing between two and five binding sites for ligands. Neither in homomeric nor heteromeric LGICs the activation process evoked by the ligand binding is fully understood. Here, we show on theoretical grounds that for LGICs with two to five binding sites, the cooperativity upon channel activation can be determined in considerable detail. The main requirements for our strategy are a defined number of binding sites in a channel, which can be achieved by concatenation, a systematic mutation of all binding sites and a global fit of all concentration-activation relationships (CARs) with corresponding intimately coupled Markovian state models. We take advantage of translating these state models to cubes with dimensions 2, 3, 4, and 5. We show that the maximum possible number of CARs for these LGICs specify all 7, 13, 23, and 41 independent model parameters, respectively, which directly provide all equilibrium constants within the respective schemes. Moreover, a fit that uses stochastically varied scaled unitary start vectors enables the determination of all parameters, without any bias imposed by specific start vectors. A comparison of the outcome of the analyses for the models with 2 to 5 binding sites showed that the identifiability of the parameters is best for a case with 5 binding sites and 41 parameters. Our strategy can be used to analyze experimental data of other LGICs and may be applicable to voltage-gated ion channels and metabotropic receptors.
Collapse
Affiliation(s)
- Klaus Benndorf
- Institute of Physiology II, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Eckhard Schulz
- Faculty of Electrical Engineering, Schmalkalden University of Applied Sciences, Schmalkalden, Germany
| |
Collapse
|
11
|
Chowdhury S, Pal K. Architecture and rearrangements of a sperm-specific Na +/H + exchanger. RESEARCH SQUARE 2023:rs.3.rs-3396005. [PMID: 37886505 PMCID: PMC10602139 DOI: 10.21203/rs.3.rs-3396005/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
The sperm-specific sodium hydrogen exchanger, SLC9C1, underlies hyperpolarization and cyclic nucleotide stimulated proton fluxes across sperm membranes and regulates their hyperactivated motility. SLC9C1 is the first known instance of an ion transporter that uses a canonical voltage-sensing domain (VSD) and an evolutionarily conserved cyclic nucleotide binding domain (CNBD) to influence the dynamics of its ion-exchange domain (ED). The structural organization of this 'tripartite transporter' and the mechanisms whereby it integrates physical (membrane voltage) and chemical (cyclic nucleotide) cues are unknown. In this study, we use single particle cryo-electron microscopy to determine structures of a metazoan SLC9C1 in different conformational states. We find that the three structural domains are uniquely organized around a distinct ring-shaped scaffold that we call the 'allosteric ring domain' or ARD. The ARD undergoes coupled proton-dependent rearrangements with the ED and acts as a 'signaling hub' enabling allosteric communication between the key functional modules of sp9C1. We demonstrate that binding of cAMP causes large conformational changes in the cytoplasmic domains and disrupts key ARD-linked interfaces. We propose that these structural changes rescue the transmembrane domains from an auto-inhibited state and facilitate their functional dynamics. Our study provides a structural framework to understand and further probe electrochemical linkage in SLC9C1.
Collapse
|
12
|
Schmauder R, Eick T, Schulz E, Sammler G, Voigt E, Mayer G, Ginter H, Ditze G, Benndorf K. Fast functional mapping of ligand-gated ion channels. Commun Biol 2023; 6:1003. [PMID: 37783870 PMCID: PMC10545696 DOI: 10.1038/s42003-023-05340-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 09/11/2023] [Indexed: 10/04/2023] Open
Abstract
Ligand-gated ion channels are formed by three to five subunits that control the opening of the pore in a cooperative fashion. We developed a microfluidic chip-based technique for studying ion currents and fluorescence signals in either excised membrane patches or whole cells to measure activation and deactivation kinetics of the channels as well as ligand binding and unbinding when using confocal patch-clamp fluorometry. We show how this approach produces in a few seconds either unidirectional concentration-activation relationships at or near equilibrium and, moreover, respective time courses of activation and deactivation for a large number of freely designed steps of the ligand concentration. The short measuring period strongly minimizes the contribution of disturbing superimposing effects such as run-down phenomena and desensitization effects. To validate gating mechanisms, complex kinetic schemes are quantified without the requirement to have data at equilibrium. The new method has potential for functionally analyzing any ligand-gated ion channel and, beyond, also for other receptors.
Collapse
Affiliation(s)
- Ralf Schmauder
- Institut für Physiologie II, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, 07743, Jena, Germany.
| | - Thomas Eick
- Institut für Physiologie II, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, 07743, Jena, Germany
| | - Eckhard Schulz
- Hochschule Schmalkalden, Fakultät Elektrotechnik, Blechhammer, 98574, Schmalkalden, Germany
| | - Günther Sammler
- Zentrale Forschungswerkstätten, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, 07743, Jena, Germany
| | - Elmar Voigt
- Leibniz Institut für Photonische Technologien e.V., Albert-Einstein-Straße 9, 07745, Jena, Germany
| | - Günter Mayer
- Leibniz Institut für Photonische Technologien e.V., Albert-Einstein-Straße 9, 07745, Jena, Germany
| | - Holger Ginter
- Zentrale Forschungswerkstätten, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, 07743, Jena, Germany
| | - Günter Ditze
- Zentrale Forschungswerkstätten, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, 07743, Jena, Germany
| | - Klaus Benndorf
- Institut für Physiologie II, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, 07743, Jena, Germany.
| |
Collapse
|
13
|
Kinetic fingerprinting of metabotropic glutamate receptors. Commun Biol 2023; 6:104. [PMID: 36707695 PMCID: PMC9883448 DOI: 10.1038/s42003-023-04468-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 01/12/2023] [Indexed: 01/28/2023] Open
Abstract
Dimeric metabotropic glutamate receptors (mGluRs) are abundantly expressed in neurons. In mammals, eight subunit isoforms, mGluR1-8, have been identified, forming the groups I, II, and III. We investigated receptor dimerization and kinetics of these mGluR isoforms in excised membrane patches by FRET and confocal patch-clamp fluorometry. We show that 5 out of 8 homodimeric receptors develop characteristic glutamate-induced on- and off-kinetics, as do 11 out of 28 heterodimers. Glutamate-responsive heterodimers were identified within each group, between groups I and II as well as between groups II and III, but not between groups I and III. The glutamate-responsive heterodimers showed heterogeneous activation and deactivation kinetics. Interestingly, mGluR7, not generating a kinetic response in homodimers, showed fast on-kinetics in mGluR2/7 and mGluR3/7 while off-kinetics retained the speed of mGluR2 or mGluR3 respectively. In conclusion, glutamate-induced conformational changes in heterodimers appear within each group and between groups if one group II subunit is present.
Collapse
|
14
|
Gating intermediates reveal inhibitory role of the voltage sensor in a cyclic nucleotide-modulated ion channel. Nat Commun 2022; 13:6919. [PMID: 36376326 PMCID: PMC9663499 DOI: 10.1038/s41467-022-34673-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 11/02/2022] [Indexed: 11/16/2022] Open
Abstract
Understanding how ion channels gate is important for elucidating their physiological roles and targeting them in pathophysiological states. Here, we used SthK, a cyclic nucleotide-modulated channel from Spirochaeta thermophila, to define a ligand-gating trajectory that includes multiple on-pathway intermediates. cAMP is a poor partial agonist for SthK and depolarization increases SthK activity. Tuning the energy landscape by gain-of-function mutations in the voltage sensor domain (VSD) allowed us to capture multiple intermediates along the ligand-activation pathway, highlighting the allosteric linkage between VSD, cyclic nucleotide-binding (CNBD) and pore domains. Small, lateral displacements of the VSD S4 segment were necessary to open the intracellular gate, pointing to an inhibitory VSD at rest. We propose that in wild-type SthK, depolarization leads to such VSD displacements resulting in release of inhibition. In summary, we report conformational transitions along the activation pathway that reveal allosteric couplings between key sites integrating to open the intracellular gate.
Collapse
|
15
|
Characterising ion channel structure and dynamics using fluorescence spectroscopy techniques. Biochem Soc Trans 2022; 50:1427-1445. [DOI: 10.1042/bst20220605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/21/2022] [Accepted: 10/04/2022] [Indexed: 11/17/2022]
Abstract
Ion channels undergo major conformational changes that lead to channel opening and ion conductance. Deciphering these structure-function relationships is paramount to understanding channel physiology and pathophysiology. Cryo-electron microscopy, crystallography and computer modelling provide atomic-scale snapshots of channel conformations in non-cellular environments but lack dynamic information that can be linked to functional results. Biophysical techniques such as electrophysiology, on the other hand, provide functional data with no structural information of the processes involved. Fluorescence spectroscopy techniques help bridge this gap in simultaneously obtaining structure-function correlates. These include voltage-clamp fluorometry, Förster resonance energy transfer, ligand binding assays, single molecule fluorescence and their variations. These techniques can be employed to unearth several features of ion channel behaviour. For instance, they provide real time information on local and global rearrangements that are inherent to channel properties. They also lend insights in trafficking, expression, and assembly of ion channels on the membrane surface. These methods have the advantage that they can be carried out in either native or heterologous systems. In this review, we briefly explain the principles of fluorescence and how these have been translated to study ion channel function. We also report several recent advances in fluorescence spectroscopy that has helped address and improve our understanding of the biophysical behaviours of different ion channel families.
Collapse
|
16
|
Saponaro A, Vallese F, Porro A, Clarke OB. Validation of the binding stoichiometry between HCN channels and their neuronal regulator TRIP8b by single molecule measurements. Front Physiol 2022; 13:998176. [PMID: 36225302 PMCID: PMC9549148 DOI: 10.3389/fphys.2022.998176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Tetratricopeptide repeat-containing Rab8b-interacting (TRIP8b) protein is a brain-specific subunit of Hyperpolarization-activated Cyclic Nucleotide-gated (HCN) channels, a class of voltage-gated channels modulated by cyclic nucleotides. While the interaction between TRIP8b and the cytosolic C terminus of the channel has been structurally described, the HCN:TRIP8b stoichiometry is less characterized. We employed single molecule mass photometry (MP) to image HCN4 particles purified in complex with TRIP8b. Our data show that four TRIP8b subunits are bound to the tetrameric HCN4 particle, confirming a 1:1 stoichiometry.
