1
|
Meftah S, Cavallini A, Murray TK, Jankowski L, Bose S, Ashby MC, Brown JT, Witton J. Synaptic alterations associated with disrupted sensory encoding in a mouse model of tauopathy. Brain Commun 2024; 6:fcae134. [PMID: 38712321 PMCID: PMC11073755 DOI: 10.1093/braincomms/fcae134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 02/09/2024] [Accepted: 04/11/2024] [Indexed: 05/08/2024] Open
Abstract
Synapse loss is currently the best biological correlate of cognitive decline in Alzheimer's disease and other tauopathies. Synapses seem to be highly vulnerable to tau-mediated disruption in neurodegenerative tauopathies. However, it is unclear how and when this leads to alterations in function related to the progression of tauopathy and neurodegeneration. We used the well-characterized rTg4510 mouse model of tauopathy at 5-6 months and 7-8 months of age, respectively, to study the functional impact of cortical synapse loss. The earlier age was used as a model of prodromal tauopathy, with the later age corresponding to more advanced tau pathology and presumed progression of neurodegeneration. Analysis of synaptic protein expression in the somatosensory cortex showed significant reductions in synaptic proteins and NMDA and AMPA receptor subunit expression in rTg4510 mice. Surprisingly, in vitro whole-cell patch clamp electrophysiology from putative pyramidal neurons in layer 2/3 of the somatosensory cortex suggested no functional alterations in layer 4 to layer 2/3 synaptic transmission at 5-6 months. From these same neurons, however, there were alterations in dendritic structure, with increased branching proximal to the soma in rTg4510 neurons. Therefore, in vivo whole-cell patch clamp recordings were utilized to investigate synaptic function and integration in putative pyramidal neurons in layer 2/3 of the somatosensory cortex. These recordings revealed a significant increase in the peak response to synaptically driven sensory stimulation-evoked activity and a loss of temporal fidelity of the evoked signal to the input stimulus in rTg4510 neurons. Together, these data suggest that loss of synapses, changes in receptor expression and dendritic restructuring may lead to alterations in synaptic integration at a network level. Understanding these compensatory processes could identify targets to help delay symptomatic onset of dementia.
Collapse
Affiliation(s)
- Soraya Meftah
- Faculty of Health and Life Sciences, Department of Clinical and Biomedical Science, University of Exeter, Exeter, EX1 2LU, UK
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, BS8 1TD, UK
| | - Annalisa Cavallini
- Erl Wood Manor, Eli Lilly Pharmaceuticals, Windlesham, Surrey, GU20 6PH, UK
| | - Tracey K Murray
- Erl Wood Manor, Eli Lilly Pharmaceuticals, Windlesham, Surrey, GU20 6PH, UK
| | - Lukasz Jankowski
- Erl Wood Manor, Eli Lilly Pharmaceuticals, Windlesham, Surrey, GU20 6PH, UK
| | - Suchira Bose
- Erl Wood Manor, Eli Lilly Pharmaceuticals, Windlesham, Surrey, GU20 6PH, UK
| | - Michael C Ashby
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, BS8 1TD, UK
| | - Jonathan T Brown
- Faculty of Health and Life Sciences, Department of Clinical and Biomedical Science, University of Exeter, Exeter, EX1 2LU, UK
| | - Jonathan Witton
- Faculty of Health and Life Sciences, Department of Clinical and Biomedical Science, University of Exeter, Exeter, EX1 2LU, UK
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, BS8 1TD, UK
| |
Collapse
|
2
|
Spivak L, Someck S, Levi A, Sivroni S, Stark E. Wired together, change together: Spike timing modifies transmission in converging assemblies. SCIENCE ADVANCES 2024; 10:eadj4411. [PMID: 38232172 DOI: 10.1126/sciadv.adj4411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 12/15/2023] [Indexed: 01/19/2024]
Abstract
The precise timing of neuronal spikes may lead to changes in synaptic connectivity and is thought to be crucial for learning and memory. However, the effect of spike timing on neuronal connectivity in the intact brain remains unknown. Using closed-loop optogenetic stimulation in CA1 of freely moving mice, we generated unique spike patterns between presynaptic pyramidal cells (PYRs) and postsynaptic parvalbumin (PV)-immunoreactive cells. The stimulation led to spike transmission changes that occurred together across all presynaptic PYRs connected to the same postsynaptic PV cell. The precise timing of all presynaptic and postsynaptic cell spikes affected transmission changes. These findings reveal an unexpected plasticity mechanism, in which the spike timing of an entire cell assembly has a more substantial impact on effective connectivity than that of individual cell pairs.
Collapse
Affiliation(s)
- Lidor Spivak
- Sagol School of Neuroscience and Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Shirly Someck
- Sagol School of Neuroscience and Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Amir Levi
- Sagol School of Neuroscience and Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Shir Sivroni
- Sagol School of Neuroscience and Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Department of Mathematics, Afeka-Tel Aviv College of Engineering, Tel-Aviv 6910717, Israel
- Department of Mathematics, The Open University of Israel, Ra'anana 4353701, Israel
| | - Eran Stark
- Sagol School of Neuroscience and Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Sagol Department of Neurobiology, Faculty of Natural Sciences, Haifa University, Haifa 3103301, Israel
| |
Collapse
|
3
|
Morabito A, Zerlaut Y, Serraz B, Sala R, Paoletti P, Rebola N. Activity-dependent modulation of NMDA receptors by endogenous zinc shapes dendritic function in cortical neurons. Cell Rep 2022; 38:110415. [PMID: 35196488 PMCID: PMC8889438 DOI: 10.1016/j.celrep.2022.110415] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/08/2021] [Accepted: 01/31/2022] [Indexed: 11/11/2022] Open
Abstract
NMDA receptors (NMDARs) have been proposed to control single-neuron computations in vivo. However, whether specific mechanisms regulate the function of such receptors and modulate input-output transformations performed by cortical neurons under in vivo-like conditions is understudied. Here, we report that in layer 2/3 pyramidal neurons (L2/3 PNs), repeated synaptic stimulation results in an activity-dependent decrease in NMDAR function by vesicular zinc. Such a mechanism shifts the threshold for dendritic non-linearities and strongly reduces LTP. Modulation of NMDARs is cell and pathway specific, being present selectively in L2/3-L2/3 connections but absent in inputs originating from L4 neurons. Numerical simulations highlight that activity-dependent modulation of NMDARs influences dendritic computations, endowing L2/3 PN dendrites with the ability to sustain non-linear integrations constant across different regimes of synaptic activity like those found in vivo. Our results unveil vesicular zinc as an important endogenous modulator of dendritic function in cortical PNs. Vesicular zinc release downregulates function of synaptic NMDARs in cortical neurons Zinc modulation of NMDARs is activity dependent, pathway and cell specific Endogenous zinc controls dendritic non-linearities and synaptic plasticity in L2/3 PNs Modulation of NMDARs normalizes dendritic function during ongoing synaptic activity
Collapse
Affiliation(s)
- Annunziato Morabito
- Sorbonne Université, Institut Du Cerveau-Paris Brain Institute-ICM, Inserm U1127, CNRS UMR 7225, 47 Boulevard de l'Hôpital, 75013 Paris, France
| | - Yann Zerlaut
- Sorbonne Université, Institut Du Cerveau-Paris Brain Institute-ICM, Inserm U1127, CNRS UMR 7225, 47 Boulevard de l'Hôpital, 75013 Paris, France
| | - Benjamin Serraz
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, 75005 Paris, France
| | - Romain Sala
- Sorbonne Université, Institut Du Cerveau-Paris Brain Institute-ICM, Inserm U1127, CNRS UMR 7225, 47 Boulevard de l'Hôpital, 75013 Paris, France
| | - Pierre Paoletti
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, 75005 Paris, France
| | - Nelson Rebola
- Sorbonne Université, Institut Du Cerveau-Paris Brain Institute-ICM, Inserm U1127, CNRS UMR 7225, 47 Boulevard de l'Hôpital, 75013 Paris, France.
| |
Collapse
|
4
|
Cheng YP, Huang JJ, Yeh CI, Pei YC. Alternation of Neuronal Feature Selectivity Induced by Paired Optogenetic-Mechanical Stimulation in the Barrel Cortex. Front Neural Circuits 2021; 15:708459. [PMID: 34566582 PMCID: PMC8457523 DOI: 10.3389/fncir.2021.708459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/05/2021] [Indexed: 11/13/2022] Open
Abstract
Paired stimulation has been applied to modulate neuronal functions in the primary somatosensory cortex but its utility in the alternation of tuning function, such as direction tuning for whisker stimuli, remains unclear. In the present study, we attempted to manipulate feature preferences in barrel cortical neurons using repetitive paired whisker deflection combined with optogenetic stimulation and to obtain optimal parameters that can induce neuroplasticity. We found no significant response changes across stimulus parameters, such as onset asynchronies and paired directions. Only when paired stimulation was applied in the nonpreferred direction of the principal whisker of a neuron, were the neuron’s responses enhanced in that direction. Importantly, this effect was only observed when the optogenetic stimulus preceded the mechanical stimulus. Our findings indicate that repetitive paired optogenetic-mechanical stimulation can induce in vivo neuroplasticity of feature selectivity in limited situations.