Collapse
Affiliation(s)
- Andrea Saponaro
- Department of Biosciences, University of Milan, Milano, Italy
| | - Francesca Vallese
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, United States
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, NY, United States
- Irving Institute for Clinical and Translational Research, Columbia University, New York, NY, United States
| | | | - Oliver B Clarke
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, United States
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, NY, United States
- Irving Institute for Clinical and Translational Research, Columbia University, New York, NY, United States
| |
Collapse
|
17
|
Yüksel S, Bonus M, Schwabe T, Pfleger C, Zimmer T, Enke U, Saß I, Gohlke H, Benndorf K, Kusch J. Uncoupling of Voltage- and Ligand-Induced Activation in HCN2 Channels by Glycine Inserts. Front Physiol 2022; 13:895324. [PMID: 36091400 PMCID: PMC9452628 DOI: 10.3389/fphys.2022.895324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 06/20/2022] [Indexed: 11/24/2022] Open
Abstract
Hyperpolarization-activated cyclic nucleotide-modulated (HCN) channels are tetramers that generate electrical rhythmicity in special brain neurons and cardiomyocytes. The channels are activated by membrane hyperpolarization. The binding of cAMP to the four available cyclic nucleotide-binding domains (CNBD) enhances channel activation. We analyzed in the present study the mechanism of how the effect of cAMP binding is transmitted to the pore domain. Our strategy was to uncouple the C-linker (CL) from the channel core by inserting one to five glycine residues between the S6 gate and the A′-helix (constructs 1G to 5G). We quantified in full-length HCN2 channels the resulting functional effects of the inserted glycines by current activation as well as the structural dynamics and statics using molecular dynamics simulations and Constraint Network Analysis. We show functionally that already in 1G the cAMP effect on activation is lost and that with the exception of 3G and 5G the concentration-activation relationships are shifted to depolarized voltages with respect to HCN2. The strongest effect was found for 4G. Accordingly, the activation kinetics were accelerated by all constructs, again with the strongest effect in 4G. The simulations reveal that the average residue mobility of the CL and CNBD domains is increased in all constructs and that the junction between the S6 and A′-helix is turned into a flexible hinge, resulting in a destabilized gate in all constructs. Moreover, for 3G and 4G, there is a stronger downward displacement of the CL-CNBD than in HCN2 and the other constructs, resulting in an increased kink angle between S6 and A′-helix, which in turn loosens contacts between the S4-helix and the CL. This is suggested to promote a downward movement of the S4-helix, similar to the effect of hyperpolarization. In addition, exclusively in 4G, the selectivity filter in the upper pore region and parts of the S4-helix are destabilized. The results provide new insights into the intricate activation of HCN2 channels.
Collapse
Affiliation(s)
- Sezin Yüksel
- Universitätsklinikum Jena, Institut für Physiologie II, Jena, Germany
| | - Michele Bonus
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Tina Schwabe
- Universitätsklinikum Jena, Institut für Physiologie II, Jena, Germany
| | - Christopher Pfleger
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Thomas Zimmer
- Universitätsklinikum Jena, Institut für Physiologie II, Jena, Germany
| | - Uta Enke
- Universitätsklinikum Jena, Institut für Physiologie II, Jena, Germany
| | - Inga Saß
- Universitätsklinikum Jena, Institut für Physiologie II, Jena, Germany
| | - Holger Gohlke
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
- John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), Institute of Biological Information Processing (IBI-7: Structural Biochemistry) and Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, Jülich, Germany
- *Correspondence: Holger Gohlke, ; Klaus Benndorf, ; Jana Kusch,
| | - Klaus Benndorf
- Universitätsklinikum Jena, Institut für Physiologie II, Jena, Germany
- *Correspondence: Holger Gohlke, ; Klaus Benndorf, ; Jana Kusch,
| | - Jana Kusch
- Universitätsklinikum Jena, Institut für Physiologie II, Jena, Germany
- *Correspondence: Holger Gohlke, ; Klaus Benndorf, ; Jana Kusch,
| |
Collapse
|
18
|
Benndorf K, Eick T, Sattler C, Schmauder R, Schulz E. A strategy for determining the equilibrium constants for heteromeric ion channels in a complex model. J Gen Physiol 2022; 154:e202113041. [PMID: 35486087 PMCID: PMC9066054 DOI: 10.1085/jgp.202113041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 02/11/2022] [Accepted: 03/18/2022] [Indexed: 11/20/2022] Open
Abstract
Ligand-gated ion channels are oligomers containing several binding sites for the ligands. However, the signal transmission from the ligand binding site to the pore has not yet been fully elucidated for any of these channels. In heteromeric channels, the situation is even more complex than in homomeric channels. Using published data for concatamers of heteromeric cyclic nucleotide-gated channels, we show that, on theoretical grounds, multiple functional parameters of the individual subunits can be determined with high precision. The main components of our strategy are (1) the generation of a defined subunit composition by concatenating multiple subunits, (2) the construction of 16 concatameric channels, which differ in systematically permutated binding sites, (3) the determination of respectively differing concentration-activation relationships, and (4) a complex global fit analysis with corresponding intimately coupled Markovian state models. The amount of constraints in this approach is exceedingly high. Furthermore, we propose a stochastic fit analysis with a scaled unitary start vector of identical elements to avoid any bias arising from a specific start vector. Our approach enabled us to determine 23 free parameters, including 4 equilibrium constants for the closed-open isomerizations, 4 disabling factors for the mutations of the different subunits, and 15 virtual equilibrium-association constants in the context of a 4-D hypercube. From the virtual equilibrium-association constants, we could determine 32 equilibrium-association constants of the subunits at different degrees of ligand binding. Our strategy can be generalized and is therefore adaptable to other ion channels.
Collapse
Affiliation(s)
- Klaus Benndorf
- Institute of Physiology II, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Thomas Eick
- Institute of Physiology II, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Christian Sattler
- Institute of Physiology II, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Ralf Schmauder
- Institute of Physiology II, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Eckhard Schulz
- Schmalkalden University of Applied Sciences, Faculty of Electrical Engineering, Schmalkalden, Germany
| |
Collapse
|
19
|
Kondapuram M, Frieg B, Yüksel S, Schwabe T, Sattler C, Lelle M, Schweinitz A, Schmauder R, Benndorf K, Gohlke H, Kusch J. Functional and structural characterization of interactions between opposite subunits in HCN pacemaker channels. Commun Biol 2022; 5:430. [PMID: 35534535 PMCID: PMC9085832 DOI: 10.1038/s42003-022-03360-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 04/13/2022] [Indexed: 11/13/2022] Open
Abstract
Hyperpolarization-activated and cyclic nucleotide (HCN) modulated channels are tetrameric cation channels. In each of the four subunits, the intracellular cyclic nucleotide-binding domain (CNBD) is coupled to the transmembrane domain via a helical structure, the C-linker. High-resolution channel structures suggest that the C-linker enables functionally relevant interactions with the opposite subunit, which might be critical for coupling the conformational changes in the CNBD to the channel pore. We combined mutagenesis, patch-clamp technique, confocal patch-clamp fluorometry, and molecular dynamics (MD) simulations to show that residue K464 of the C-linker is relevant for stabilizing the closed state of the mHCN2 channel by forming interactions with the opposite subunit. MD simulations revealed that in the K464E channel, a rotation of the intracellular domain relative to the channel pore is induced, which is similar to the cAMP-induced rotation, weakening the autoinhibitory effect of the unoccupied CL-CNBD region. We suggest that this CL-CNBD rotation is considerably involved in activation-induced affinity increase but only indirectly involved in gate modulation. The adopted poses shown herein are in excellent agreement with previous structural results. Interactions between opposite subunits of HCN channels are relevant for stabilizing the auto-inhibited state of the channel. Like cAMP-binding, K464E-mutation breaks these interactions to favor a channel’s pre-activated state.
Collapse
Affiliation(s)
- Mahesh Kondapuram
- Universitätsklinikum Jena, Institut für Physiologie II, Jena, Germany
| | - Benedikt Frieg
- John von Neumann-Institut für Computing (NIC), Jülich Supercomputing Centre (JSC), and Institut für Biologische Informationsprozesse (IBI-7: Strukturbiochemie), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Sezin Yüksel
- Universitätsklinikum Jena, Institut für Physiologie II, Jena, Germany
| | - Tina Schwabe
- Universitätsklinikum Jena, Institut für Physiologie II, Jena, Germany
| | - Christian Sattler
- Universitätsklinikum Jena, Institut für Physiologie II, Jena, Germany
| | - Marco Lelle
- Universitätsklinikum Jena, Institut für Physiologie II, Jena, Germany
| | - Andrea Schweinitz
- Universitätsklinikum Jena, Institut für Physiologie II, Jena, Germany
| | - Ralf Schmauder
- Universitätsklinikum Jena, Institut für Physiologie II, Jena, Germany
| | - Klaus Benndorf
- Universitätsklinikum Jena, Institut für Physiologie II, Jena, Germany
| | - Holger Gohlke
- John von Neumann-Institut für Computing (NIC), Jülich Supercomputing Centre (JSC), and Institut für Biologische Informationsprozesse (IBI-7: Strukturbiochemie), Forschungszentrum Jülich GmbH, Jülich, Germany. .,Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany. .,Institut für Bio- und Geowissenschaften (IBG-4: Bioinformatik), Forschungszentrum Jülich GmbH, Jülich, Germany.
| | - Jana Kusch
- Universitätsklinikum Jena, Institut für Physiologie II, Jena, Germany.
| |
Collapse
|
20
|
Münch JL, Paul F, Schmauder R, Benndorf K. Bayesian inference of kinetic schemes for ion channels by Kalman filtering. eLife 2022; 11:e62714. [PMID: 35506659 PMCID: PMC9342998 DOI: 10.7554/elife.62714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 04/22/2022] [Indexed: 11/16/2022] Open
Abstract
Inferring adequate kinetic schemes for ion channel gating from ensemble currents is a daunting task due to limited information in the data. We address this problem by using a parallelized Bayesian filter to specify hidden Markov models for current and fluorescence data. We demonstrate the flexibility of this algorithm by including different noise distributions. Our generalized Kalman filter outperforms both a classical Kalman filter and a rate equation approach when applied to patch-clamp data exhibiting realistic open-channel noise. The derived generalization also enables inclusion of orthogonal fluorescence data, making unidentifiable parameters identifiable and increasing the accuracy of the parameter estimates by an order of magnitude. By using Bayesian highest credibility volumes, we found that our approach, in contrast to the rate equation approach, yields a realistic uncertainty quantification. Furthermore, the Bayesian filter delivers negligibly biased estimates for a wider range of data quality. For some data sets, it identifies more parameters than the rate equation approach. These results also demonstrate the power of assessing the validity of algorithms by Bayesian credibility volumes in general. Finally, we show that our Bayesian filter is more robust against errors induced by either analog filtering before analog-to-digital conversion or by limited time resolution of fluorescence data than a rate equation approach.
Collapse
Affiliation(s)
- Jan L Münch
- Institut für Physiologie II, Universitätsklinikum Jena, Friedrich Schiller University JenaJenaGermany
| | - Fabian Paul
- Department of Biochemistry and Molecular Biology, University of ChicagoChicagoUnited States
| | - Ralf Schmauder
- Institut für Physiologie II, Universitätsklinikum Jena, Friedrich Schiller University JenaJenaGermany
| | - Klaus Benndorf
- Institut für Physiologie II, Universitätsklinikum Jena, Friedrich Schiller University JenaJenaGermany
| |
Collapse
|
21
|
Sattler C, Benndorf K. Enlightening activation gating in P2X receptors. Purinergic Signal 2022; 18:177-191. [PMID: 35188598 PMCID: PMC9123132 DOI: 10.1007/s11302-022-09850-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/04/2022] [Indexed: 12/20/2022] Open
Abstract
P2X receptors are trimeric nonselective cation channels gated by ATP. They assemble from seven distinct subunit isoforms as either homo- or heteromeric complexes and contain three extracellularly located binding sites for ATP. P2X receptors are expressed in nearly all tissues and are there involved in physiological processes like synaptic transmission, pain, and inflammation. Thus, they are a challenging pharmacological target. The determination of crystal and cryo-EM structures of several isoforms in the last decade in closed, open, and desensitized states has provided a firm basis for interpreting the huge amount of functional and biochemical data. Electrophysiological characterization in conjugation with optical approaches has generated significant insights into structure–function relationships of P2X receptors. This review focuses on novel optical and related approaches to better understand the conformational changes underlying the activation of these receptors.
Collapse
Affiliation(s)
- Christian Sattler
- Institut Für Physiologie II, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, 07740, Jena, Germany.
| | - Klaus Benndorf
- Institut Für Physiologie II, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, 07740, Jena, Germany.
| |
Collapse
|
22
|
Ng LCT, Li YX, Van Petegem F, Accili EA. Altered cyclic nucleotide-binding and pore opening in a diseased human HCN4 channel. Biophys J 2022; 121:1166-1183. [PMID: 35219649 PMCID: PMC9034293 DOI: 10.1016/j.bpj.2022.02.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 09/20/2021] [Accepted: 02/22/2022] [Indexed: 11/16/2022] Open
Abstract
A growing number of nonsynonymous mutations in the human HCN4 channel gene, the major component of the funny channel of the sinoatrial node, are associated with disease but how they impact channel structure and function, and, thus, how they result in disease, is not clear for any of them. Here, we study the S672R mutation, in the cyclic nucleotide-binding domain of the channel, which has been associated with an inherited bradycardia in an Italian family. This may be the best studied of all known mutations, yet the underlying molecular and atomistic mechanisms remain unclear and controversial. We combine measurements of binding by isothermal titration calorimetry to a naturally occurring tetramer of the HCN4 C-terminal region with a mathematical model to show that weaker binding of cAMP to the mutant channel contributes to a lower level of facilitation of channel opening at submicromolar ligand concentrations but that, in general, facilitation occurs over a range that is similar between the mutant and wild-type because of enhanced opening of the mutant channel when liganded. We also show that the binding affinity for cGMP, which produces the same maximum facilitation of HCN4 opening as cAMP, is weaker in the mutant HCN4 channel but that, for both wild-type and mutant, high-affinity binding of cGMP occurs in a range of concentrations below 1 μM. Thus, binding of cGMP to the HCN4 channel may be relevant normally in vivo and reduced binding of cGMP, as well as cAMP, to the mutant channel may contribute to the reduced resting heart rate observed in the affected family.
Collapse
Affiliation(s)
- Leo C T Ng
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Yue Xian Li
- Department of Mathematics, University of British Columbia, Vancouver, Canada
| | - Filip Van Petegem
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | - Eric A Accili
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
23
|
Structural and functional approaches to studying cAMP regulation of HCN channels. Biochem Soc Trans 2021; 49:2573-2579. [PMID: 34812892 DOI: 10.1042/bst20210290] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/19/2021] [Accepted: 10/25/2021] [Indexed: 11/17/2022]
Abstract
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are primarily activated by voltage and further modulated by cAMP. While cAMP binding alone does not open the channel, its presence facilitates the action of voltage, increasing channel open probability. Functional results indicate that the membrane-based voltage sensor domain (VSD) communicates with the cytosolic cyclic nucleotide-binding domain (CNBD), and vice-versa. Yet, a mechanistic explanation on how this could occur in structural terms is still lacking. In this review, we will discuss the recent advancement in understanding the molecular mechanisms connecting the VSD with the CNBD in the tetrameric organization of HCN channels unveiled by the 3D structures of HCN1 and HCN4. Data show that the HCN domain transmits cAMP signal to the VSD by bridging the cytosolic to the membrane domains. Furthermore, a metal ion coordination site connects the C-linker to the S4-S5 linker in HCN4, further facilitating cAMP signal transmission to the VSD in this isoform.
Collapse
|
24
|
Regulation of sinoatrial funny channels by cyclic nucleotides: From adrenaline and I K2 to direct binding of ligands to protein subunits. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 166:12-21. [PMID: 34237319 DOI: 10.1016/j.pbiomolbio.2021.06.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 06/13/2021] [Accepted: 06/25/2021] [Indexed: 12/27/2022]
Abstract
The funny current, and the HCN channels that form it, are affected by the direct binding of cyclic nucleotides. Binding of these second messengers causes a depolarizing shift of the activation curve, which leads to greater availability of current at physiological membrane voltages. This review outlines a brief history on this regulation and provides some evidence that other cyclic nucleotides, especially cGMP, may be important for the regulation of the funny channel in the heart. Current understanding of the molecular mechanism of cyclic nucleotide regulation is also presented, which includes the notions that full and partial agonism occur as a consequence of negatively cooperative binding. Knowledge gaps, including a potential role of cyclic nucleotide-regulation of the funny current under pathophysiological conditions, are included. The work highlighted here is in dedication to Dario DiFrancesco on his retirement.
Collapse
|
25
|
White DS, Chowdhury S, Idikuda V, Zhang R, Retterer ST, Goldsmith RH, Chanda B. cAMP binding to closed pacemaker ion channels is non-cooperative. Nature 2021; 595:606-610. [PMID: 34194042 PMCID: PMC8513821 DOI: 10.1038/s41586-021-03686-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 06/02/2021] [Indexed: 12/17/2022]
Abstract
Electrical activity in the brain and heart depends on rhythmic generation of action potentials by pacemaker ion channels (HCN) whose activity is regulated by cAMP binding1. Previous work has uncovered evidence for both positive and negative cooperativity in cAMP binding2,3, but such bulk measurements suffer from limited parameter resolution. Efforts to eliminate this ambiguity using single-molecule techniques have been hampered by the inability to directly monitor binding of individual ligand molecules to membrane receptors at physiological concentrations. Here we overcome these challenges using nanophotonic zero-mode waveguides4 to directly resolve binding dynamics of individual ligands to multimeric HCN1 and HCN2 ion channels. We show that cAMP binds independently to all four subunits when the pore is closed, despite a subsequent conformational isomerization to a flip state at each site. The different dynamics in binding and isomerization are likely to underlie physiologically distinct responses of each isoform to cAMP5 and provide direct validation of the ligand-induced flip-state model6-9. This approach for observing stepwise binding in multimeric proteins at physiologically relevant concentrations can directly probe binding allostery at single-molecule resolution in other intact membrane proteins and receptors.
Collapse
Affiliation(s)
- David S White
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Sandipan Chowdhury
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, USA
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Vinay Idikuda
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, USA
- Center for Investigation of Membrane Excitability Diseases, Department of Anesthesiology, Washington University School of Medicine, St Louis, MO, USA
| | - Ruohan Zhang
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Scott T Retterer
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | | | - Baron Chanda
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, USA.
- Center for Investigation of Membrane Excitability Diseases, Department of Anesthesiology, Washington University School of Medicine, St Louis, MO, USA.
| |
Collapse
|
26
|
Pfleger C, Kusch J, Kondapuram M, Schwabe T, Sattler C, Benndorf K, Gohlke H. Allosteric signaling in C-linker and cyclic nucleotide-binding domain of HCN2 channels. Biophys J 2021; 120:950-963. [PMID: 33515603 DOI: 10.1016/j.bpj.2021.01.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 01/04/2021] [Accepted: 01/19/2021] [Indexed: 12/22/2022] Open
Abstract
Opening of hyperpolarization-activated cyclic nucleotide-modulated (HCN) channels is controlled by membrane hyperpolarization and binding of cyclic nucleotides to the tetrameric cyclic nucleotide-binding domain (CNBD), attached to the C-linker (CL) disk. Confocal patch-clamp fluorometry revealed pronounced cooperativity of ligand binding among protomers. However, by which pathways allosteric signal transmission occurs remained elusive. Here, we investigate how changes in the structural dynamics of the CL-CNBD of mouse HCN2 upon cAMP binding relate to inter- and intrasubunit signal transmission. Applying a rigidity-theory-based approach, we identify two intersubunit and one intrasubunit pathways that differ in allosteric coupling strength between cAMP-binding sites or toward the CL. These predictions agree with results from electrophysiological and patch-clamp fluorometry experiments. Our results map out distinct routes within the CL-CNBD that modulate different cAMP-binding responses in HCN2 channels. They signify that functionally relevant submodules may exist within and across structurally discernable subunits in HCN channels.