Collapse
Affiliation(s)
- Yu-Po Cheng
- Department of Physical Medicine and Rehabilitation, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Department of Psychology, College of Science, National Taiwan University, Taipei, Taiwan
| | - Jian-Jia Huang
- Department of Physical Medicine and Rehabilitation, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Center of Vascularized Tissue Allograft, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chun-I Yeh
- Department of Psychology, College of Science, National Taiwan University, Taipei, Taiwan
| | - Yu-Cheng Pei
- Department of Physical Medicine and Rehabilitation, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Center of Vascularized Tissue Allograft, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan.,School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
5
|
Syngap1 regulates experience-dependent cortical ensemble plasticity by promoting in vivo excitatory synapse strengthening. Proc Natl Acad Sci U S A 2021; 118:2100579118. [PMID: 34404727 DOI: 10.1073/pnas.2100579118] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A significant proportion of autism risk genes regulate synapse function, including plasticity, which is believed to contribute to behavioral abnormalities. However, it remains unclear how impaired synapse plasticity contributes to network-level processes linked to adaptive behaviors, such as experience-dependent ensemble plasticity. We found that Syngap1, a major autism risk gene, promoted measures of experience-dependent excitatory synapse strengthening in the mouse cortex, including spike-timing-dependent glutamatergic synaptic potentiation and presynaptic bouton formation. Synaptic depression and bouton elimination were normal in Syngap1 mice. Within cortical networks, Syngap1 promoted experience-dependent increases in somatic neural activity in weakly active neurons. In contrast, plastic changes to highly active neurons from the same ensemble that paradoxically weaken with experience were unaffected. Thus, experience-dependent excitatory synapse strengthening mediated by Syngap1 shapes neuron-specific plasticity within cortical ensembles. We propose that other genes regulate neuron-specific weakening within ensembles, and together, these processes function to redistribute activity within cortical networks during experience.
Collapse
|
6
|
An increase in dendritic plateau potentials is associated with experience-dependent cortical map reorganization. Proc Natl Acad Sci U S A 2021; 118:2024920118. [PMID: 33619110 PMCID: PMC7936269 DOI: 10.1073/pnas.2024920118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Here we describe a mechanism for cortical map plasticity. Classically, representational map changes are thought to be driven by changes within cortico-cortical circuits, e.g., Hebbian plasticity of synaptic circuits that lost vs. maintained an excitatory drive from the first-order thalamus, possibly steered by neuromodulatory forces from deep brain regions. Our work provides evidence for an additional gating mechanism, provided by plateau potentials, which are driven by higher-order thalamic feedback. Higher-order thalamic neurons are characterized by broad receptive fields, and the plateau potentials that they evoke strongly facilitate long-term potentiation and elicit spikes. We show that these features combined constitute a powerful driving force for the fusion or expansion of sensory representations within cortical maps. The organization of sensory maps in the cerebral cortex depends on experience, which drives homeostatic and long-term synaptic plasticity of cortico-cortical circuits. In the mouse primary somatosensory cortex (S1) afferents from the higher-order, posterior medial thalamic nucleus (POm) gate synaptic plasticity in layer (L) 2/3 pyramidal neurons via disinhibition and the production of dendritic plateau potentials. Here we address whether these thalamocortically mediated responses play a role in whisker map plasticity in S1. We find that trimming all but two whiskers causes a partial fusion of the representations of the two spared whiskers, concomitantly with an increase in the occurrence of POm-driven N-methyl-D-aspartate receptor-dependent plateau potentials. Blocking the plateau potentials restores the archetypical organization of the sensory map. Our results reveal a mechanism for experience-dependent cortical map plasticity in which higher-order thalamocortically mediated plateau potentials facilitate the fusion of normally segregated cortical representations.
Collapse
|
7
|
Circuit mechanisms for cortical plasticity and learning. Semin Cell Dev Biol 2021; 125:68-75. [PMID: 34332885 DOI: 10.1016/j.semcdb.2021.07.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 11/22/2022]
Abstract
The cerebral cortex integrates sensory information with emotional states and internal representations to produce coherent percepts, form associations, and execute voluntary actions. For the cortex to optimize perception, its neuronal network needs to dynamically retrieve and encode new information. Over the last few decades, research has started to provide insight into how the cortex serves these functions. Building on classical Hebbian plasticity models, the latest hypotheses hold that throughout experience and learning, streams of feedforward, feedback, and modulatory information operate in selective and coordinated manners to alter the strength of synapses and ultimately change the response properties of cortical neurons. Here, we describe cortical plasticity mechanisms that involve the concerted action of feedforward and long-range feedback input onto pyramidal neurons as well as the implication of local disinhibitory circuit motifs in this process.
Collapse
|
8
|
Plantier V, Watrin F, Buhler E, Martineau FS, Sahu S, Manent JB, Bureau I, Represa A. Direct and Collateral Alterations of Functional Cortical Circuits in a Rat Model of Subcortical Band Heterotopia. Cereb Cortex 2020; 29:4253-4262. [PMID: 30534979 DOI: 10.1093/cercor/bhy307] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/08/2018] [Accepted: 11/12/2018] [Indexed: 11/14/2022] Open
Abstract
Subcortical band heterotopia (SBH), also known as double-cortex syndrome, is a neuronal migration disorder characterized by an accumulation of neurons in a heterotopic band below the normotopic cortex. The majority of patients with SBH have mild to moderate intellectual disability and intractable epilepsy. However, it is still not clear how cortical networks are organized in SBH patients and how this abnormal organization contributes to improper brain function. In this study, cortical networks were investigated in the barrel cortex in an animal model of SBH induced by in utero knockdown of Dcx, main causative gene of this condition in human patients. When the SBH was localized below the Barrel Field (BF), layer (L) four projection to correctly positioned L2/3 pyramidal cells was weakened due to lower connectivity. Conversely, when the SBH was below an adjacent cortical region, the excitatory L4 to L2/3 projection was stronger due to increased L4 neuron excitability, synaptic strength and excitation/inhibition ratio of L4 to L2/3 connection. We propose that these developmental alterations contribute to the spectrum of clinical dysfunctions reported in patients with SBH.
Collapse
Affiliation(s)
- Vanessa Plantier
- INMED, Aix-Marseille Université, INSERM UMR1249, Marseille 13009, France
| | - Françoise Watrin
- INMED, Aix-Marseille Université, INSERM UMR1249, Marseille 13009, France
| | - Emmanuelle Buhler
- INMED, Aix-Marseille Université, INSERM UMR1249, Marseille 13009, France
| | | | - Surajit Sahu
- INMED, Aix-Marseille Université, INSERM UMR1249, Marseille 13009, France
| | | | - Ingrid Bureau
- INMED, Aix-Marseille Université, INSERM UMR1249, Marseille 13009, France
| | - Alfonso Represa
- INMED, Aix-Marseille Université, INSERM UMR1249, Marseille 13009, France
| |
Collapse
|
9
|
Barron HC, Auksztulewicz R, Friston K. Prediction and memory: A predictive coding account. Prog Neurobiol 2020; 192:101821. [PMID: 32446883 PMCID: PMC7305946 DOI: 10.1016/j.pneurobio.2020.101821] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 02/26/2020] [Accepted: 04/29/2020] [Indexed: 01/27/2023]
Abstract
The hippocampus is crucial for episodic memory, but it is also involved in online prediction. Evidence suggests that a unitary hippocampal code underlies both episodic memory and predictive processing, yet within a predictive coding framework the hippocampal-neocortical interactions that accompany these two phenomena are distinct and opposing. Namely, during episodic recall, the hippocampus is thought to exert an excitatory influence on the neocortex, to reinstate activity patterns across cortical circuits. This contrasts with empirical and theoretical work on predictive processing, where descending predictions suppress prediction errors to 'explain away' ascending inputs via cortical inhibition. In this hypothesis piece, we attempt to dissolve this previously overlooked dialectic. We consider how the hippocampus may facilitate both prediction and memory, respectively, by inhibiting neocortical prediction errors or increasing their gain. We propose that these distinct processing modes depend upon the neuromodulatory gain (or precision) ascribed to prediction error units. Within this framework, memory recall is cast as arising from fictive prediction errors that furnish training signals to optimise generative models of the world, in the absence of sensory data.
Collapse
Affiliation(s)
- Helen C Barron
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Mansfield Road, Oxford, OX1 3TH, UK; Wellcome Centre for Integrative Neuroimaging, University of Oxford, FMRIB, John Radcliffe Hospital, Oxford, OX3 9DU, UK.
| | - Ryszard Auksztulewicz
- Max Planck Institute for Empirical Aesthetics, Frankfurt Am Main, 60322, Germany; Department of Biomedical Sciences, City University of Hong Kong, Hong Kong
| | - Karl Friston
- The Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, London, WC1N 3BG, UK
| |
Collapse
|
10
|
Campelo T, Augusto E, Chenouard N, de Miranda A, Kouskoff V, Camus C, Choquet D, Gambino F. AMPAR-Dependent Synaptic Plasticity Initiates Cortical Remapping and Adaptive Behaviors during Sensory Experience. Cell Rep 2020; 32:108097. [PMID: 32877679 PMCID: PMC7487777 DOI: 10.1016/j.celrep.2020.108097] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/30/2020] [Accepted: 08/11/2020] [Indexed: 11/28/2022] Open
Abstract
Cortical plasticity improves behaviors and helps recover lost functions after injury. However, the underlying synaptic mechanisms remain unclear. In mice, we show that trimming all but one whisker enhances sensory responses from the spared whisker in the barrel cortex and occludes whisker-mediated synaptic potentiation (w-Pot) in vivo. In addition, whisker-dependent behaviors that are initially impaired by single-whisker experience (SWE) rapidly recover when associated cortical regions remap. Cross-linking the surface GluA2 subunit of AMPA receptors (AMPARs) suppresses the expression of w-Pot, presumably by blocking AMPAR surface diffusion, in mice with all whiskers intact, indicating that synaptic potentiation in vivo requires AMPAR trafficking. We use this approach to demonstrate that w-Pot is required for SWE-mediated strengthening of synaptic inputs and initiates the recovery of previously learned skills during the early phases of SWE. Taken together, our data reveal that w-Pot mediates cortical remapping and behavioral improvement upon partial sensory deafferentation.