Collapse
Affiliation(s)
- Christopher Pfleger
- Mathematisch-Naturwissenschaftliche Fakultät, Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Jana Kusch
- Institute of Physiology II, Jena University Hospital, Jena, Germany
| | | | - Tina Schwabe
- Institute of Physiology II, Jena University Hospital, Jena, Germany
| | | | - Klaus Benndorf
- Institute of Physiology II, Jena University Hospital, Jena, Germany
| | - Holger Gohlke
- Mathematisch-Naturwissenschaftliche Fakultät, Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany; John von Neumann Institute for Computing, Jülich Supercomputing Centre, and Institute of Biological Information Processing (IBI-7, Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany.
| |
Collapse
|
27
|
Schmidpeter PAM, Rheinberger J, Nimigean CM. Prolyl isomerization controls activation kinetics of a cyclic nucleotide-gated ion channel. Nat Commun 2020; 11:6401. [PMID: 33328472 PMCID: PMC7744796 DOI: 10.1038/s41467-020-20104-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 11/11/2020] [Indexed: 01/21/2023] Open
Abstract
SthK, a cyclic nucleotide-modulated ion channel from Spirochaeta thermophila, activates slowly upon cAMP increase. This is reminiscent of the slow, cAMP-induced activation reported for the hyperpolarization-activated and cyclic nucleotide-gated channel HCN2 in the family of so-called pacemaker channels. Here, we investigate slow cAMP-induced activation in purified SthK channels using stopped-flow assays, mutagenesis, enzymatic catalysis and inhibition assays revealing that the cis/trans conformation of a conserved proline in the cyclic nucleotide-binding domain determines the activation kinetics of SthK. We propose that SthK exists in two forms: trans Pro300 SthK with high ligand binding affinity and fast activation, and cis Pro300 SthK with low affinity and slow activation. Following channel activation, the cis/trans equilibrium, catalyzed by prolyl isomerases, is shifted towards trans, while steady-state channel activity is unaffected. Our results reveal prolyl isomerization as a regulatory mechanism for SthK, and potentially eukaryotic HCN channels. This mechanism could contribute to electrical rhythmicity in cells.
Collapse
Affiliation(s)
- Philipp A. M. Schmidpeter
- grid.5386.8000000041936877XWeill Cornell Medicine, Department of Anesthesiology, 1300 York Avenue, New York, NY 10065 USA
| | - Jan Rheinberger
- grid.5386.8000000041936877XWeill Cornell Medicine, Department of Anesthesiology, 1300 York Avenue, New York, NY 10065 USA ,grid.4830.f0000 0004 0407 1981Present Address: University of Groningen, Groningen, Netherlands
| | - Crina M. Nimigean
- grid.5386.8000000041936877XWeill Cornell Medicine, Department of Anesthesiology, 1300 York Avenue, New York, NY 10065 USA ,grid.5386.8000000041936877XWeill Cornell Medicine, Department of Physiology and Biophysics, 1300 York Avenue, New York, NY 10065 USA
| |
Collapse
|
28
|
Santoro B, Shah MM. Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels as Drug Targets for Neurological Disorders. Annu Rev Pharmacol Toxicol 2020; 60:109-131. [PMID: 31914897 DOI: 10.1146/annurev-pharmtox-010919-023356] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are voltage-gated ion channels that critically modulate neuronal activity. Four HCN subunits (HCN1-4) have been cloned, each having a unique expression profile and distinctive effects on neuronal excitability within the brain. Consistent with this, the expression and function of these subunits are altered in diverse ways in neurological disorders. Here, we review current knowledge on the structure and distribution of the individual HCN channel isoforms, their effects on neuronal activity under physiological conditions, and how their expression and function are altered in neurological disorders, particularly epilepsy, neuropathic pain, and affective disorders. We discuss the suitability of HCN channels as therapeutic targets and how drugs might be strategically designed to specifically act on particular isoforms. We conclude that medicines that target individual HCN isoforms and/or their auxiliary subunit, TRIP8b, may provide valuable means of treating distinct neurological conditions.
Collapse
Affiliation(s)
- Bina Santoro
- Department of Neuroscience, Columbia University, New York, NY 10027, USA
| | - Mala M Shah
- Department of Pharmacology, School of Pharmacy, University College London, London WC1N 1AX, United Kingdom;
| |
Collapse
|
29
|
Lelle M, Otte M, Bonus M, Gohlke H, Benndorf K. Fluorophore-Labeled Cyclic Nucleotides as Potent Agonists of Cyclic Nucleotide-Regulated Ion Channels. Chembiochem 2020; 21:2311-2320. [PMID: 32227403 PMCID: PMC7497086 DOI: 10.1002/cbic.202000116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/26/2020] [Indexed: 12/22/2022]
Abstract
High-affinity fluorescent derivatives of cyclic adenosine and guanosine monophosphate are powerful tools for investigating their natural targets. Cyclic nucleotide-regulated ion channels belong to these targets and are vital for many signal transduction processes, such as vision and olfaction. The relation of ligand binding to activation gating is still challenging, and there is a need for fluorescent probes that enable the process to be broken down to the single-molecule level. This inspired us to prepare fluorophore-labeled cyclic nucleotides, which are composed of a bright dye and a nucleotide derivative with a thiophenol motif at position 8 that has already been shown to enable superior binding affinity. These bioconjugates were prepared by a novel cross-linking strategy that involves substitution of the nucleobase with a modified thiophenolate in good yield. Both fluorescent nucleotides are potent activators of different cyclic nucleotide-regulated ion channels with respect to the natural ligand and previously reported substances. Molecular docking of the probes excluding the fluorophore reveals that the high potency can be attributed to additional hydrophobic and cation-π interactions between the ligand and the protein. Moreover, the introduced substances have the potential to investigate related target proteins, such as cAMP- and cGMP-dependent protein kinases, exchange proteins directly activated by cAMP or phosphodiesterases.
Collapse
Affiliation(s)
- Marco Lelle
- Institute of Physiology IIUniversity Hospital JenaKollegiengasse 907743JenaGermany
| | - Maik Otte
- Institute of Physiology IIUniversity Hospital JenaKollegiengasse 907743JenaGermany
| | - Michele Bonus
- Institute for Pharmaceutical and Medicinal ChemistryHeinrich Heine University DüsseldorfUniversitätsstrasse 140225DüsseldorfGermany
| | - Holger Gohlke
- Institute for Pharmaceutical and Medicinal ChemistryHeinrich Heine University DüsseldorfUniversitätsstrasse 140225DüsseldorfGermany
- John von Neumann Institute for Computing (NIC)Jülich Supercomputing Centre (JSC) andInstitute of Biological Information Processing (IBI-7: Structural Biochemistry)Forschungszentrum Jülich GmbHWilhelm-Johnen-Strasse52425JülichGermany
| | - Klaus Benndorf
- Institute of Physiology IIUniversity Hospital JenaKollegiengasse 907743JenaGermany
| |
Collapse
|
30
|
Porro A, Thiel G, Moroni A, Saponaro A. cyclic AMP Regulation and Its Command in the Pacemaker Channel HCN4. Front Physiol 2020; 11:771. [PMID: 32733276 PMCID: PMC7358946 DOI: 10.3389/fphys.2020.00771] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/11/2020] [Indexed: 11/13/2022] Open
Abstract
Direct regulation of the pacemaker “funny” current (If) by cyclic AMP (cAMP) underlies heart rate modulation by the autonomic nervous system. At the molecular level, cAMP activates hyperpolarization-activated cyclic nucleotide-gated (HCN) channels that drive If in sinoatrial node (SAN) myocytes. Even though HCN channel genes were identified more than 20 years ago, the understanding of how cAMP regulates their gating is still fragmented. Here we summarize present understanding on how the cAMP signal is transmitted from the cytosolic to the transmembrane (TM) domain in HCN4. We further discuss how detailed structural knowledge prompted the development of pharmacological/genetic tools for the control of cAMP regulation in these channels.
Collapse
Affiliation(s)
| | - Gerhard Thiel
- Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Anna Moroni
- Department of Biosciences, University of Milan, Milan, Italy
| | - Andrea Saponaro
- Department of Biosciences, University of Milan, Milan, Italy
| |
Collapse
|
31
|
Clark MD, Contreras GF, Shen R, Perozo E. Electromechanical coupling in the hyperpolarization-activated K + channel KAT1. Nature 2020; 583:145-149. [PMID: 32461693 PMCID: PMC7747229 DOI: 10.1038/s41586-020-2335-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 03/16/2020] [Indexed: 12/30/2022]
Abstract
Voltage-gated potassium (Kv) channels orchestrate electrical signaling and control cell volume by gating in response to either membrane depolarization or hyperpolarization. Yet, while all voltage-sensing domains transduce transmembrane electric field changes by a common mechanism involving the outward or inward translocation of gating charges1–3, the general determinants of channel gating polarity remain poorly understood4. Here, we suggest a molecular mechanism for electromechanical coupling and gating polarity in non-domain-swapped Kv channels based on the cryo-EM structure of KAT1, the hyperpolarization-activated Kv channel from Arabidopsis thaliana. KAT1 displays a depolarized voltage sensor, which interacts with a closed pore domain directly via two interfaces and indirectly via an intercalated phospholipid. Functional evaluation of KAT1 structure-guided mutants at the sensor-pore interfaces suggests a mechanism in which direct interaction between the sensor and C-linker hairpin in the adjacent pore subunit is the primary determinant of gating polarity. We suggest that a ~5–7 Å inward motion of the S4 sensor helix can underlie a direct-coupling mechanism, driving a conformational reorientation of the C-linker and ultimately opening the activation gate formed by the S6 intracellular bundle. This direct-coupling mechanism contrasts with allosteric mechanisms proposed for hyperpolarization-activated cyclic nucleotide-gated (HCN) channels5, and may represent an unexpected link between depolarization and hyperpolarization-activated channels.
Collapse
Affiliation(s)
- Michael David Clark
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
| | - Gustavo F Contreras
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
| | - Rong Shen
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
| | - Eduardo Perozo
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
32
|
Wang ZJ, Blanco I, Hayoz S, Brelidze TI. The HCN domain is required for HCN channel cell-surface expression and couples voltage- and cAMP-dependent gating mechanisms. J Biol Chem 2020; 295:8164-8173. [PMID: 32341127 DOI: 10.1074/jbc.ra120.013281] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/23/2020] [Indexed: 11/06/2022] Open
Abstract
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are major regulators of synaptic plasticity and rhythmic activity in the heart and brain. Opening of HCN channels requires membrane hyperpolarization and is further facilitated by intracellular cyclic nucleotides (cNMPs). In HCN channels, membrane hyperpolarization is sensed by the membrane-spanning voltage sensor domain (VSD), and the cNMP-dependent gating is mediated by the intracellular cyclic nucleotide-binding domain (CNBD) connected to the pore-forming S6 transmembrane segment via the C-linker. Previous functional analysis of HCN channels has suggested a direct or allosteric coupling between the voltage- and cNMP-dependent activation mechanisms. However, the specifics of this coupling remain unclear. The first cryo-EM structure of an HCN1 channel revealed that a novel structural element, dubbed the HCN domain (HCND), forms a direct structural link between the VSD and C-linker-CNBD. In this study, we investigated the functional significance of the HCND. Deletion of the HCND prevented surface expression of HCN2 channels. Based on the HCN1 structure analysis, we identified Arg237 and Gly239 residues on the S2 of the VSD that form direct interactions with Ile135 on the HCND. Disrupting these interactions abolished HCN2 currents. We also identified three residues on the C-linker-CNBD (Glu478, Gln482, and His559) that form direct interactions with residues Arg154 and Ser158 on the HCND. Disrupting these interactions affected both voltage- and cAMP-dependent gating of HCN2 channels. These findings indicate that the HCND is necessary for the cell-surface expression of HCN channels and provides a functional link between voltage- and cAMP-dependent mechanisms of HCN channel gating.