Collapse
Affiliation(s)
- Tiago Campelo
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, 33000 Bordeaux, France
| | - Elisabete Augusto
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, 33000 Bordeaux, France
| | - Nicolas Chenouard
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, 33000 Bordeaux, France
| | - Aron de Miranda
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, 33000 Bordeaux, France
| | - Vladimir Kouskoff
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, 33000 Bordeaux, France
| | - Come Camus
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, 33000 Bordeaux, France
| | - Daniel Choquet
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, 33000 Bordeaux, France; University of Bordeaux, CNRS, INSERM, Bordeaux Imaging Center, BIC, UMS 3420, US 4, 33000 Bordeaux, France.
| | - Frédéric Gambino
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, 33000 Bordeaux, France.
| |
Collapse
|
11
|
Tonic GABA A Conductance Favors Spike-Timing-Dependent over Theta-Burst-Induced Long-Term Potentiation in the Hippocampus. J Neurosci 2020; 40:4266-4276. [PMID: 32327534 DOI: 10.1523/jneurosci.2118-19.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 03/21/2020] [Accepted: 04/15/2020] [Indexed: 11/21/2022] Open
Abstract
Synaptic plasticity is triggered by different patterns of network activity. Here, we investigated how LTP in CA3-CA1 synapses induced by different stimulation patterns is affected by tonic GABAA conductances in rat hippocampal slices. Spike-timing-dependent LTP was induced by pairing Schaffer collateral stimulation with antidromic stimulation of CA1 pyramidal neurons. Theta-burst-induced LTP was induced by theta-burst stimulation of Schaffer collaterals. We mimicked increased tonic GABAA conductance by bath application of 30 μm GABA. Surprisingly, tonic GABAA conductance selectively suppressed theta-burst-induced LTP but not spike-timing-dependent LTP. We combined whole-cell patch-clamp electrophysiology, two-photon Ca2+ imaging, glutamate uncaging, and mathematical modeling to dissect the mechanisms underlying these differential effects of tonic GABAA conductance. We found that Ca2+ transients during pairing of an action potential with an EPSP were less sensitive to tonic GABAA conductance-induced shunting inhibition than Ca2+ transients induced by EPSP burst. Our results may explain how different forms of memory are affected by increasing tonic GABAA conductances under physiological or pathologic conditions, as well as under the influence of substances that target extrasynaptic GABAA receptors (e.g., neurosteroids, sedatives, antiepileptic drugs, and alcohol).SIGNIFICANCE STATEMENT Brain activity is associated with neuronal firing and synaptic signaling among neurons. Synaptic plasticity represents a mechanism for learning and memory. However, some neurotransmitters that escape the synaptic cleft or are released by astrocytes can target extrasynaptic receptors. Extrasynaptic GABAA receptors mediate tonic conductances that reduce the excitability of neurons by shunting. This results in the decreased ability for neurons to fire action potentials, but when action potentials are successfully triggered, tonic conductances are unable to reduce them significantly. As such, tonic GABAA conductances have minimal effects on spike-timing-dependent synaptic plasticity while strongly attenuating the plasticity evoked by EPSP bursts. Our findings shed light on how changes in tonic conductances can selectively affect different forms of learning and memory.
Collapse
|
12
|
Ribic A. Stability in the Face of Change: Lifelong Experience-Dependent Plasticity in the Sensory Cortex. Front Cell Neurosci 2020; 14:76. [PMID: 32372915 PMCID: PMC7186337 DOI: 10.3389/fncel.2020.00076] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 03/17/2020] [Indexed: 11/13/2022] Open
Abstract
Plasticity is a fundamental property of the nervous system that enables its adaptations to the ever-changing environment. Heightened plasticity typical for developing circuits facilitates their robust experience-dependent functional maturation. This plasticity wanes during adolescence to permit the stabilization of mature brain function, but abundant evidence supports that adult circuits exhibit both transient and long-term experience-induced plasticity. Cortical plasticity has been extensively studied throughout the life span in sensory systems and the main distinction between development and adulthood arising from these studies is the concept that passive exposure to relevant information is sufficient to drive robust plasticity early in life, while higher-order attentional mechanisms are necessary to drive plastic changes in adults. Recent work in the primary visual and auditory cortices began to define the circuit mechanisms that govern these processes and enable continuous adaptation to the environment, with transient circuit disinhibition emerging as a common prerequisite for both developmental and adult plasticity. Drawing from studies in visual and auditory systems, this review article summarizes recent reports on the circuit and cellular mechanisms of experience-driven plasticity in the developing and adult brains and emphasizes the similarities and differences between them. The benefits of distinct plasticity mechanisms used at different ages are discussed in the context of sensory learning, as well as their relationship to maladaptive plasticity and neurodevelopmental brain disorders. Knowledge gaps and avenues for future work are highlighted, and these will hopefully motivate future research in these areas, particularly those about the learning of complex skills during development.
Collapse
Affiliation(s)
- Adema Ribic
- Department of Psychology, College and Graduate School of Arts and Sciences, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
13
|
Seaton G, Hodges G, de Haan A, Grewal A, Pandey A, Kasai H, Fox K. Dual-Component Structural Plasticity Mediated by αCaMKII Autophosphorylation on Basal Dendrites of Cortical Layer 2/3 Neurones. J Neurosci 2020; 40:2228-2245. [PMID: 32001612 PMCID: PMC7083283 DOI: 10.1523/jneurosci.2297-19.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/30/2019] [Accepted: 01/03/2020] [Indexed: 11/21/2022] Open
Abstract
Sensory cortex exhibits receptive field plasticity throughout life in response to changes in sensory experience and offers the experimental possibility of aligning functional changes in receptive field properties with underpinning structural changes in synapses. We looked at the effects on structural plasticity of two different patterns of whisker deprivation in male and female mice: chessboard deprivation, which causes functional plasticity; and all deprived, which does not. Using 2-photon microscopy and chronic imaging through a cranial window over the barrel cortex, we found that layer 2/3 neurones exhibit robust structural plasticity, but only in response to whisker deprivation patterns that cause functional plasticity. Chessboard pattern deprivation caused dual-component plasticity in layer 2/3 by (1) increasing production of new spines that subsequently persisted for weeks and (2) enlarging spine head sizes in the preexisting stable spine population. Structural plasticity occurred on basal dendrites, but not apical dendrites. Both components of plasticity were absent in αCaMKII-T286A mutants that lack LTP and experience-dependent potentiation in barrel cortex, implying that αCaMKII autophosphorylation is not only important for stabilization and enlargement of spines, but also for new spine production. These studies therefore reveal the relationship between spared whisker potentiation in layer 2/3 neurones and the form and mechanisms of structural plasticity processes that underlie them.SIGNIFICANCE STATEMENT This study provides a missing link in a chain of reasoning that connects LTP to experience-dependent functional plasticity in vivo We found that increases in dendritic spine formation and spine enlargement (both of which are characteristic of LTP) only occurred in barrel cortex during sensory deprivation that produced potentiation of sensory responses. Furthermore, the dendritic spine plasticity did not occur during sensory deprivation in mice lacking LTP and experience-dependent potentiation (αCaMKII autophosphorylation mutants). We also found that the dual-component dendritic spine plasticity only occurred on basal dendrites and not on apical dendrites, thereby resolving a paradox in the literature suggesting that layer 2/3 neurones lack structural plasticity in response to sensory deprivation.
Collapse
Affiliation(s)
- Gillian Seaton
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, United Kingdom, and
| | - Gladys Hodges
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, United Kingdom, and
| | - Annelies de Haan
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, United Kingdom, and
| | - Aneesha Grewal
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, United Kingdom, and
| | - Anurag Pandey
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, United Kingdom, and
| | - Haruo Kasai
- Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Japan
| | - Kevin Fox
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, United Kingdom, and
| |
Collapse
|
14
|
Gandolfi D, Bigiani A, Porro CA, Mapelli J. Inhibitory Plasticity: From Molecules to Computation and Beyond. Int J Mol Sci 2020; 21:E1805. [PMID: 32155701 PMCID: PMC7084224 DOI: 10.3390/ijms21051805] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/28/2020] [Accepted: 03/03/2020] [Indexed: 11/17/2022] Open
Abstract
Synaptic plasticity is the cellular and molecular counterpart of learning and memory and, since its first discovery, the analysis of the mechanisms underlying long-term changes of synaptic strength has been almost exclusively focused on excitatory connections. Conversely, inhibition was considered as a fixed controller of circuit excitability. Only recently, inhibitory networks were shown to be finely regulated by a wide number of mechanisms residing in their synaptic connections. Here, we review recent findings on the forms of inhibitory plasticity (IP) that have been discovered and characterized in different brain areas. In particular, we focus our attention on the molecular pathways involved in the induction and expression mechanisms leading to changes in synaptic efficacy, and we discuss, from the computational perspective, how IP can contribute to the emergence of functional properties of brain circuits.
Collapse
Affiliation(s)
- Daniela Gandolfi
- Department of Biomedical, Metabolic and Neural Sciences and Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy; (D.G.); (A.B.); (C.A.P.)
- Department of Brain and behavioral sciences, University of Pavia, 27100 Pavia, Italy
| | - Albertino Bigiani
- Department of Biomedical, Metabolic and Neural Sciences and Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy; (D.G.); (A.B.); (C.A.P.)
| | - Carlo Adolfo Porro
- Department of Biomedical, Metabolic and Neural Sciences and Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy; (D.G.); (A.B.); (C.A.P.)
| | - Jonathan Mapelli
- Department of Biomedical, Metabolic and Neural Sciences and Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy; (D.G.); (A.B.); (C.A.P.)
| |
Collapse
|
15
|
Morera-Herreras T, Gioanni Y, Perez S, Vignoud G, Venance L. Environmental enrichment shapes striatal spike-timing-dependent plasticity in vivo. Sci Rep 2019; 9:19451. [PMID: 31857605 PMCID: PMC6923403 DOI: 10.1038/s41598-019-55842-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 11/27/2019] [Indexed: 01/18/2023] Open
Abstract
Behavioural experience, such as environmental enrichment (EE), induces long-term effects on learning and memory. Learning can be assessed with the Hebbian paradigm, such as spike-timing-dependent plasticity (STDP), which relies on the timing of neuronal activity on either side of the synapse. Although EE is known to control neuronal excitability and consequently spike timing, whether EE shapes STDP remains unknown. Here, using in vivo long-duration intracellular recordings at the corticostriatal synapses we show that EE promotes asymmetric anti-Hebbian STDP, i.e. spike-timing-dependent-potentiation (tLTP) for post-pre pairings and spike-timing-dependent-depression (tLTD) for pre-post pairings, whereas animals grown in standard housing show mainly tLTD and a high failure rate of plasticity. Indeed, in adult rats grown in standard conditions, we observed unidirectional plasticity (mainly symmetric anti-Hebbian tLTD) within a large temporal window (~200 ms). However, rats grown for two months in EE displayed a bidirectional STDP (tLTP and tLTD depending on spike timing) in a more restricted temporal window (~100 ms) with low failure rate of plasticity. We also found that the effects of EE on STDP characteristics are influenced by the anaesthesia status: the deeper the anaesthesia, the higher the absence of plasticity. These findings establish a central role for EE and the anaesthetic regime in shaping in vivo, a synaptic Hebbian learning rule such as STDP.
Collapse
Affiliation(s)
- Teresa Morera-Herreras
- Team Dynamic and Pathophysiology of Neuronal Networks, Center for Interdisciplinary Research in Biology, College de France, CNRS UMR7241/INSERM U1050, MemoLife Labex, Paris, France
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940, Leioa, Bizkaia, Spain
- Neurodegenerative Diseases Group, BioCruces Bizkaia Health Research Institute, 48903, Barakaldo, Bizkaia, Spain
| | - Yves Gioanni
- Team Dynamic and Pathophysiology of Neuronal Networks, Center for Interdisciplinary Research in Biology, College de France, CNRS UMR7241/INSERM U1050, MemoLife Labex, Paris, France
| | - Sylvie Perez
- Team Dynamic and Pathophysiology of Neuronal Networks, Center for Interdisciplinary Research in Biology, College de France, CNRS UMR7241/INSERM U1050, MemoLife Labex, Paris, France
| | - Gaetan Vignoud
- Team Dynamic and Pathophysiology of Neuronal Networks, Center for Interdisciplinary Research in Biology, College de France, CNRS UMR7241/INSERM U1050, MemoLife Labex, Paris, France
| | - Laurent Venance
- Team Dynamic and Pathophysiology of Neuronal Networks, Center for Interdisciplinary Research in Biology, College de France, CNRS UMR7241/INSERM U1050, MemoLife Labex, Paris, France.
| |
Collapse
|
16
|
Roelfsema PR, Holtmaat A. Control of synaptic plasticity in deep cortical networks. Nat Rev Neurosci 2019; 19:166-180. [PMID: 29449713 DOI: 10.1038/nrn.2018.6] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Humans and many other animals have an enormous capacity to learn about sensory stimuli and to master new skills. However, many of the mechanisms that enable us to learn remain to be understood. One of the greatest challenges of systems neuroscience is to explain how synaptic connections change to support maximally adaptive behaviour. Here, we provide an overview of factors that determine the change in the strength of synapses, with a focus on synaptic plasticity in sensory cortices. We review the influence of neuromodulators and feedback connections in synaptic plasticity and suggest a specific framework in which these factors can interact to improve the functioning of the entire network.
Collapse
Affiliation(s)
- Pieter R Roelfsema
- Department of Vision and Cognition, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, Netherlands.,Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, Netherlands.,Psychiatry Department, Academic Medical Center, Amsterdam, Netherlands
| | - Anthony Holtmaat
- Department of Basic Neurosciences, Geneva Neuroscience Center, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
17
|
Dempsey-Jones H, Themistocleous AC, Carone D, Ng TWC, Harrar V, Makin TR. Blocking tactile input to one finger using anaesthetic enhances touch perception and learning in other fingers. J Exp Psychol Gen 2019; 148:713-727. [PMID: 30973263 PMCID: PMC6459089 DOI: 10.1037/xge0000514] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Brain plasticity is a key mechanism for learning and recovery. A striking example of plasticity in the adult brain occurs following input loss, for example, following amputation, whereby the deprived zone is “invaded” by new representations. Although it has long been assumed that such reorganization leads to functional benefits for the invading representation, the behavioral evidence is controversial. Here, we investigate whether a temporary period of somatosensory input loss to one finger, induced by anesthetic block, is sufficient to cause improvements in touch perception (“direct” effects of deafferentation). Further, we determine whether this deprivation can improve touch perception by enhancing sensory learning processes, for example, by training (“interactive” effects). Importantly, we explore whether direct and interactive effects of deprivation are dissociable by directly comparing their effects on touch perception. Using psychophysical thresholds, we found brief deprivation alone caused improvements in tactile perception of a finger adjacent to the blocked finger but not to non-neighboring fingers. Two additional groups underwent minimal tactile training to one finger either during anesthetic block of the neighboring finger or a sham block with saline. Deprivation significantly enhanced the effects of tactile perceptual training, causing greater learning transfer compared with sham block. That is, following deafferentation and training, learning gains were seen in fingers normally outside the boundaries of topographic transfer of tactile perceptual learning. Our results demonstrate that sensory deprivation can improve perceptual abilities, both directly and interactively, when combined with sensory learning. This dissociation provides novel opportunities for future clinical interventions to improve sensation.
Collapse
Affiliation(s)
| | | | - Davide Carone
- Acute Vascular Imaging Centre, Radcliffe Department of Medicine, University of Oxford
| | - Tammy W C Ng
- Department of Anaesthesia, University College Hospital
| | - Vanessa Harrar
- Visual Psychophysics and Perception Laboratory, School of Optometry, University of Montreal
| | - Tamar R Makin
- Institute of Cognitive Neuroscience, University College London
| |
Collapse
|
18
|
Williams LE, Holtmaat A. Higher-Order Thalamocortical Inputs Gate Synaptic Long-Term Potentiation via Disinhibition. Neuron 2019; 101:91-102.e4. [DOI: 10.1016/j.neuron.2018.10.049] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 08/29/2018] [Accepted: 10/25/2018] [Indexed: 11/24/2022]
|
19
|
Batista-Brito R, Zagha E, Ratliff JM, Vinck M. Modulation of cortical circuits by top-down processing and arousal state in health and disease. Curr Opin Neurobiol 2018; 52:172-181. [DOI: 10.1016/j.conb.2018.06.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 06/13/2018] [Indexed: 12/24/2022]
|
20
|
Rapid Disinhibition by Adjustment of PV Intrinsic Excitability during Whisker Map Plasticity in Mouse S1. J Neurosci 2018; 38:4749-4761. [PMID: 29678876 DOI: 10.1523/jneurosci.3628-17.2018] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 03/27/2018] [Accepted: 04/10/2018] [Indexed: 01/11/2023] Open
Abstract
Rapid plasticity of layer (L) 2/3 inhibitory circuits is an early step in sensory cortical map plasticity, but its cellular basis is unclear. We show that, in mice of either sex, 1 d whisker deprivation drives the rapid loss of L4-evoked feedforward inhibition and more modest loss of feedforward excitation in L2/3 pyramidal (PYR) cells, increasing the excitation-inhibition conductance ratio. Rapid disinhibition was due to reduced L4-evoked spiking by L2/3 parvalbumin (PV) interneurons, caused by reduced PV intrinsic excitability. This included elevated PV spike threshold, which is associated with an increase in low-threshold, voltage-activated delayed rectifier (presumed Kv1) and A-type potassium currents. Excitatory synaptic input and unitary inhibitory output of PV cells were unaffected. Functionally, the loss of feedforward inhibition and excitation was precisely coordinated in L2/3 PYR cells, so that peak feedforward synaptic depolarization remained stable. Thus, the rapid plasticity of PV intrinsic excitability offsets early weakening of excitatory circuits to homeostatically stabilize synaptic potentials in PYR cells of sensory cortex.SIGNIFICANCE STATEMENT Inhibitory circuits in cerebral cortex are highly plastic, but the cellular mechanisms and functional importance of this plasticity are incompletely understood. We show that brief (1 d) sensory deprivation rapidly weakens parvalbumin (PV) inhibitory circuits by reducing the intrinsic excitability of PV neurons. This involved a rapid increase in voltage-gated potassium conductances that control near-threshold spiking excitability. Functionally, the loss of PV-mediated feedforward inhibition in L2/3 pyramidal cells was precisely balanced with the separate loss of feedforward excitation, resulting in a net homeostatic stabilization of synaptic potentials. Thus, rapid plasticity of PV intrinsic excitability implements network-level homeostasis to stabilize synaptic potentials in sensory cortex.