Collapse
Affiliation(s)
- Ze-Jun Wang
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, D. C., USA
| | - Ismary Blanco
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, D. C., USA
| | - Sebastien Hayoz
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, D. C., USA
| | - Tinatin I Brelidze
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, D. C., USA .,Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, D. C., USA
| |
Collapse
|
33
|
Page DA, Magee KEA, Li J, Jung M, Young EC. Cytoplasmic Autoinhibition in HCN Channels is Regulated by the Transmembrane Region. J Membr Biol 2020; 253:153-166. [PMID: 32146488 PMCID: PMC7150657 DOI: 10.1007/s00232-020-00111-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 02/16/2020] [Indexed: 12/25/2022]
Abstract
Hyperpolarization-activated cation-nonselective (HCN) channels regulate electrical activity in the brain and heart in a cAMP-dependent manner. The voltage-gating of these channels is mediated by a transmembrane (TM) region but is additionally regulated by direct binding of cAMP to a cyclic nucleotide-binding (CNB) fold in the cytoplasmic C-terminal region. Cyclic AMP potentiation has been explained by an autoinhibition model which views the unliganded CNB fold as an inhibitory module whose influence is disrupted by cAMP binding. However, the HCN2 subtype uses two other CNB fold-mediated mechanisms called open-state trapping and Quick-Activation to respectively slow the deactivation kinetics and speed the activation kinetics, against predictions of an autoinhibition model. To test how these multiple mechanisms are influenced by the TM region, we replaced the TM region of HCN2 with that of HCN4. This HCN4 TM-replacement preserved cAMP potentiation but augmented the magnitude of autoinhibition by the unliganded CNB fold; it moreover disrupted open-state trapping and Quick-Activation so that autoinhibition became the dominant mechanism contributed by the C-terminal region to determine kinetics. Truncation within the CNB fold partially relieved this augmented autoinhibition. This argues against the C-terminal region acting like a portable module with consistent effects on TM regions of different subtypes. Our findings provide evidence that functional interactions between the HCN2 TM region and C-terminal region govern multiple CNB fold-mediated mechanisms, implying that the molecular mechanisms of autoinhibition, open-state trapping, and Quick-Activation include participation of TM region structures.
Collapse
Affiliation(s)
- Dana A Page
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Kaylee E A Magee
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada.,Department of Biology, Kwantlen Polytechnic University, 12666 72 Avenue, Surrey, BC, V3W 2M8, Canada
| | - Jessica Li
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Matthew Jung
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Edgar C Young
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada.
| |
Collapse
|
34
|
Sattler C, Schmauder R, Schwabe T, Schweinitz A, Unzeitig C, Schwede F, Otte M, Benndorf K. Relating ligand binding to activation gating in P2X2 receptors using a novel fluorescent ATP derivative. J Neurochem 2020; 154:251-262. [PMID: 31883343 DOI: 10.1111/jnc.14948] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/29/2019] [Accepted: 12/18/2019] [Indexed: 11/28/2022]
Abstract
Ionotropic purinergic receptors (P2X receptors) are non-specific cation channels that are activated by the binding of ATP at their extracellular side. P2X receptors contribute to multiple functions, including the generation of pain, inflammation, or synaptic transmission. The channels are trimers and structural information on several of their isoforms is available. In contrast, the cooperation of the subunits in the activation process is poorly understood. We synthesized a novel fluorescent ATP derivative, 2-[DY-547P1]-AET-ATP (fATP) to unravel the complex activation process in P2X2 and mutated P2X2 H319K channels with enhanced apparent affinity by characterizing the relation between ligand binding and activation gating. fATP is a full agonist with respect to ATP that reports the degree of binding by bright fluorescence. For quantifying the binding, a fast automated algorithm was employed on human embryonic kidney cell culture images. The concentrations of half maximum occupancy and activation as well as the respective Hill coefficients were determined. All Hill coefficients exceeded unity, even at an occupancy <10%, suggesting cooperativity of the binding even for the first and second binding step. fATP shows promise for continuative functional studies on other purinergic receptors and, beyond, any other ATP-binding proteins.
Collapse
Affiliation(s)
- Christian Sattler
- Institut für Physiologie II, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Ralf Schmauder
- Institut für Physiologie II, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Tina Schwabe
- Institut für Physiologie II, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Andrea Schweinitz
- Institut für Physiologie II, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Christopher Unzeitig
- Institut für Physiologie II, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Frank Schwede
- BIOLOG Life Science Institute GmbH & Co. KG, Bremen, Germany
| | - Maik Otte
- Institut für Physiologie II, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Klaus Benndorf
- Institut für Physiologie II, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena, Germany
| |
Collapse
|
35
|
Usher SG, Ashcroft FM, Puljung MC. Nucleotide inhibition of the pancreatic ATP-sensitive K+ channel explored with patch-clamp fluorometry. eLife 2020; 9:52775. [PMID: 31909710 PMCID: PMC7004565 DOI: 10.7554/elife.52775] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 01/07/2020] [Indexed: 12/20/2022] Open
Abstract
Pancreatic ATP-sensitive K+ channels (KATP) comprise four inward rectifier subunits (Kir6.2), each associated with a sulphonylurea receptor (SUR1). ATP/ADP binding to Kir6.2 shuts KATP. Mg-nucleotide binding to SUR1 stimulates KATP. In the absence of Mg2+, SUR1 increases the apparent affinity for nucleotide inhibition at Kir6.2 by an unknown mechanism. We simultaneously measured channel currents and nucleotide binding to Kir6.2. Fits to combined data sets suggest that KATP closes with only one nucleotide molecule bound. A Kir6.2 mutation (C166S) that increases channel activity did not affect nucleotide binding, but greatly perturbed the ability of bound nucleotide to inhibit KATP. Mutations at position K205 in SUR1 affected both nucleotide affinity and the ability of bound nucleotide to inhibit KATP. This suggests a dual role for SUR1 in KATP inhibition, both in directly contributing to nucleotide binding and in stabilising the nucleotide-bound closed state.
Collapse
Affiliation(s)
- Samuel G Usher
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Frances M Ashcroft
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Michael C Puljung
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
36
|
Porro A, Saponaro A, Gasparri F, Bauer D, Gross C, Pisoni M, Abbandonato G, Hamacher K, Santoro B, Thiel G, Moroni A. The HCN domain couples voltage gating and cAMP response in hyperpolarization-activated cyclic nucleotide-gated channels. eLife 2019; 8:e49672. [PMID: 31769408 PMCID: PMC6894927 DOI: 10.7554/elife.49672] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 11/22/2019] [Indexed: 12/17/2022] Open
Abstract
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels control spontaneous electrical activity in heart and brain. Binding of cAMP to the cyclic nucleotide-binding domain (CNBD) facilitates channel opening by relieving a tonic inhibition exerted by the CNBD. Despite high resolution structures of the HCN1 channel in the cAMP bound and unbound states, the structural mechanism coupling ligand binding to channel gating is unknown. Here we show that the recently identified helical HCN-domain (HCND) mechanically couples the CNBD and channel voltage sensing domain (VSD), possibly acting as a sliding crank that converts the planar rotational movement of the CNBD into a rotational upward displacement of the VSD. This mode of operation and its impact on channel gating are confirmed by computational and experimental data showing that disruption of critical contacts between the three domains affects cAMP- and voltage-dependent gating in three HCN isoforms.
Collapse
Affiliation(s)
| | | | | | - Daniel Bauer
- Department of BiologyTU-DarmstadtDarmstadtGermany
| | | | - Matteo Pisoni
- Department of BiosciencesUniversity of MilanMilanItaly
| | | | - Kay Hamacher
- Department of BiologyTU-DarmstadtDarmstadtGermany
| | - Bina Santoro
- Department of NeuroscienceColumbia UniversityNew YorkUnited States
| | | | - Anna Moroni
- Department of BiosciencesUniversity of MilanMilanItaly
| |
Collapse
|
37
|
The C-terminal HCN4 variant P883R alters channel properties and acts as genetic modifier of atrial fibrillation and structural heart disease. Biochem Biophys Res Commun 2019; 519:141-147. [DOI: 10.1016/j.bbrc.2019.08.150] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 08/26/2019] [Indexed: 12/18/2022]
|
38
|
Ng LCT, Zhuang M, Van Petegem F, Li YX, Accili EA. Binding and structural asymmetry governs ligand sensitivity in a cyclic nucleotide-gated ion channel. J Gen Physiol 2019; 151:1190-1212. [PMID: 31481514 PMCID: PMC6785730 DOI: 10.1085/jgp.201812162] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 04/26/2019] [Accepted: 07/31/2019] [Indexed: 12/17/2022] Open
Abstract
HCN channel opening is facilitated by cyclic nucleotides, but what determines the sensitivity of these channels to cAMP or cGMP is unclear. Ng et al. propose that ligand sensitivity depends on negative cooperativity and the asymmetric effects of ligand binding on channel structure and pore opening. Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels open more easily when cAMP or cGMP bind to a domain in the intracellular C-terminus in each of four identical subunits. How sensitivity of the channels to these ligands is determined is not well understood. Here, we apply a mathematical model, which incorporates negative cooperativity, to gating and mutagenesis data available in the literature and combine the results with binding data collected using isothermal titration calorimetry. This model recapitulates the concentration–response data for the effects of cAMP and cGMP on wild-type HCN2 channel opening and, remarkably, predicts the concentration–response data for a subset of mutants with single-point amino acid substitutions in the binding site. Our results suggest that ligand sensitivity is determined by negative cooperativity and asymmetric effects on structure and channel opening, which are tuned by ligand-specific interactions and residues within the binding site.