Collapse
|
21
|
González-Rueda A, Pedrosa V, Feord RC, Clopath C, Paulsen O. Activity-Dependent Downscaling of Subthreshold Synaptic Inputs during Slow-Wave-Sleep-like Activity In Vivo. Neuron 2018; 97:1244-1252.e5. [PMID: 29503184 PMCID: PMC5873548 DOI: 10.1016/j.neuron.2018.01.047] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 12/19/2017] [Accepted: 01/26/2018] [Indexed: 01/13/2023]
Abstract
Activity-dependent synaptic plasticity is critical for cortical circuit refinement. The synaptic homeostasis hypothesis suggests that synaptic connections are strengthened during wake and downscaled during sleep; however, it is not obvious how the same plasticity rules could explain both outcomes. Using whole-cell recordings and optogenetic stimulation of presynaptic input in urethane-anesthetized mice, which exhibit slow-wave-sleep (SWS)-like activity, we show that synaptic plasticity rules are gated by cortical dynamics in vivo. While Down states support conventional spike timing-dependent plasticity, Up states are biased toward depression such that presynaptic stimulation alone leads to synaptic depression, while connections contributing to postsynaptic spiking are protected against this synaptic weakening. We find that this novel activity-dependent and input-specific downscaling mechanism has two important computational advantages: (1) improved signal-to-noise ratio, and (2) preservation of previously stored information. Thus, these synaptic plasticity rules provide an attractive mechanism for SWS-related synaptic downscaling and circuit refinement.
Collapse
Affiliation(s)
- Ana González-Rueda
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK; Neurobiology Division, Medical Research Council (MRC) Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK.
| | - Victor Pedrosa
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK; CAPES Foundation, Ministry of Education of Brazil, Brasilia, 70040-020, Brazil
| | - Rachael C Feord
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK
| | - Claudia Clopath
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - Ole Paulsen
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK.
| |
Collapse
|
22
|
Gainey MA, Feldman DE. Multiple shared mechanisms for homeostatic plasticity in rodent somatosensory and visual cortex. Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2016.0157. [PMID: 28093551 DOI: 10.1098/rstb.2016.0157] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2016] [Indexed: 12/17/2022] Open
Abstract
We compare the circuit and cellular mechanisms for homeostatic plasticity that have been discovered in rodent somatosensory (S1) and visual (V1) cortex. Both areas use similar mechanisms to restore mean firing rate after sensory deprivation. Two time scales of homeostasis are evident, with distinct mechanisms. Slow homeostasis occurs over several days, and is mediated by homeostatic synaptic scaling in excitatory networks and, in some cases, homeostatic adjustment of pyramidal cell intrinsic excitability. Fast homeostasis occurs within less than 1 day, and is mediated by rapid disinhibition, implemented by activity-dependent plasticity in parvalbumin interneuron circuits. These processes interact with Hebbian synaptic plasticity to maintain cortical firing rates during learned adjustments in sensory representations.This article is part of the themed issue 'Integrating Hebbian and homeostatic plasticity'.
Collapse
Affiliation(s)
- Melanie A Gainey
- Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720-3200, USA
| | - Daniel E Feldman
- Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720-3200, USA
| |
Collapse
|
23
|
Holca-Lamarre R, Lücke J, Obermayer K. Models of Acetylcholine and Dopamine Signals Differentially Improve Neural Representations. Front Comput Neurosci 2017; 11:54. [PMID: 28690509 PMCID: PMC5479899 DOI: 10.3389/fncom.2017.00054] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 06/07/2017] [Indexed: 11/17/2022] Open
Abstract
Biological and artificial neural networks (ANNs) represent input signals as patterns of neural activity. In biology, neuromodulators can trigger important reorganizations of these neural representations. For instance, pairing a stimulus with the release of either acetylcholine (ACh) or dopamine (DA) evokes long lasting increases in the responses of neurons to the paired stimulus. The functional roles of ACh and DA in rearranging representations remain largely unknown. Here, we address this question using a Hebbian-learning neural network model. Our aim is both to gain a functional understanding of ACh and DA transmission in shaping biological representations and to explore neuromodulator-inspired learning rules for ANNs. We model the effects of ACh and DA on synaptic plasticity and confirm that stimuli coinciding with greater neuromodulator activation are over represented in the network. We then simulate the physiological release schedules of ACh and DA. We measure the impact of neuromodulator release on the network's representation and on its performance on a classification task. We find that ACh and DA trigger distinct changes in neural representations that both improve performance. The putative ACh signal redistributes neural preferences so that more neurons encode stimulus classes that are challenging for the network. The putative DA signal adapts synaptic weights so that they better match the classes of the task at hand. Our model thus offers a functional explanation for the effects of ACh and DA on cortical representations. Additionally, our learning algorithm yields performances comparable to those of state-of-the-art optimisation methods in multi-layer perceptrons while requiring weaker supervision signals and interacting with synaptically-local weight updates.
Collapse
Affiliation(s)
- Raphaël Holca-Lamarre
- Neural Information Processing Group, Fakultät IV, Technische Universität BerlinBerlin, Germany
- Bernstein Center for Computational NeuroscienceBerlin, Germany
| | - Jörg Lücke
- Cluster of Excellence Hearing4all and Research Center Neurosensory Science, Carl von Ossietzky Universität OldenburgOldenburg, Germany
- Machine Learning Lab, Department of Medical Physics and Acoustics, Carl von Ossietzky Universität OldenburgOldenburg, Germany
| | - Klaus Obermayer
- Neural Information Processing Group, Fakultät IV, Technische Universität BerlinBerlin, Germany
- Bernstein Center for Computational NeuroscienceBerlin, Germany
| |
Collapse
|
24
|
Functional and structural underpinnings of neuronal assembly formation in learning. Nat Neurosci 2016; 19:1553-1562. [PMID: 27749830 DOI: 10.1038/nn.4418] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 09/14/2016] [Indexed: 02/07/2023]
Abstract
Learning and memory are associated with the formation and modification of neuronal assemblies: populations of neurons that encode what has been learned and mediate memory retrieval upon recall. Functional studies of neuronal assemblies have progressed dramatically thanks to recent technological advances. Here we discuss how a focus on assembly formation and consolidation has provided a powerful conceptual framework to relate mechanistic studies of synaptic and circuit plasticity to behaviorally relevant aspects of learning and memory. Neurons are likely recruited to particular learning-related assemblies as a function of their relative excitabilities and synaptic activation, followed by selective strengthening of pre-existing synapses, formation of new connections and elimination of outcompeted synapses to ensure memory formation. Mechanistically, these processes involve linking transcription to circuit modification. They include the expression of immediate early genes and specific molecular and cellular events, supported by network-wide activities that are shaped and modulated by local inhibitory microcircuits.
Collapse
|
25
|
Lebida K, Mozrzymas JW. Spike Timing-Dependent Plasticity in the Mouse Barrel Cortex Is Strongly Modulated by Sensory Learning and Depends on Activity of Matrix Metalloproteinase 9. Mol Neurobiol 2016; 54:6723-6736. [PMID: 27744572 PMCID: PMC5622912 DOI: 10.1007/s12035-016-0174-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 09/28/2016] [Indexed: 12/14/2022]
Abstract
Experience and learning in adult primary somatosensory cortex are known to affect neuronal circuits by modifying both excitatory and inhibitory transmission. Synaptic plasticity phenomena provide a key substrate for cognitive processes, but precise description of the cellular and molecular correlates of learning is hampered by multiplicity of these mechanisms in various projections and in different types of neurons. Herein, we investigated the impact of associative learning on neuronal plasticity in distinct types of postsynaptic neurons by checking the impact of classical conditioning (pairing whisker stroking with tail shock) on the spike timing-dependent plasticity (t-LTP and t-LTD) in the layer IV to II/III vertical pathway of the mouse barrel cortex. Learning in this paradigm practically prevented t-LTP measured in pyramidal neurons but had no effect on t-LTD. Since classical conditioning is known to affect inhibition in the barrel cortex, we examined its effect on tonic GABAergic currents and found a strong downregulation of these currents in the layer II/III interneurons but not in pyramidal cells. Matrix metalloproteinases emerged as crucial players in synaptic plasticity and learning. We report that the blockade of MMP-9 (but not MMP-3) abolished t-LTP having no effect on t-LTD. Moreover, associative learning resulted in an upregulation of gelatinolytic activity within the "trained" barrel. We conclude that LTP induced by spike timing-dependent plasticity (STDP) paradigm is strongly correlated with associative learning and critically depends on the activity of MMP-9.