Collapse
Affiliation(s)
- Leo C T Ng
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Meiying Zhuang
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Filip Van Petegem
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Yue Xian Li
- Department of Mathematics, University of British Columbia, Vancouver, BC, Canada
| | - Eric A Accili
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
39
|
Robust evaluation of intermolecular FRET using a large Stokes shift fluorophore as a donor. Biotechniques 2019; 65:211-218. [PMID: 30284937 DOI: 10.2144/btn-2018-0041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Fluorescence (or Förster) resonance energy transfer (FRET) is a straightforward and sensitive technique to evaluate molecular interactions. However, most of the popular FRET pairs suffer cross-excitation of the acceptor, which could lead to false positives. To overcome this problem, we selected a large Stokes shift (LSS) fluorophore as a FRET donor. As a successful example, we employed a new FRET pair mAmetrine (an LSS yellow fluorescence protein)/DY-547 (a cyanine derivative) to substitute CFP/fluorescein that we previously employed to study molecular interactions between cyclic nucleotide-binding domains and cyclic nucleotides. The new FRET pair is practically free of cross-excitation of the acceptor. Namely, a change in the fluorescence spectral shape implies evidence of FRET without other control experiments.
Collapse
|
40
|
Otte M, Schweinitz A, Lelle M, Thon S, Enke U, Yüksel S, Schmauder R, Bonus M, Gohlke H, Benndorf K. Novel Fluorescent Cyclic Nucleotide Derivatives to Study CNG and HCN Channel Function. Biophys J 2019; 116:2411-2422. [PMID: 31130235 DOI: 10.1016/j.bpj.2019.05.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/19/2019] [Accepted: 05/01/2019] [Indexed: 12/29/2022] Open
Abstract
A highly specific molecular interaction of diffusible ligands with their receptors belongs to the key processes in cellular signaling. Because an appropriate method to monitor the unitary binding events is still missing, most of our present knowledge is based on ensemble signals recorded from a big number of receptors, such as ion currents or fluorescence changes of suitably labeled receptors, and reasoning from these data to the ligand binding. To study the binding process itself, appropriately tagged ligands are required that fully activate the receptors and report the binding at the same time. Herein, we tailored a series of 18 novel fluorescent cyclic nucleotide derivatives by attaching 6 different dyes via different alkyl linkers to the 8-position of the purine ring of cGMP or cAMP. The biological activity was determined in inside-out macropatches containing either homotetrameric (CNGA2), heterotetrameric (CNGA2:CNGA4:CNGB1b), or hyperpolarization-activated cyclic nucleotide-modulated (HCN2) channels. All these novel fluorescent ligands are efficient to activate the channels, and the potency of most of them significantly exceeded that of the natural cyclic nucleotides cGMP or cAMP. Moreover, some of them showed an enhanced brightness when bound to the channels. The best of our derivatives bear great potential to systematically analyze the activation mechanism in CNG and HCN channels, at both the level of ensemble and single-molecule analyses.
Collapse
Affiliation(s)
- Maik Otte
- Institut für Physiologie II, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Andrea Schweinitz
- Institut für Physiologie II, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Marco Lelle
- Institut für Physiologie II, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Susanne Thon
- Institut für Physiologie II, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Uta Enke
- Institut für Physiologie II, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Sezin Yüksel
- Institut für Physiologie II, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Ralf Schmauder
- Institut für Physiologie II, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Michele Bonus
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Holger Gohlke
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany; John von Neumann Institute for Computing, Jülich Supercomputing Centre & Institute for Complex Systems Structural Biochemistry, Forschungszentrum Jülich, GmbH, Jülich, Germany
| | - Klaus Benndorf
- Institut für Physiologie II, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena, Germany.
| |
Collapse
|
41
|
Idikuda V, Gao W, Su Z, Liu Q, Zhou L. cAMP binds to closed, inactivated, and open sea urchin HCN channels in a state-dependent manner. J Gen Physiol 2018; 151:200-213. [PMID: 30541772 PMCID: PMC6363418 DOI: 10.1085/jgp.201812019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 07/08/2018] [Accepted: 11/13/2018] [Indexed: 01/11/2023] Open
Abstract
Mammalian hyperpolarization-activated cyclic-nucleotide–modulated (HCN) channels bind cAMP preferably in the open state. Using sea urchin HCN channels, Idikuda et al. reveal less cAMP binding to the closed state and further reduced binding to the inactivated state and thus demonstrate intricate communication between the gate and ligand-binding domain. Hyperpolarization-activated cyclic-nucleotide–modulated (HCN) channels are nonselective cation channels that regulate electrical activity in the heart and brain. Previous studies of mouse HCN2 (mHCN2) channels have shown that cAMP binds preferentially to and stabilizes these channels in the open state—a simple but elegant implementation of ligand-dependent gating. Distinct from mammalian isoforms, the sea urchin (spHCN) channel exhibits strong voltage-dependent inactivation in the absence of cAMP. Here, using fluorescently labeled cAMP molecules as a marker for cAMP binding, we report that the inactivated spHCN channel displays reduced cAMP binding compared with the closed channel. The reduction in cAMP binding is a voltage-dependent process but proceeds at a much slower rate than the movement of the voltage sensor. A single point mutation in the last transmembrane domain near the channel’s gate, F459L, abolishes inactivation and concurrently reverses the response to hyperpolarizing voltage steps from a decrease to an increase in cAMP binding. ZD7288, an open channel blocker that interacts with a region close to the activation/inactivation gate, dampens the reduction of cAMP binding to inactivated spHCN channels. In addition, compared with closed and “locked” closed channels, increased cAMP binding is observed in channels purposely locked in the open state upon hyperpolarization. Thus, the order of cAMP-binding affinity, measured by the fluorescence signal from labeled cAMP, ranges from high in the open state to intermediate in the closed state to low in the inactivated state. Our work on spHCN channels demonstrates intricate state-dependent communications between the gate and ligand-binding domain and provides new mechanistic insight into channel inactivation/desensitization.
Collapse
Affiliation(s)
- Vinay Idikuda
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA
| | - Weihua Gao
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA
| | - Zhuocheng Su
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA
| | - Qinglian Liu
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA
| | - Lei Zhou
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA
| |
Collapse
|
42
|
Ando T, Bhamidimarri SP, Brending N, Colin-York H, Collinson L, De Jonge N, de Pablo PJ, Debroye E, Eggeling C, Franck C, Fritzsche M, Gerritsen H, Giepmans BNG, Grunewald K, Hofkens J, Hoogenboom JP, Janssen KPF, Kaufman R, Klumpermann J, Kurniawan N, Kusch J, Liv N, Parekh V, Peckys DB, Rehfeldt F, Reutens DC, Roeffaers MBJ, Salditt T, Schaap IAT, Schwarz US, Verkade P, Vogel MW, Wagner R, Winterhalter M, Yuan H, Zifarelli G. The 2018 correlative microscopy techniques roadmap. JOURNAL OF PHYSICS D: APPLIED PHYSICS 2018; 51:443001. [PMID: 30799880 PMCID: PMC6372154 DOI: 10.1088/1361-6463/aad055] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 06/14/2018] [Accepted: 07/01/2018] [Indexed: 05/19/2023]
Abstract
Developments in microscopy have been instrumental to progress in the life sciences, and many new techniques have been introduced and led to new discoveries throughout the last century. A wide and diverse range of methodologies is now available, including electron microscopy, atomic force microscopy, magnetic resonance imaging, small-angle x-ray scattering and multiple super-resolution fluorescence techniques, and each of these methods provides valuable read-outs to meet the demands set by the samples under study. Yet, the investigation of cell development requires a multi-parametric approach to address both the structure and spatio-temporal organization of organelles, and also the transduction of chemical signals and forces involved in cell-cell interactions. Although the microscopy technologies for observing each of these characteristics are well developed, none of them can offer read-out of all characteristics simultaneously, which limits the information content of a measurement. For example, while electron microscopy is able to disclose the structural layout of cells and the macromolecular arrangement of proteins, it cannot directly follow dynamics in living cells. The latter can be achieved with fluorescence microscopy which, however, requires labelling and lacks spatial resolution. A remedy is to combine and correlate different readouts from the same specimen, which opens new avenues to understand structure-function relations in biomedical research. At the same time, such correlative approaches pose new challenges concerning sample preparation, instrument stability, region of interest retrieval, and data analysis. Because the field of correlative microscopy is relatively young, the capabilities of the various approaches have yet to be fully explored, and uncertainties remain when considering the best choice of strategy and workflow for the correlative experiment. With this in mind, the Journal of Physics D: Applied Physics presents a special roadmap on the correlative microscopy techniques, giving a comprehensive overview from various leading scientists in this field, via a collection of multiple short viewpoints.