Collapse
Affiliation(s)
- Katarzyna Lebida
- Laboratory of Neuroscience, Department of Biophysics, Wroclaw Medical University, Chalubinskiego 3a, 50-368, Wroclaw, Poland.
| | - Jerzy W Mozrzymas
- Laboratory of Neuroscience, Department of Biophysics, Wroclaw Medical University, Chalubinskiego 3a, 50-368, Wroclaw, Poland.,Department of Animal Molecular Physiology, Institute of Experimental Biology, Wroclaw University, Wroclaw, Poland
| |
Collapse
|
26
|
Emergence of functional subnetworks in layer 2/3 cortex induced by sequential spikes in vivo. Proc Natl Acad Sci U S A 2016; 113:E1372-81. [PMID: 26903616 DOI: 10.1073/pnas.1513410113] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During cortical circuit development in the mammalian brain, groups of excitatory neurons that receive similar sensory information form microcircuits. However, cellular mechanisms underlying cortical microcircuit development remain poorly understood. Here we implemented combined two-photon imaging and photolysis in vivo to monitor and manipulate neuronal activities to study the processes underlying activity-dependent circuit changes. We found that repeated triggering of spike trains in a randomly chosen group of layer 2/3 pyramidal neurons in the somatosensory cortex triggered long-term plasticity of circuits (LTPc), resulting in the increased probability that the selected neurons would fire when action potentials of individual neurons in the group were evoked. Significant firing pattern changes were observed more frequently in the selected group of neurons than in neighboring control neurons, and the induction was dependent on the time interval between spikes, N-methyl-D-aspartate (NMDA) receptor activation, and Calcium/calmodulin-dependent protein kinase II (CaMKII) activation. In addition, LTPc was associated with an increase of activity from a portion of neighboring neurons with different probabilities. Thus, our results demonstrate that the formation of functional microcircuits requires broad network changes and that its directionality is nonrandom, which may be a general feature of cortical circuit assembly in the mammalian cortex.
Collapse
|
27
|
Custead R, Oh H, Rosner AO, Barlow S. Adaptation of the cortical somatosensory evoked potential following pulsed pneumatic stimulation of the lower face in adults. Brain Res 2015; 1622:81-90. [PMID: 26119917 DOI: 10.1016/j.brainres.2015.06.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 06/15/2015] [Accepted: 06/18/2015] [Indexed: 10/23/2022]
Abstract
Cortical adaptation to sustained sensory input is a pervasive form of short-term plasticity in neurological systems. Its role in sensory perception in health and disease, or predicting long-term plastic changes resulting from sensory training offers insight into the mechanisms of somatosensory and sensorimotor processing. A 4-channel electroencephalography (EEG) recording montage was placed bilaterally (C3-P3, C4-P4, F7-P3, F8-P4) to characterize the short-term effects of pulsed pneumatic orofacial stimulation on the cortical somatosensory evoked potential (cSEP) in twenty neurotypical adults (mean age=21±2.88 years). A servo-controlled pneumatic amplifier was used to deliver a repetitive series of pneumatic pulse trains (six 50-ms pulses, 5-second intertrain interval) through a linked pair of custom acetal homopolymer probes (aka TAC-Cells) adhered to the nonglabrous skin of the lower face proximal to the right oral angle to synchronously activate mechanoreceptive afferents in the trigeminal nerve. Blocks of pulse trains were counterbalanced among participants and delivered at two rates, 2 and 4Hz. TAC-Cell stimulation of the lower face consistently evoked a series of cSEPs at P7, N20, P28, N38, P75, N85, and P115. The spatial organization and adaptation of the evoked cSEP was dependent on stimulus pulse index (1-6 within the pulse train, p=.012), frequency of stimulus presentation (2 vs 4Hz, p<.001), component (P7-P115, p<.001), and recording montage (channels 1-4, p<.001). Early component latencies (P7-N20) were highly stable in polarity (sign) and latency, and consistent with putative far-field generators (e.g., trigeminal brainstem, ventroposteromedial thalamus).
Collapse
Affiliation(s)
- Rebecca Custead
- Special Education and Communication Disorders, University of Nebraska, Lincoln, NE, USA; Center for Brain, Biology and Behavior, University of Nebraska, Lincoln, NE, USA.
| | - Hyuntaek Oh
- Biological Systems Engineering, University of Nebraska, Lincoln, NE, USA; Center for Brain, Biology and Behavior, University of Nebraska, Lincoln, NE, USA.
| | - Austin Oder Rosner
- Special Education and Communication Disorders, University of Nebraska, Lincoln, NE, USA; Center for Brain, Biology and Behavior, University of Nebraska, Lincoln, NE, USA.
| | - Steven Barlow
- Special Education and Communication Disorders, University of Nebraska, Lincoln, NE, USA; Biological Systems Engineering, University of Nebraska, Lincoln, NE, USA; Center for Brain, Biology and Behavior, University of Nebraska, Lincoln, NE, USA.
| |
Collapse
|
28
|
Letzkus J, Wolff S, Lüthi A. Disinhibition, a Circuit Mechanism for Associative Learning and Memory. Neuron 2015; 88:264-76. [PMID: 26494276 DOI: 10.1016/j.neuron.2015.09.024] [Citation(s) in RCA: 240] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
29
|
Allene C, Lourenço J, Bacci A. The neuronal identity bias behind neocortical GABAergic plasticity. Trends Neurosci 2015; 38:524-34. [PMID: 26318208 DOI: 10.1016/j.tins.2015.07.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 07/28/2015] [Accepted: 07/29/2015] [Indexed: 12/18/2022]
Abstract
In the neocortex, different types of excitatory and inhibitory neurons connect to one another following a detailed blueprint, defining functionally-distinct subnetworks, whose activity and modulation underlie complex cognitive functions. We review the cell-autonomous plasticity of perisomatic inhibition onto principal excitatory neurons. We propose that the tendency of different cortical layers to exhibit depression or potentiation of perisomatic inhibition is dictated by the specific identities of principal neurons (PNs). These are mainly defined by their projection targets and by their preference to be innervated by specific perisomatic-targeting basket cell types. Therefore, principal neurons responsible for relaying information to subcortical nuclei are differentially inhibited and show specific forms of plasticity compared to other PNs that are specialized in more associative functions.
Collapse
Affiliation(s)
- Camille Allene
- Sorbonne Universités, Université Pierre et Marie Curie (UPMC Paris 6), Unité Mixte de Recherche S 1127; Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 1127; Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche 7225; Institut du Cerveau et de la Moelle épinière (ICM), 75013 Paris, France
| | - Joana Lourenço
- Sorbonne Universités, Université Pierre et Marie Curie (UPMC Paris 6), Unité Mixte de Recherche S 1127; Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 1127; Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche 7225; Institut du Cerveau et de la Moelle épinière (ICM), 75013 Paris, France
| | - Alberto Bacci
- Sorbonne Universités, Université Pierre et Marie Curie (UPMC Paris 6), Unité Mixte de Recherche S 1127; Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 1127; Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche 7225; Institut du Cerveau et de la Moelle épinière (ICM), 75013 Paris, France.
| |
Collapse
|
30
|
Chen JL, Margolis DJ, Stankov A, Sumanovski LT, Schneider BL, Helmchen F. Pathway-specific reorganization of projection neurons in somatosensory cortex during learning. Nat Neurosci 2015; 18:1101-8. [DOI: 10.1038/nn.4046] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 05/27/2015] [Indexed: 12/19/2022]
|
31
|
Pagès S, Cane M, Randall J, Capello L, Holtmaat A. Single cell electroporation for longitudinal imaging of synaptic structure and function in the adult mouse neocortex in vivo. Front Neuroanat 2015; 9:36. [PMID: 25904849 PMCID: PMC4387926 DOI: 10.3389/fnana.2015.00036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 03/09/2015] [Indexed: 11/13/2022] Open
Abstract
Longitudinal imaging studies of neuronal structures in vivo have revealed rich dynamics in dendritic spines and axonal boutons. Spines and boutons are considered to be proxies for synapses. This implies that synapses display similar dynamics. However, spines and boutons do not always bear synapses, some may contain more than one, and dendritic shaft synapses have no clear structural proxies. In addition, synaptic strength is not always accurately revealed by just the size of these structures. Structural and functional dynamics of synapses could be studied more reliably using fluorescent synaptic proteins as markers for size and function. These proteins are often large and possibly interfere with circuit development, which renders them less suitable for conventional transfection or transgenesis methods such as viral vectors, in utero electroporation, and germline transgenesis. Single cell electroporation (SCE) has been shown to be a potential alternative for transfection of recombinant fluorescent proteins in adult cortical neurons. Here we provide proof of principle for the use of SCE to express and subsequently image fluorescently tagged synaptic proteins over days to weeks in vivo.
Collapse
Affiliation(s)
- Stéphane Pagès
- Department of Basic Neurosciences and The Center for Neuroscience, Centre Médical Universitaire (CMU), University of Geneva Geneva, Switzerland
| | - Michele Cane
- Department of Basic Neurosciences and The Center for Neuroscience, Centre Médical Universitaire (CMU), University of Geneva Geneva, Switzerland
| | - Jérôme Randall
- Department of Basic Neurosciences and The Center for Neuroscience, Centre Médical Universitaire (CMU), University of Geneva Geneva, Switzerland
| | - Luca Capello
- Itopie Informatique, Société Coopérative Geneva, Switzerland
| | - Anthony Holtmaat
- Department of Basic Neurosciences and The Center for Neuroscience, Centre Médical Universitaire (CMU), University of Geneva Geneva, Switzerland
| |
Collapse
|
32
|
Gambino F, Pagès S, Kehayas V, Baptista D, Tatti R, Carleton A, Holtmaat A. Sensory-evoked LTP driven by dendritic plateau potentials in vivo. Nature 2014; 515:116-9. [DOI: 10.1038/nature13664] [Citation(s) in RCA: 180] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 07/07/2014] [Indexed: 02/08/2023]
|
33
|
Lourenço J, Pacioni S, Rebola N, van Woerden GM, Marinelli S, DiGregorio D, Bacci A. Non-associative potentiation of perisomatic inhibition alters the temporal coding of neocortical layer 5 pyramidal neurons. PLoS Biol 2014; 12:e1001903. [PMID: 25003184 PMCID: PMC4086817 DOI: 10.1371/journal.pbio.1001903] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 05/30/2014] [Indexed: 11/19/2022] Open
Abstract
In the neocortex, the coexistence of temporally locked excitation and inhibition governs complex network activity underlying cognitive functions, and is believed to be altered in several brain diseases. Here we show that this equilibrium can be unlocked by increased activity of layer 5 pyramidal neurons of the mouse neocortex. Somatic depolarization or short bursts of action potentials of layer 5 pyramidal neurons induced a selective long-term potentiation of GABAergic synapses (LTPi) without affecting glutamatergic inputs. Remarkably, LTPi was selective for perisomatic inhibition from parvalbumin basket cells, leaving dendritic inhibition intact. It relied on retrograde signaling of nitric oxide, which persistently altered presynaptic GABA release and diffused to inhibitory synapses impinging on adjacent pyramidal neurons. LTPi reduced the time window of synaptic summation and increased the temporal precision of spike generation. Thus, increases in single cortical pyramidal neuron activity can induce an interneuron-selective GABAergic plasticity effectively altering the computation of temporally coded information.
Collapse
Affiliation(s)
- Joana Lourenço
- European Brain Research Institute, Rome, Italy
- Sorbonne Universités UPMC Univ. Paris 06, UMR S 1127, Paris, France
- Inserm U 1127, Paris, France
- CNRS UMR 7225, Paris, France
- ICM- Institut du Cerveau et de la Moelle épinière, Paris, France
- * E-mail: (J.L.); (A.B.)
| | | | - Nelson Rebola
- CNRS UMR 3571, Paris, France
- Institut Pasteur, Unit of Dynamic Neuronal Imaging, Paris, France
| | - Geeske M. van Woerden
- European Brain Research Institute, Rome, Italy
- Sorbonne Universités UPMC Univ. Paris 06, UMR S 1127, Paris, France
- Inserm U 1127, Paris, France
- CNRS UMR 7225, Paris, France
- ICM- Institut du Cerveau et de la Moelle épinière, Paris, France
| | | | - David DiGregorio
- CNRS UMR 3571, Paris, France
- Institut Pasteur, Unit of Dynamic Neuronal Imaging, Paris, France
| | - Alberto Bacci
- European Brain Research Institute, Rome, Italy
- Sorbonne Universités UPMC Univ. Paris 06, UMR S 1127, Paris, France
- Inserm U 1127, Paris, France
- CNRS UMR 7225, Paris, France
- ICM- Institut du Cerveau et de la Moelle épinière, Paris, France
- * E-mail: (J.L.); (A.B.)
| |
Collapse
|
34
|
Modality-specific thalamocortical inputs instruct the identity of postsynaptic L4 neurons. Nature 2014; 511:471-4. [DOI: 10.1038/nature13390] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 04/22/2014] [Indexed: 01/17/2023]
|
35
|
Blom SM, Pfister JP, Santello M, Senn W, Nevian T. Nerve injury-induced neuropathic pain causes disinhibition of the anterior cingulate cortex. J Neurosci 2014; 34:5754-64. [PMID: 24760836 PMCID: PMC6608297 DOI: 10.1523/jneurosci.3667-13.2014] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 01/17/2014] [Accepted: 02/22/2014] [Indexed: 01/21/2023] Open
Abstract
Neuropathic pain caused by peripheral nerve injury is a debilitating neurological condition of high clinical relevance. On the cellular level, the elevated pain sensitivity is induced by plasticity of neuronal function along the pain pathway. Changes in cortical areas involved in pain processing contribute to the development of neuropathic pain. Yet, it remains elusive which plasticity mechanisms occur in cortical circuits. We investigated the properties of neural networks in the anterior cingulate cortex (ACC), a brain region mediating affective responses to noxious stimuli. We performed multiple whole-cell recordings from neurons in layer 5 (L5) of the ACC of adult mice after chronic constriction injury of the sciatic nerve of the left hindpaw and observed a striking loss of connections between excitatory and inhibitory neurons in both directions. In contrast, no significant changes in synaptic efficacy in the remaining connected pairs were found. These changes were reflected on the network level by a decrease in the mEPSC and mIPSC frequency. Additionally, nerve injury resulted in a potentiation of the intrinsic excitability of pyramidal neurons, whereas the cellular properties of interneurons were unchanged. Our set of experimental parameters allowed constructing a neuronal network model of L5 in the ACC, revealing that the modification of inhibitory connectivity had the most profound effect on increased network activity. Thus, our combined experimental and modeling approach suggests that cortical disinhibition is a fundamental pathological modification associated with peripheral nerve damage. These changes at the cortical network level might therefore contribute to the neuropathic pain condition.
Collapse
Affiliation(s)
| | | | | | - Walter Senn
- Department of Physiology and
- Center for Cognition, Learning and Memory, University of Bern, 3012 Bern, Switzerland
| | - Thomas Nevian
- Department of Physiology and
- Center for Cognition, Learning and Memory, University of Bern, 3012 Bern, Switzerland
| |
Collapse
|
36
|
Abstract
Tinnitus and cochlear damage have been associated with changes in somatosensory-auditory integration and plasticity in the dorsal cochlear nucleus (DCN). Recently, we demonstrated in vivo that DCN bimodal plasticity is stimulus timing-dependent, with Hebbian and anti-Hebbian timing rules that reflect in vitro spike timing-dependent plasticity. In this in vivo study, we assessed the stimulus timing dependence of bimodal plasticity in a tinnitus model. Guinea pigs were exposed to a narrowband noise that produced a temporary elevation of auditory brainstem response thresholds. A total of 60% of the guinea pigs developed tinnitus as indicated by gap-induced prepulse inhibition of the acoustic startle. After noise exposure and tinnitus induction, stimulus timing-dependent plasticity was measured by comparing responses to sound before and after paired somatosensory and auditory stimulation presented with varying intervals and orders. In comparison with Sham and noise-exposed animals that did not develop tinnitus, timing rules in verified tinnitus animals were more likely to be anti-Hebbian and broader for those bimodal intervals in which the neural activity showed enhancement. Furthermore, units from exposed animals with tinnitus were more weakly suppressed than either Sham animals or exposed animals without tinnitus. The broadened timing rules in the enhancement phase in animals with tinnitus, and in the suppressive phase in exposed animals without tinnitus was in contrast to narrow, Hebbian-like timing rules in Sham animals. These findings implicate alterations in DCN bimodal spike timing-dependent plasticity as underlying mechanisms in tinnitus, opening the way for a therapeutic target.
Collapse
|
37
|
Frangeul L, Porrero C, Garcia-Amado M, Maimone B, Maniglier M, Clascá F, Jabaudon D. Specific activation of the paralemniscal pathway during nociception. Eur J Neurosci 2014; 39:1455-64. [PMID: 24580836 DOI: 10.1111/ejn.12524] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 01/10/2014] [Accepted: 01/27/2014] [Indexed: 11/30/2022]
Abstract
Two main neuronal pathways connect facial whiskers to the somatosensory cortex in rodents: (i) the lemniscal pathway, which originates in the brainstem principal trigeminal nucleus and is relayed in the ventroposterior thalamic nucleus and (ii) the paralemniscal pathway, originating in the spinal trigeminal nucleus and relayed in the posterior thalamic nucleus. While lemniscal neurons are readily activated by whisker contacts, the contribution of paralemniscal neurons to perception is less clear. Here, we functionally investigated these pathways by manipulating input from the whisker pad in freely moving mice. We report that while lemniscal neurons readily respond to neonatal infraorbital nerve sectioning or whisker contacts in vivo, paralemniscal neurons do not detectably respond to these environmental changes. However, the paralemniscal pathway is specifically activated upon noxious stimulation of the whisker pad. These findings reveal a nociceptive function for paralemniscal neurons in vivo that may critically inform context-specific behaviour during environmental exploration.
Collapse
Affiliation(s)
- Laura Frangeul
- Department of Basic Neurosciences, University of Geneva, 1 rue Michel Servet, 1211, Geneva, Switzerland
| | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
How homeostatic processes contribute to map plasticity and stability in sensory cortex is not well-understood. Classically, sensory deprivation first drives rapid Hebbian weakening of spiking responses to deprived inputs, which is followed days later by a slow homeostatic increase in spiking responses mediated by excitatory synaptic scaling. Recently, more rapid homeostasis by inhibitory circuit plasticity has been discovered in visual cortex, but whether this process occurs in other brain areas is not known. We tested for rapid homeostasis in layer 2/3 (L2/3) of rodent somatosensory cortex, where D-row whisker deprivation drives Hebbian weakening of whisker-evoked spiking responses after an unexplained initial delay, but no homeostasis of deprived whisker responses is known. We hypothesized that the delay reflects rapid homeostasis through disinhibition, which masks the onset of Hebbian weakening of L2/3 excitatory input. We found that deprivation (3 d) transiently increased whisker-evoked spiking responses in L2/3 single units before classical Hebbian weakening (≥5 d), whereas whisker-evoked synaptic input was reduced during both periods. This finding suggests a transient homeostatic increase in L2/3 excitability. In whole-cell recordings from L2/3 neurons in vivo, brief deprivation decreased whisker-evoked inhibition more than excitation and increased the excitation-inhibition ratio. In contrast, synaptic scaling and increased intrinsic excitability were absent. Thus, disinhibition is a rapid homeostatic plasticity mechanism in rodent somatosensory cortex that transiently maintains whisker-evoked spiking in L2/3, despite the onset of Hebbian weakening of excitatory input.