Collapse
Affiliation(s)
- Toshio Ando
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan
| | | | | | - H Colin-York
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, OX3 9DS Oxford, United Kingdom
| | | | - Niels De Jonge
- INM-Leibniz Institute for New Materials, 66123 Saarbrücken, Germany
- Saarland University, 66123 Saarbrücken, Germany
| | - P J de Pablo
- Dpto. Física de la Materia Condensada Universidad Autónoma de Madrid 28049, Madrid, Spain
- Instituto de Física de la Materia Condensada IFIMAC, Universidad Autónoma de Madrid 28049, Madrid, Spain
| | - Elke Debroye
- KU Leuven, Department of Chemistry, B-3001 Heverlee, Belgium
| | - Christian Eggeling
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, OX3 9DS Oxford, United Kingdom
- Institute of Applied Optics, Friedrich-Schiller University, Jena, Germany
- Leibniz Institute of Photonic Technology (IPHT), Jena, Germany
| | - Christian Franck
- Department of Mechanical Engineering, University of Wisconsin-Madison, 1513 University Ave, Madison, WI 53706, United States of America
| | - Marco Fritzsche
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, OX3 9DS Oxford, United Kingdom
- Kennedy Institute for Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Hans Gerritsen
- Debye Institute, Utrecht University, Utrecht, Netherlands
| | - Ben N G Giepmans
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Kay Grunewald
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Centre of Structural Systems Biology Hamburg and University of Hamburg, Hamburg, Germany
- Heinrich-Pette-Institute, Leibniz Institute of Virology, Hamburg, Germany
| | - Johan Hofkens
- KU Leuven, Department of Chemistry, B-3001 Heverlee, Belgium
| | | | | | - Rainer Kaufman
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Centre of Structural Systems Biology Hamburg and University of Hamburg, Hamburg, Germany
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Judith Klumpermann
- Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584CX Utrecht, Netherlands
| | - Nyoman Kurniawan
- Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD 4072, Australia
| | | | - Nalan Liv
- Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584CX Utrecht, Netherlands
| | - Viha Parekh
- Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Diana B Peckys
- Faculty of Medicine, Saarland University, 66421 Homburg, Germany
| | - Florian Rehfeldt
- University of Göttingen, Third Institute of Physics-Biophysics, 37077 Göttingen, Germany
| | - David C Reutens
- Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD 4072, Australia
| | | | - Tim Salditt
- University of Göttingen, Institute for X-Ray Physics, 37077 Göttingen, Germany
| | - Iwan A T Schaap
- SmarAct GmbH, Schütte-Lanz-Str. 9, D-26135 Oldenburg, Germany
| | - Ulrich S Schwarz
- Institute for Theoretical Physics and BioQuant, Heidelberg University, Heidelberg, Germany
| | - Paul Verkade
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Michael W Vogel
- Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Richard Wagner
- Department of Life Sciences & Chemistry, Jacobs University, Bremen, Germany
| | | | - Haifeng Yuan
- KU Leuven, Department of Chemistry, B-3001 Heverlee, Belgium
| | - Giovanni Zifarelli
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
43
|
Hydrophobic alkyl chains substituted to the 8-position of cyclic nucleotides enhance activation of CNG and HCN channels by an intricate enthalpy - entropy compensation. Sci Rep 2018; 8:14960. [PMID: 30297855 PMCID: PMC6175941 DOI: 10.1038/s41598-018-33050-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 09/19/2018] [Indexed: 01/01/2023] Open
Abstract
Cyclic nucleotide-gated (CNG) and hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are tetrameric non-specific cation channels in the plasma membrane that are activated by either cAMP or cGMP binding to specific binding domains incorporated in each subunit. Typical apparent affinities of these channels for these cyclic nucleotides range from several hundred nanomolar to tens of micromolar. Here we synthesized and characterized novel cAMP and cGMP derivatives by substituting either hydrophobic alkyl chains or similar-sized more hydrophilic heteroalkyl chains to the 8-position of the purine ring with the aim to obtain full agonists of higher potency. The compounds were tested in homotetrameric CNGA2, heterotetrameric CNGA2:CNGA4:CNGB1b and homotetrameric HCN2 channels. We show that nearly all compounds are full agonists and that longer alkyl chains systematically increase the apparent affinity, at the best more than 30 times. The effects are stronger in CNG than HCN2 channels which, however, are constitutively more sensitive to cAMP. Kinetic analyses reveal that the off-rate is significantly slowed by the hydrophobic alkyl chains. Molecular dynamics simulations and free energy calculations suggest that an intricate enthalpy - entropy compensation underlies the higher apparent affinity of the derivatives with the longer alkyl chains, which is shown to result from a reduced loss of configurational entropy upon binding.
Collapse
|
44
|
HCN Channels: New Therapeutic Targets for Pain Treatment. Molecules 2018; 23:molecules23092094. [PMID: 30134541 PMCID: PMC6225464 DOI: 10.3390/molecules23092094] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 08/17/2018] [Accepted: 08/18/2018] [Indexed: 12/28/2022] Open
Abstract
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are highly regulated proteins which respond to different cellular stimuli. The HCN currents (Ih) mediated by HCN1 and HCN2 drive the repetitive firing in nociceptive neurons. The role of HCN channels in pain has been widely investigated as targets for the development of new therapeutic drugs, but the comprehensive design of HCN channel modulators has been restricted due to the lack of crystallographic data. The three-dimensional structure of the human HCN1 channel was recently reported, opening new possibilities for the rational design of highly-selective HCN modulators. In this review, we discuss the structural and functional properties of HCN channels, their pharmacological inhibitors, and the potential strategies for designing new drugs to block the HCN channel function associated with pain perception.
Collapse
|
45
|
Rheinberger J, Gao X, Schmidpeter PA, Nimigean CM. Ligand discrimination and gating in cyclic nucleotide-gated ion channels from apo and partial agonist-bound cryo-EM structures. eLife 2018; 7:39775. [PMID: 30028291 PMCID: PMC6093708 DOI: 10.7554/elife.39775] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 07/19/2018] [Indexed: 12/11/2022] Open
Abstract
Cyclic nucleotide-modulated channels have important roles in visual signal transduction and pacemaking. Binding of cyclic nucleotides (cAMP/cGMP) elicits diverse functional responses in different channels within the family despite their high sequence and structure homology. The molecular mechanisms responsible for ligand discrimination and gating are unknown due to lack of correspondence between structural information and functional states. Using single particle cryo-electron microscopy and single-channel recording, we assigned functional states to high-resolution structures of SthK, a prokaryotic cyclic nucleotide-gated channel. The structures for apo, cAMP-bound, and cGMP-bound SthK in lipid nanodiscs, correspond to no, moderate, and low single-channel activity, respectively, consistent with the observation that all structures are in resting, closed states. The similarity between apo and ligand-bound structures indicates that ligand-binding domains are strongly coupled to pore and SthK gates in an allosteric, concerted fashion. The different orientations of cAMP and cGMP in the ‘resting’ and ‘activated’ structures suggest a mechanism for ligand discrimination. Ion channels are essential for transmitting signals in the nervous system and brain. One large group of ion channels includes members that are activated by cyclic nucleotides, small molecules used to transmit signals within cells. These cyclic nucleotide-gated channels play an important role in regulating our ability to see and smell. The activity of these ion channels has been studied for years, but scientists have only recently been able to look into their structure. Since structural biology methods require purified, well-behaved proteins, the members of this ion channel family selected for structural studies do not necessarily match those whose activity has been well established. There is a need for a good model that would allow both the structure and activity of a cyclic nucleotide-gated ion channel to be characterized. The cyclic nucleotide-gated ion channel, SthK, from bacteria called Spirochaeta thermophila, was identified as such model because both its activity and its structure are accessible. Rheinberger et al. have used cryo electron microscopy to solve several high-resolution structures of SthK channels. In two of the structures, SthK was bound to either one of two types of activating cyclic nucleotides – cAMP or cGMP – and in another structure, no cyclic nucleotides were bound. Separately recording the activity of individual channels allowed the activity states likely to be represented by these structures to be identified. Combining the results of the experiments revealed no activity from channels in an unbound state, low levels of activity for channels bound to cGMP, and moderate activity for channels bound to cAMP. Rheinberger et al. show that the channel, under the conditions experienced in cryo electron microscopy, is closed in all of the states studied. Unexpectedly, the binding of cyclic nucleotides produced no structural change even in the cyclic nucleotide-binding pocket of the channel, a region that was previously observed to undergo such changes when this region alone was crystallized. Rheinberger et al. deduce from this that the four subunits that make up the channel likely undergo the conformational change towards an open state all at once, rather than one by one. The structures and the basic functional characterization of SthK channels provide a strong starting point for future research into determining the entire opening and closing cycle for a cyclic nucleotide-gated channel. Human equivalents of the channel are likely to work in similar ways. The results presented by Rheinberger et al. could therefore be built upon to help address diseases that result from deficiencies in cyclic nucleotide-gated channels, such as loss of vision due to retinal degradation (retinitis pigmentosa or progressive cone dystrophy) and achromatopsia.
Collapse
Affiliation(s)
- Jan Rheinberger
- Departments of Anesthesiology, Weill Cornell Medical College, New York, United States
| | - Xiaolong Gao
- Departments of Anesthesiology, Weill Cornell Medical College, New York, United States
| | | | - Crina M Nimigean
- Departments of Anesthesiology, Weill Cornell Medical College, New York, United States.,Department of Physiology and Biophysics, Weill Cornell Medical College, New York, United States.,Department of Biochemistry, Weill Cornell Medical College, New York, United States
| |
Collapse
|
46
|
Sunkara MR, Schwabe T, Ehrlich G, Kusch J, Benndorf K. All four subunits of HCN2 channels contribute to the activation gating in an additive but intricate manner. J Gen Physiol 2018; 150:1261-1271. [PMID: 29959170 PMCID: PMC6122924 DOI: 10.1085/jgp.201711935] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 04/25/2018] [Accepted: 06/14/2018] [Indexed: 01/25/2023] Open
Abstract
HCN pacemaker channels are dually gated by hyperpolarizing voltages and cyclic nucleotide binding. Sunkara et al. show that each of the four binding sites promotes channel opening, most likely by exerting a turning momentum on the tetrameric intracellular gating ring. Hyperpolarization-activated cyclic nucleotide–modulated (HCN) channels are tetramers that elicit electrical rhythmicity in specialized brain neurons and cardiomyocytes. The channels are dually activated by voltage and binding of cyclic adenosine monophosphate (cAMP) to their four cyclic nucleotide-binding domains (CNBDs). Here we analyze the effects of cAMP binding to different concatemers of HCN2 channel subunits, each having a defined number of functional CNBDs. We show that each liganded CNBD promotes channel activation in an additive manner and that, in the special case of two functional CNBDs, functionality does not depend on the arrangement of the subunits. Correspondingly, the reverse process of deactivation is slowed by progressive liganding, but only if four and three ligands as well as two ligands in trans position (opposite to each other) are bound. In contrast, two ligands bound in cis positions (adjacent to each other) and a single bound ligand do not affect channel deactivation. These results support an activation mechanism in which each single liganded CNBD causes a turning momentum on the tetrameric ring-like structure formed by all four CNBDs and that at least two liganded subunits in trans positions are required to maintain activation.
Collapse
Affiliation(s)
- Mallikarjuna Rao Sunkara
- Institut für Physiologie II, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Tina Schwabe
- Institut für Physiologie II, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Gunter Ehrlich
- Institut für Physiologie II, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Jana Kusch
- Institut für Physiologie II, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Klaus Benndorf
- Institut für Physiologie II, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena, Germany
| |
Collapse
|
47
|
Gross C, Saponaro A, Santoro B, Moroni A, Thiel G, Hamacher K. Mechanical transduction of cytoplasmic-to-transmembrane-domain movements in a hyperpolarization-activated cyclic nucleotide-gated cation channel. J Biol Chem 2018; 293:12908-12918. [PMID: 29936413 PMCID: PMC6102142 DOI: 10.1074/jbc.ra118.002139] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 06/05/2018] [Indexed: 01/26/2023] Open
Abstract
Hyperpolarization-activated cyclic nucleotide–gated cation (HCN) channels play a critical role in the control of pacemaking in the heart and repetitive firing in neurons. In HCN channels, the intracellular cyclic nucleotide–binding domain (CNBD) is connected to the transmembrane portion of the channel (TMPC) through a helical domain, the C-linker. Although this domain is critical for mechanical signal transduction, the conformational dynamics in the C-linker that transmit the nucleotide-binding signal to the HCN channel pore are unknown. Here, we use linear response theory to analyze conformational changes in the C-linker of the human HCN1 protein, which couple cAMP binding in the CNBD with gating in the TMPC. By applying a force to the tip of the so-called “elbow” of the C-linker, the coarse-grained calculations recapitulate the same conformational changes triggered by cAMP binding in experimental studies. Furthermore, in our simulations, a displacement of the C-linker parallel to the membrane plane (i.e. horizontally) induced a rotational movement resulting in a distinct tilting of the transmembrane helices. This movement, in turn, increased the distance between the voltage-sensing S4 domain and the surrounding transmembrane domains and led to a widening of the intracellular channel gate. In conclusion, our computational approach, combined with experimental data, thus provides a more detailed understanding of how cAMP binding is mechanically coupled over long distances to promote voltage-dependent opening of HCN channels.