Collapse
|
39
|
Lohmann C, Kessels HW. The developmental stages of synaptic plasticity. J Physiol 2014; 592:13-31. [PMID: 24144877 PMCID: PMC3903349 DOI: 10.1113/jphysiol.2012.235119] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 10/16/2013] [Indexed: 01/17/2023] Open
Abstract
The brain is programmed to drive behaviour by precisely wiring the appropriate neuronal circuits. Wiring and rewiring of neuronal circuits largely depends on the orchestrated changes in the strengths of synaptic contacts. Here, we review how the rules of synaptic plasticity change during development of the brain, from birth to independence. We focus on the changes that occur at the postsynaptic side of excitatory glutamatergic synapses in the rodent hippocampus and neocortex. First we summarize the current data on the structure of synapses and the developmental expression patterns of the key molecular players of synaptic plasticity, N-methyl-d-aspartate (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, as well as pivotal kinases (Ca(2+)/calmodulin-dependent protein kinase II, protein kinase A, protein kinase C) and phosphatases (PP1, PP2A, PP2B). In the second part we relate these findings to important characteristics of the emerging network. We argue that the concerted and gradual shifts in the usage of plasticity molecules comply with the changing need for (re)wiring neuronal circuits.
Collapse
Affiliation(s)
- Christian Lohmann
- C. Lohmann and H. W. Kessels: The Netherlands Institute for Neuroscience, the Royal Academy of Arts and Sciences, Meibergdreef 47, 1105 BA, Amsterdam, the Netherlands. Emails: ,
| | | |
Collapse
|
40
|
Frias CP, Wierenga CJ. Activity-dependent adaptations in inhibitory axons. Front Cell Neurosci 2013; 7:219. [PMID: 24312009 PMCID: PMC3836028 DOI: 10.3389/fncel.2013.00219] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 10/30/2013] [Indexed: 11/13/2022] Open
Abstract
Synaptic connections in our brains change continuously and throughout our lifetime. Despite ongoing synaptic changes, a healthy balance between excitation and inhibition is maintained by various forms of homeostatic and activity-dependent adaptations, ensuring stable functioning of neuronal networks. In this review we summarize experimental evidence for activity-dependent changes occurring in inhibitory axons, in cultures as well as in vivo. Axons form many presynaptic terminals, which are dynamic structures sharing presynaptic material along the axonal shaft. We discuss how internal (e.g., vesicle sharing) and external factors (e.g., binding of cell adhesion molecules or secreted factors) may affect the formation and plasticity of inhibitory synapses.
Collapse
Affiliation(s)
| | - Corette J. Wierenga
- Division of Cell Biology, Faculty of Science, Utrecht UniversityUtrecht, Netherlands
| |
Collapse
|
41
|
Holtmaat A, Randall J, Cane M. Optical imaging of structural and functional synaptic plasticity in vivo. Eur J Pharmacol 2013; 719:128-136. [DOI: 10.1016/j.ejphar.2013.07.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 07/11/2013] [Indexed: 12/13/2022]
|
42
|
Shao YR, Isett BR, Miyashita T, Chung J, Pourzia O, Gasperini RJ, Feldman DE. Plasticity of recurrent l2/3 inhibition and gamma oscillations by whisker experience. Neuron 2013; 80:210-22. [PMID: 24094112 DOI: 10.1016/j.neuron.2013.07.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2013] [Indexed: 10/26/2022]
Abstract
Local recurrent networks in neocortex are critical nodes for sensory processing, but their regulation by experience is much less understood than for long-distance (translaminar or cross-columnar) projections. We studied local L2/3 recurrent networks in rat somatosensory cortex during deprivation-induced whisker map plasticity, by expressing channelrhodopsin-2 (ChR2) in L2/3 pyramidal cells and measuring light-evoked synaptic currents in ex vivo S1 slices. In columns with intact whiskers, brief light impulses evoked recurrent excitation and supralinear inhibition. Deprived columns showed modestly reduced excitation and profoundly reduced inhibition, providing a circuit locus for disinhibition of whisker-evoked responses observed in L2/3 in vivo. Slower light ramps elicited sustained gamma frequency oscillations, which were nearly abolished in deprived columns. Reduction in gamma power was also observed in spontaneous LFP oscillations in L2/3 of deprived columns in vivo. Thus, L2/3 recurrent networks are a powerful site for homeostatic modulation of excitation-inhibition balance and regulation of gamma oscillations.
Collapse
Affiliation(s)
- Yu R Shao
- Department of Molecular and Cellular Biology, University of California Berkeley, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA 94720, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Bocklisch C, Pascoli V, Wong JCY, House DRC, Yvon C, de Roo M, Tan KR, Luscher C. Cocaine Disinhibits Dopamine Neurons by Potentiation of GABA Transmission in the Ventral Tegmental Area. Science 2013; 341:1521-5. [DOI: 10.1126/science.1237059] [Citation(s) in RCA: 216] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
44
|
Margolis DJ, Lütcke H, Helmchen F. Microcircuit dynamics of map plasticity in barrel cortex. Curr Opin Neurobiol 2013; 24:76-81. [PMID: 24492082 DOI: 10.1016/j.conb.2013.08.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 08/26/2013] [Accepted: 08/27/2013] [Indexed: 10/26/2022]
Abstract
Functional reorganization of the whisker map in rodent barrel cortex has long served as a model for cortical plasticity following changes in sensory experience. Given the heterogeneity of neuronal response properties in neocortex, it has remained unclear how individual neurons in the cortical microcircuit are affected. Novel in vivo imaging and electrophysiology methods allow longitudinal recording of the same neurons' functional properties and therefore have the critical ability to resolve the direction and dynamics of change as plasticity progresses. Tracking sensory responsiveness before and after whisker trimming has uncovered diverse effects in individual neurons, suggesting that longitudinal recording will be essential for elucidating plasticity mechanisms within cortical microcircuits.
Collapse
Affiliation(s)
- David J Margolis
- Brain Research Institute, University of Zurich, Zurich, Switzerland; Department of Cell Biology and Neuroscience, Rutgers University, New Brunswick, NJ, USA.
| | - Henry Lütcke
- Brain Research Institute, University of Zurich, Zurich, Switzerland
| | - Fritjof Helmchen
- Brain Research Institute, University of Zurich, Zurich, Switzerland
| |
Collapse
|
45
|
Stone DB, Tesche CD. Topological dynamics in spike-timing dependent plastic model neural networks. Front Neural Circuits 2013; 7:70. [PMID: 23616750 PMCID: PMC3629334 DOI: 10.3389/fncir.2013.00070] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 04/01/2013] [Indexed: 11/13/2022] Open
Abstract
Spike-timing dependent plasticity (STDP) is a biologically constrained unsupervised form of learning that potentiates or depresses synaptic connections based on the precise timing of pre-synaptic and post-synaptic firings. The effects of on-going STDP on the topology of evolving model neural networks were assessed in 50 unique simulations which modeled 2 h of activity. After a period of stabilization, a number of global and local topological features were monitored periodically to quantify on-going changes in network structure. Global topological features included the total number of remaining synapses, average synaptic strengths, and average number of synapses per neuron (degree). Under a range of different input regimes and initial network configurations, each network maintained a robust and highly stable global structure across time. Local topology was monitored by assessing state changes of all three-neuron subgraphs (triads) present in the networks. Overall counts and the range of triad configurations varied little across the simulations; however, a substantial set of individual triads continued to undergo rapid state changes and revealed a dynamic local topology. In addition, specific small-world properties also fluctuated across time. These findings suggest that on-going STDP provides an efficient means of selecting and maintaining a stable yet flexible network organization.
Collapse
Affiliation(s)
- David B Stone
- Department of Psychology, University of New Mexico Albuquerque, NM, USA
| | | |
Collapse
|
46
|
Chen JL, Nedivi E. Highly specific structural plasticity of inhibitory circuits in the adult neocortex. Neuroscientist 2013; 19:384-93. [PMID: 23474602 DOI: 10.1177/1073858413479824] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Inhibitory neurons are known to play a vital role in defining the window for critical period plasticity during development, and it is increasingly apparent that they continue to exert powerful control over experience-dependent cortical plasticity in adulthood. Recent in vivo imaging studies demonstrate that long-term plasticity of inhibitory circuits is manifested at an anatomical level. Changes in sensory experience drive structural remodeling in inhibitory interneurons in a cell-type and circuit-specific manner. Inhibitory synapse formation and elimination can occur with a great deal of spatial and temporal precision and are locally coordinated with excitatory synaptic changes on the same neuron. We suggest that the specificity of inhibitory synapse dynamics may serve to differentially modulate activity across the dendritic arbor, to selectively tune parts of a local circuit, or potentially discriminate between activities in distinct local circuits. We further review evidence suggesting that inhibitory circuit structural changes instruct excitatory/inhibitory balance while enabling functional reorganization to occur through Hebbian forms of plasticity.
Collapse
Affiliation(s)
- Jerry L Chen
- Brain Research Institute, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|