Collapse
Affiliation(s)
- Christine Gross
- Computational Biology and Simulation Group, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Andrea Saponaro
- Department of Biosciences, University of Milan, 20133 Milan, Italy
| | - Bina Santoro
- Department of Neuroscience, Columbia University, New York, New York 10032
| | - Anna Moroni
- Department of Biosciences, University of Milan, 20133 Milan, Italy
| | - Gerhard Thiel
- Membrane Biophysics, Department of Biology, Technische Universität Darmstadt, 64287 Darmstadt, Germany.
| | - Kay Hamacher
- Computational Biology and Simulation Group, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| |
Collapse
|
48
|
Yin XL, Jie HQ, Liang M, Gong LN, Liu HW, Pan HL, Xing YZ, Shi HB, Li CY, Wang LY, Yin SK. Accelerated Development of the First-Order Central Auditory Neurons With Spontaneous Activity. Front Mol Neurosci 2018; 11:183. [PMID: 29904342 PMCID: PMC5990604 DOI: 10.3389/fnmol.2018.00183] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 05/11/2018] [Indexed: 11/24/2022] Open
Abstract
In developing sensory systems, elaborate morphological connectivity between peripheral cells and first-order central neurons emerges via genetic programming before the onset of sensory activities. However, how the first-order central neurons acquire the capacity to interface with peripheral cells remains elusive. By making patch-clamp recordings from mouse brainstem slices, we found that a subset of neurons in the cochlear nuclei, the first central station to receive peripheral acoustic impulses, exhibits spontaneous firings (SFs) as early as at birth, and the fraction of such neurons increases during the prehearing period. SFs are reduced but not eliminated by a cocktail of blockers for excitatory and inhibitory synaptic inputs, implicating the involvement of intrinsic pacemaker channels. Furthermore, we demonstrate that these intrinsic firings (IFs) are largely driven by hyperpolarization- and cyclic nucleotide-gated channel (HCN) mediated currents (Ih), as evidenced by their attenuation in the presence of HCN blockers or in neurons from HCN1 knockout mice. Interestingly, genetic deletion of HCN1 cannot be fully compensated by other pacemaker conductances and precludes age-dependent up regulation in the fraction of spontaneous active neurons and their firing rate. Surprisingly, neurons with SFs show accelerated development in excitability, spike waveform and firing pattern as well as synaptic pruning towards mature phenotypes compared to those without SFs. Our results imply that SFs of the first-order central neurons may reciprocally promote their wiring and firing with peripheral inputs, potentially enabling the correlated activity and crosstalk between the developing brain and external environment.
Collapse
Affiliation(s)
- Xin-Lu Yin
- Department of Otorhinolaryngology, The Sixth People's Hospital of Shanghai, Shanghai Jiao Tong University, Shanghai, China
| | - Hui-Qun Jie
- Department of Otorhinolaryngology, The Sixth People's Hospital of Shanghai, Shanghai Jiao Tong University, Shanghai, China
| | - Min Liang
- Department of Otorhinolaryngology, The Sixth People's Hospital of Shanghai, Shanghai Jiao Tong University, Shanghai, China
| | - Li-Na Gong
- Department of Otorhinolaryngology, The Sixth People's Hospital of Shanghai, Shanghai Jiao Tong University, Shanghai, China
| | - Han-Wei Liu
- Department of Otorhinolaryngology, The Sixth People's Hospital of Shanghai, Shanghai Jiao Tong University, Shanghai, China
| | - Hao-Lai Pan
- Department of Otorhinolaryngology, The Sixth People's Hospital of Shanghai, Shanghai Jiao Tong University, Shanghai, China
| | - Ya-Zhi Xing
- Department of Otorhinolaryngology, The Sixth People's Hospital of Shanghai, Shanghai Jiao Tong University, Shanghai, China
| | - Hai-Bo Shi
- Department of Otorhinolaryngology, The Sixth People's Hospital of Shanghai, Shanghai Jiao Tong University, Shanghai, China
| | - Chun-Yan Li
- Department of Otorhinolaryngology, The Sixth People's Hospital of Shanghai, Shanghai Jiao Tong University, Shanghai, China
| | - Lu-Yang Wang
- Programs in Neurosciences & Mental Health, Department of Physiology, Sick Kids Research Institute, Toronto, ON, Canada
| | - Shan-Kai Yin
- Department of Otorhinolaryngology, The Sixth People's Hospital of Shanghai, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
49
|
Schmidpeter PAM, Gao X, Uphadyay V, Rheinberger J, Nimigean CM. Ligand binding and activation properties of the purified bacterial cyclic nucleotide-gated channel SthK. J Gen Physiol 2018; 150:821-834. [PMID: 29752414 PMCID: PMC5987880 DOI: 10.1085/jgp.201812023] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 04/09/2018] [Indexed: 11/20/2022] Open
Abstract
SthK is a bacterial cyclic nucleotide–gated ion channel from Spirochaeta thermophila. By optimizing the expression and purification of SthK, Schmidpeter et al. show that cAMP and cGMP bind to the channel with similar affinity but activate it with different efficacy. Cyclic nucleotide–modulated ion channels play several essential physiological roles. They are involved in signal transduction in photoreceptors and olfactory sensory neurons as well as pacemaking activity in the heart and brain. Investigations of the molecular mechanism of their actions, including structural and electrophysiological characterization, are restricted by the availability of stable, purified protein obtained from accessible systems. Here, we establish that SthK, a cyclic nucleotide–gated (CNG) channel from Spirochaeta thermophila, is an excellent model for investigating the gating of eukaryotic CNG channels at the molecular level. The channel has high sequence similarity with its eukaryotic counterparts and was previously reported to be activated by cyclic nucleotides in patch-clamp experiments with Xenopus laevis oocytes. We optimized protein expression and purification to obtain large quantities of pure, homogeneous, and active recombinant SthK protein from Escherichia coli. A negative-stain electron microscopy (EM) single-particle analysis indicated that this channel is a promising candidate for structural studies with cryo-EM. Using radioactivity and fluorescence flux assays, as well as single-channel recordings in lipid bilayers, we show that the protein is partially activated by micromolar concentrations of cyclic adenosine monophosphate (cAMP) and that channel activity is increased by depolarization. Unlike previous studies, we find that cyclic guanosine monophosphate (cGMP) is also able to activate SthK, but with much lower efficiency than cAMP. The distinct sensitivities to different ligands resemble eukaryotic CNG and hyperpolarization-activated and cyclic nucleotide–modulated channels. Using a fluorescence binding assay, we show that cGMP and cAMP bind to SthK with similar apparent affinities, suggesting that the large difference in channel activation by cAMP or cGMP is caused by the efficacy with which each ligand promotes the conformational changes toward the open state. We conclude that the functional characteristics of SthK reported here will permit future studies to analyze ligand gating and discrimination in CNG channels.
Collapse
Affiliation(s)
| | - Xiaolong Gao
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY
| | - Vikrant Uphadyay
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY
| | - Jan Rheinberger
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY
| | - Crina M Nimigean
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY .,Department of Biochemistry, Weill Cornell Medicine, New York, NY.,Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY
| |
Collapse
|
50
|
Hummert S, Thon S, Eick T, Schmauder R, Schulz E, Benndorf K. Activation gating in HCN2 channels. PLoS Comput Biol 2018; 14:e1006045. [PMID: 29565972 PMCID: PMC5863937 DOI: 10.1371/journal.pcbi.1006045] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 02/19/2018] [Indexed: 12/12/2022] Open
Abstract
Hyperpolarization-activated cyclic nucleotide-modulated (HCN) channels control electrical rhythmicity in specialized brain and heart cells. We quantitatively analysed voltage-dependent activation of homotetrameric HCN2 channels and its modulation by the second messenger cAMP using global fits of hidden Markovian models to complex experimental data. We show that voltage-dependent activation is essentially governed by two separable voltage-dependent steps followed by voltage-independent opening of the pore. According to this model analysis, the binding of cAMP to the channels exerts multiple effects on the voltage-dependent gating: It stabilizes the open pore, reduces the total gating charge from ~8 to ~5, makes an additional closed state outside the activation pathway accessible and strongly accelerates the ON-gating but not the OFF-gating. Furthermore, the open channel has a much slower computed OFF-gating current than the closed channel, in both the absence and presence of cAMP. Together, these results provide detailed new insight into the voltage- and cAMP-induced activation gating of HCN channels. Hyperpolarization-activated cyclic nucleotide-modulated (HCN) channels are tetrameric voltage-controlled ion channels in the cell membrane of specialized nerve and heart cells. Their main function is to generate a so-called pacemaker current which plays a key role in the generation of electrical rhythmicity. A special messenger molecule, cAMP, synthesized within these cells at sympathetic stimulation, can bind to these channels, thereby enhancing channel opening evoked by voltage. The mechanism of this dual activation is still poorly understood. Here we quantified this duality of activation for HCN2 channels by globally fitting hidden Markovian state models to extensive sets of data. We propose that activation of this tetrameric channel requires for a full description only two voltage-dependent steps that are followed by a voltage-independent opening step of the channel pore. According to this model analysis cAMP exerts multiple effects on channel activation: It notably accelerates the charge movement of the voltage-dependent steps and reduces the number of the involved electrical charges. Furthermore, it introduces an additional closed state and stabilizes the open pore. Together, our results provide new insight into the duality of voltage- and cAMP-induced activation of HCN channels.
Collapse
Affiliation(s)
- Sabine Hummert
- Institut für Physiologie II, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Susanne Thon
- Institut für Physiologie II, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Thomas Eick
- Institut für Physiologie II, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Ralf Schmauder
- Institut für Physiologie II, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Eckhard Schulz
- Fachhochschule Schmalkalden, Fakultät Elektrotechnik, Blechhammer, Schmalkalden, Germany
| | - Klaus Benndorf
- Institut für Physiologie II, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena, Germany
- * E-mail:
| |
Collapse
|